Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 264-277.doi: 10.3864/j.issn.0578-1752.2024.02.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Planting Density and Fertilization Level on Photosynthesis, Yield and Lodging Resistance of Common Buckwheat

LEI XinHui1(), WU YiXin1, WANG JiaLe1, TAO JinCai1, WAN ChenXi1, WANG Meng2, GAO XiaoLi1, FENG BaiLi1, GAO JinFeng1()   

  1. 1 College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Physiology in Arid Areas, Yangling 712100, Shaanxi
    2 Yulin Academy of Agricultural Sciences, Shaanxi Province, Yulin 719000, Shaanxi
  • Received:2023-05-05 Accepted:2023-06-19 Online:2024-01-16 Published:2024-01-19
  • Contact: GAO JinFeng

Abstract:

【Objective】 Rational close planting and fertilization can effectively coordinate the competition among individuals, improve the light environment of the population and build a high-yield population, which is an important way to increase crop yield. The effects of different planting densities and fertilization levels on lodging resistance and yield of common buckwheat were discussed to provide technical reference for high yield and high yield cultivation of buckwheat. 【Method】 In this study, Xinong D4103, a new isostyle common buckwheat variety, was used as the experimental material, and Xinong 9976, the main cultivated variety in the Loess Plateau, was used as the control, and the two-factor split plot design was adopted. The main factors were two planting densities, namely D1: 9.0×105 plants/hm2 and D2: 1.35×106 plants/hm2. The secondary factors were low, medium and high fertilization levels, which were N: 120, P2O5: 76.8, K2O: 56.4 kg·hm-2 (F1), N: 180, P2O5: 115.2, K2O: 84.6 kg·hm-2 (F2), N: 240, P2O5: 153.6, K2O: 112.8 kg·hm-2 (F3) respectively, which were carried out in Yulin Experimental Station of Northwest A&F University in 2021-2022. The effects of canopy structure, photosynthetic characteristics, yield, yield components and lodging characteristics of common buckwheat population under different planting densities and fertilization levels were studied.【Result】 The two-year field experiment showed that with the increase of planting density, the leaf area index (LAI) of common buckwheat population increased significantly, the photosynthetic effective radiation (PAR) and relative chlorophyll content (SPAD) decreased significantly, and the photosynthetic capacity of leaves was weakened. Fertilization significantly increased LAI, SPAD and photosynthetic capacity of common buckwheat population, and decreased PAR. Compared with lower fertilizer level, the LAI, SPAD, net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of medium fertilizer level increased by 14.6%, 6.7%, 15.3%, 15.2% and 16.6% on average, while PAR and intercellular CO2 concentration (Ci) decreased by 4.5% and 6.7% on average. Compared with D1, the plant height, height of gravity center, length of the second internode, lodging rate and lodging index of D2 increased by 9.6%, 12.5%, 24.7%, 19.8% and 26.2% on average, while the diameter, fullness, flexural strength of the second internode and fresh weight of whole plant decreased by 13.1%, 7.4%, 18.3% and 8.5%. Increased fertilizer application at the same density, the plant height, center of gravity height, length of the second internode, fresh weight of the whole plant, lodging rate and lodging index increased gradually, while the diameter, fullness, flexural strength of the second internode increased first and then decreased. The yield of common buckwheat was significantly increased by increasing the planting density and fertilization level. The yield of Xinong D4103 reached the maximum in D2F2 treatment, which was 15.1% higher than that of D1F1 and 17.0% higher than that of the control variety under the same fertilization amount. 【Conclusion】 Constructing a reasonable population structure is helpful to increase the light receiving area, improve photosynthetic characteristics, reduce the lodging rate in the field and increase yield. Therefore, Xinong D4103, an isostyle common buckwheat variety in the Loess Plateau, recommended the planting density of 1.35×106 plants/hm2, and the fertilizer application rate of medium fertilization level (N: 180, P2O5: 115.2, K2O: 84.6 kg·hm-2)

Key words: common buckwheat, planting density, fertilization level, photosynthetic characteristics, lodging resistance, yield

Fig. 1

Effects of planting density and fertilization on lodging rate and main agronomic characters of common buckwheat Different lowercase letters indicate that there are significant differences at the level of P<0.05 in the same period. D1: 9.0×105 plants/hm2; D2: 1.35×106 plants/hm2; F1: Stands for low fertilizer treatment; F2: Stands for medium fertilizer; F3: Stands for high fertilizer treatment. The same as below"

Table 1

Effects of planting density and fertilization level on yield and yield components of common buckwheat"

年份
Year
品种
Variety
处理
Treatment
单株粒数
Grain number per plant
单株粒重
Grain weight per plant (g)
百粒重
100-grain weight (g)
产量
Yield (kg·hm-2)
2021 西农D4103 Xinong D4103 D1F1 136.0±8.66c 4.13±0.14c 3.33±0.02b 960.0±10.00de
D1F2 157.0±7.21a 5.87±0.05a 3.60±0.02a 1023.3±11.55c
D1F3 145.3±2.52b 4.56±0.12b 3.34±0.04b 1003.3±11.55c
D2F1 113.0±1.73e 3.51±0.12d 2.74±0.03e 1076.7±23.09b
D2F2 132.0±2.65cd 3.99±0.09c 2.94±0.03c 1143.3±15.28a
D2F3 110.7±3.79e 3.34±0.12de 2.84±0.04d 1082.2±5.77b
西农9976 Xinong 9976 D1F1 107.3±3.21e 2.97±0.17f 2.71±0.03e 896.7±35.12f
D1F2 129.3±2.89cd 3.96±0.09c 2.86±0.05d 963.0±20.00d
D1F3 124.0±5.29d 3.25±0.07e 2.82±0.02d 930.0±15.00e
F 密度Density (D) 130.03** 579.28** 202.88** 255.96**
肥料Fertilization (F) 26.05** 184.15** 8.11** 33.26**
密度×肥料D×F 2.22NS 49.61** 4.72* 4.03*
2022 西农D4103 Xinong D4103 D1F1 128.00±6.00b 4.08±0.23b 2.96±0.04b 955.0±13.23d
D1F2 162.33±7.37a 5.12±0.17a 3.41±0.08a 1021.7±15.28c
D1F3 155.00±4.00a 4.15±0.26b 3.32±0.09a 1005.0±10.00c
D2F1 112.33±3.21c 3.13±0.41d 2.60±0.09e 1055.0±18.03b
D2F2 127.33±6.81b 3.90±0.31b 2.8±0.04bcd 1098.3±11.55a
D2F3 124.33±4.04b 3.81±0.06bc 2.67±0.11cde 1063.3±5.77b
西农9976 Xinong 9976 D1F1 120.33±8.08bc 3.23±0.43d 2.63±0.11de 826.7±25.17g
D1F2 126.00±6.93b 3.88±0.28b 2.87±0.17b 920.0±22.91e
D1F3 118.67±5.13bc 3.33±0.13cd 2.83±0.17bc 860.0±26.46f
F 密度Density (D) 110.67** 46.15** 217.65** 165.68**
肥料Fertilization (F) 33.97** 18.06** 26.29** 27.26**
密度×肥料D×F 5.17* 4.42* 6.03* 3.93*

Fig. 2

Effects of planting density and fertilization on PAR and LAI of common buckwheat"

Fig. 3

Effects of planting density and fertilization level on the relative content of chlorophyll in common buckwheat"

Fig. 4

Effects of planting density and fertilization level on photosynthetic parameters of common buckwheat"

Fig. 5

Effects of planting density and fertilization level on lodging-related characters of common buckwheat"

Fig. 6

Correlation analysis of canopy structure, photosynthetic characteristics and lodging resistance of common buckwheat LR: Lodging rate; LI: Lodging index; LAI: Leaf area index; PAR: Photosynthetic active radiation; Tr: Transpiration rate; Ci: Intercellular CO2 concentration; Gs: Stomatal conductance; Pn: Net photosynthesis rate; SPAD: Relative chlorophyll content; PH: Plant height; GC: Height of center of gravity; LS: Length of the second internode; TS: Thickness of the second internode; FS: Fullness of the second internode; BR: Bending resistance; FW: Fresh weight of the whole plant"

[1]
林汝法. 山西省荞麦种质资源类型及形态生态特点. 作物品种资源, 1986(4): 15-18.
LIN R F. Types and morphological and ecological characteristics of buckwheat germplasm resources in Shanxi Province. China Seed Industry, 1986(4): 15-18. (in Chinese)
[2]
佘恒志, 聂姣, 李英双, 刘星贝, 胡丹, 马珊, 次仁卓嘎, 汪灿, 吴东倩, 阮仁武, 易泽林. 不同抗倒伏能力甜荞品种茎秆木质素及其单体合成特征. 中国农业科学, 2017, 50(7): 1202-1209. doi: 10.3864/j.issn.0578-1752.2017.07.003.
SHE H Z, NIE J, LI Y S, LIU X B, HU D, MA S, CIREN Z G, WANG C, WU D Q, RUAN R W, YI Z L. Lignin and lignin monomer synthetic characteristics of culm in common buckwheat with different lodging resistance capabilities. Scientia Agricultura Sinica, 2017, 50(7): 1202-1209. doi: 10.3864/j.issn.0578-1752.2017.07.003. (in Chinese)
[3]
刘星贝, 吴东倩, 汪灿, 胡丹, 杨浩, 佘恒志, 阮仁武, 袁晓辉, 易泽林. 喷施烯效唑对甜荞茎秆抗倒性能及产量的影响. 中国农业科学, 2015, 48(24): 4903-4915. doi: 10.3864/j.issn.0578-1752.2015.24.005.
LIU X B, WU D Q, WANG C, HU D, YANG H, SHE H Z, RUAN R W, YUAN X H, YI Z L. Effects of spraying uniconazole on lodging resistance of culm and yield in common buckwheat. Scientia Agricultura Sinica, 2015, 48(24): 4903-4915. doi: 10.3864/j.issn.0578-1752.2015.24.005. (in Chinese)
[4]
SOFI S A, AHMED N, FAROOQ A, RAFIQ S, ZARGAR S M, KAMRAN F, DAR T A, MIR S A, DAR B N, MOUSAVI KHANEGHAH A. Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten‐free products: An updated overview. Food Science & Nutrition, 2022, 11(5): 2256-2276.
[5]
LUTHAR Z, GERM M, LIKAR M, GOLOB A, VOGEL-MIKUŠ K, PONGRAC P, KUŠAR A, PRAVST I, KREFT I. Breeding buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects. Plants, 2020, 9(12): 1638.

doi: 10.3390/plants9121638
[6]
杨梅. 密度对不同玉米品种光合特性及产量的影响[D]. 杨凌: 西北农林科技大学, 2022.
YANG M. Effects of densities on photosynthetic characteristics and yield of different maize varieties[D]. Yangling: Northwest A&F University, 2022. (in Chinese)
[7]
YU X F, ZHANG Q, GAO J L, WANG Z G, BORJIGIN Q, HU S P, ZHANG B L, MA D L. Planting density tolerance of high-yielding maize and the mechanisms underlying yield improvement with subsoiling and increased planting density. Agronomy, 2019, 9(7): 370.

doi: 10.3390/agronomy9070370
[8]
AHMAD I, BATYRBEK M, IKRAM K, AHMAD S, KAMRAN M, KHAN R S, HOU F J, HAN Q F. Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density. Journal of Integrative Agriculture, 2023, 22(2): 417-433.

doi: 10.1016/j.jia.2022.08.074
[9]
WANG X K, WANG G, TURNER N C, XING Y Y, LI M T, GUO T. Determining optimal mulching, planting density, and nitrogen application to increase maize grain yield and nitrogen translocation efficiency in Northwest China. BMC Plant Biology, 2020, 20(1): 282.

doi: 10.1186/s12870-020-02477-2 pmid: 32560674
[10]
KHAN A, AHMAD A, ALI W, HUSSAIN S, AJAYO B S, ALI RAZA M, KAMRAN M, TE X A, AL AMIN N, ALI S, IQBAL N, KHAN I, SATTAR M T, ALI A, WU Y S, YANG W Y. Optimization of plant density and nitrogen regimes to mitigate lodging risk in wheat. Agronomy Journal, 2020, 112(4): 2535-2551.

doi: 10.1002/agj2.v112.4
[11]
ZHANG Y H, XU Z G, LI J, WANG R. Optimum planting density improves resource use efficiency and yield stability of rainfed maize in semiarid climate. Frontiers in Plant Science, 2021, 12: 752606.

doi: 10.3389/fpls.2021.752606
[12]
XUE J, XIE R Z, ZHANG W F, WANG K R, HOU P, MING B, GOU L, LI S K. Research progress on reduced lodging of high-yield and -density maize. Journal of Integrative Agriculture, 2017, 16(12): 2717-2725.

doi: 10.1016/S2095-3119(17)61785-4
[13]
LI C H, LUO Y L, JIN M, SUN S F, WANG Z L, LI Y. Response of lignin metabolism to light quality in wheat population. Frontiers in Plant Science, 2021, 12: 729647.

doi: 10.3389/fpls.2021.729647
[14]
周辉, 张志转. 水稻倒伏的原因与防治. 农业灾害研究, 2013, 3(10): 52-55.
ZHOU H, ZHANG Z Z. Causes and control of rice lodging. Journal of Agricultural Catastrophology, 2013, 3(10): 52-55. (in Chinese)
[15]
傅晓艺, 史占良, 单子龙, 张士昌, 韩然, 张铁石, 曹巧, 高振贤, 高新梅, 何明琦. 氮肥和密度互作对冬小麦石4366群体、茎秆特性和产量的影响. 麦类作物学报, 2023, 43(1): 81-90.
FU X Y, SHI Z L, SHAN Z L, ZHANG S C, HAN R, ZHANG T S, CAO Q, GAO Z X, GAO X M, HE M Q. Effects of of nitrogen- density interaction on population, stem characteristics and yield of winter wheat cultivar Shi 4366. Journal of Triticeae Crops, 2023, 43(1): 81-90. (in Chinese)
[16]
蒋明金. 氮肥管理对直播水稻抗倒伏能力的影响及抗倒伏能力相关性状QTL定位[D]. 雅安: 四川农业大学, 2019.
JIANG M J. Effects of nitrogen managements on lodging resistance of direct-seeded rice and QTL analysis for lodging resistance-related traits of rice[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese)
[17]
DU X B, WANG Z, LEI W X, KONG L C. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Scientific Reports, 2021, 11: 358.

doi: 10.1038/s41598-020-79633-z pmid: 33432054
[18]
靳建刚, 田再芳. 不同种植密度对晋荞麦6号农艺性状及产量的影响. 山西农业科学, 2019, 47(7): 1182-1184.
JIN J G, TIAN Z F. Effects of different planting densities on agronomic traits and yield of Jinqiaomai 6. Journal of Shanxi Agricultural Sciences, 2019, 47(7): 1182-1184. (in Chinese)
[19]
汪灿, 王诗雪, 李曼, 杨浩, 胡丹, 阮仁武, 袁晓辉, 易泽林. 播种量和施肥水平对春播甜荞光合特性及产量的影响. 植物营养与肥料学报, 2014, 20(4): 1021-1029.
WANG C, WANG S X, LI M, YANG H, HU D, RUAN R W, YUAN X H, YI Z L. Effects of seeding rate and fertilizer on photosynthetic characteristics and yield of spring Fagopyrum esculentum. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 1021-1029. (in Chinese)
[20]
WANG C, RUAN R W, YUAN X H, HU D, YANG H, LI Y, YI Z L. Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat. Plant Production Science, 2015, 18(2): 218-227.

doi: 10.1626/pps.18.218
[21]
刘荣甫, 黄荣华, 王全友, 陈学荣, 刘燕敏, 马小凤. 密度与施肥水平对春播荞麦苏荞2号生长发育及产量的影响. 江苏农业科学, 2020, 48(7): 102-106.
LIU R F, HUANG R H, WANG Q Y, CHEN X R, LIU Y M, MA X F. Influences of density and fertilization level on the growth and yield of buckwheat cultival Suqiao 2 sown in spring. Jiangsu Agricultural Sciences, 2020, 48(7): 102-106. (in Chinese)
[22]
HUANG M, LEI T, CAO J L, TAO Z, CAO F B, CHEN J N, YIN X H, ZOU Y B. Linking grain yield and lodging resistance with growth patterns in rice. Experimental Agriculture, 2022, 58: e24.

doi: 10.1017/S0014479722000230
[23]
ZHANG J, LI G H, SONG Y P, LIU Z H, YANG C D, TANG S, ZHENG C Y, WANG S H, DING Y F. Lodging resistance characteristics of high-yielding rice populations. Field Crops Research, 2014, 161: 64-74.

doi: 10.1016/j.fcr.2014.01.012
[24]
吕书财. 密度对大豆冠层光合有效辐射和抗倒伏特性的影响[D]. 哈尔滨: 东北农业大学, 2017.
S C. Study on the changes of photosynthetically active radiation and lodging resistance of soybean canopy[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese)
[25]
HU D D, LI R F, ZHANG J W, ZHAO B, LIU P, DONG S T. Mixed cropping of different hybrids of maize optimizes canopy structure and promotes higher grain yield. Agronomy Journal, 2019, 111(6): 2692-2702.

doi: 10.2134/agronj2019.01.0047
[26]
LIU N, LI L, LI H T, LIU Z M, LU Y, SHAO L W. Selecting maize cultivars to regulate canopy structure and light interception for high yield. Agronomy Journal, 2023, 115(2): 770-780.

doi: 10.1002/agj2.v115.2
[27]
宫香伟. 糜子/绿豆间作模式下糜子群体对光、水、肥资源的响应及减氮增效机制研究[D]. 杨凌: 西北农林科技大学, 2021.
GONG X W. Response of to light, water and fertilizer the mechanism of reducing nitrogen and increasing efficiency in proso millet/mung bean intercropping system[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[28]
冯学颖, 刘景辉, 赵宝平, 王英, 陈晓晶, 徐忠山. 宽幅条播和种植密度对燕麦光合特性及干物质积累量的影响. 麦类作物学报, 2022, 42(12): 1527-1534.
FENG X Y, LIU J H, ZHAO B P, WANG Y, CHEN X J, XU Z S. Effects of wide sowing and planting density on photosynthetic characteristics and dry matter accumulation of oat. Journal of Triticeae Crops, 2022, 42(12): 1527-1534. (in Chinese)
[29]
FANG X M, SHE H Z, WANG C, LIU X B, LI Y S, NIE J, RUAN R W, WANG T, YI Z L. Effects of fertilizer application rate and planting density on photosynthetic characteristics, yield and yield components in waxy wheat. Cereal Research Communications, 2018, 46(1): 169-179.

doi: 10.1556/0806.45.2017.058
[30]
HAMANI A K M, ABUBAKAR S A, SI Z Y, KAMA R, GAO Y, DUAN A W. Suitable split nitrogen application increases grain yield and photosynthetic capacity in drip-irrigated winter wheat (Triticum aestivum L.) under different water regimes in the North China Plain. Frontiers in Plant Science, 2023, 13:1105006.

doi: 10.3389/fpls.2022.1105006
[31]
程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, Ali RAZA, 张熠, Irshan AHMAD, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005.
CHENG B, LIU W G, WANG L, XU M, QIN S S, LU J J, GAO Y, LI S X, RAZA A, ZHANG Y, AGMAD I, JING S Z, LIU R J, YANG W Y. Effects of planting density on photosynthetic characteristics and stem lodging resistance of soybean in maize-soybean strip intercropping system. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005. (in Chinese)
[32]
佘恒志, 聂蛟, 李英双, 张玉珂, 黄科慧, 张园莉, 方小梅, 阮仁武, 易泽林. 施硅量对荞麦倒伏及产量的影响. 中国农业科学, 2018, 51(14): 2664-2674. DOI:10.3864/j.issn.0578-1752.2018.14.004.
SHE H Z, NIE J, LI Y S, ZHANG Y K, HUANG K H, ZHANG Y L, FANG X M, RUAN R W, YI Z L. Effects of silicon application rate on common buckwheat lodging and yield. Scientia Agricultura Sinica, 2018, 51(14): 2664-2674. DOI:10.3864/j.issn.0578-1752.2018.14.004. (in Chinese)
[33]
MORISHITA T, HARA T, HARA T. Important agronomic characteristics of yielding ability in common buckwheat; ecotype and ecological differentiation, preharvest sprouting resistance, shattering resistance, and lodging resistance. Breeding Science, 2020, 70(1): 39-47.

doi: 10.1270/jsbbs.19020 pmid: 32351303
[34]
刘慧婷, 李瑞奇, 王红光, 李东晓, 李浩然. 密度和施氮量对强筋小麦藁优2018产量和抗倒性的影响. 麦类作物学报, 2017, 37(12): 1619-1626.
LIU H T, LI R Q, WANG H G, LI D X, LI H R. Effect of planting density and nitrogen fertilization rate on lodging resistance and grain yield of application rate on yield of strong gluten wheat Gaoyou 2018. Journal of Triticeae Crops, 2017, 37(12): 1619-1626. (in Chinese)
[35]
ZHAI J A, ZHANG Y M, ZHANG G Q, TIAN M, XIE R Z, MING B, HOU P, WANG K R, XUE J, LI S K. Effects of nitrogen fertilizer management on stalk lodging resistance traits in summer maize. Agriculture, 2022, 12(2): 162.

doi: 10.3390/agriculture12020162
[36]
AHMAD I, AHMAD S, YANG X N, MENG X P, YANG B P, LIU T, HAN Q F. Effect of uniconazole and nitrogen level on lodging resistance and yield potential of maize under medium and high plant density. Plant Biology, 2021, 23(3): 485-496.

doi: 10.1111/plb.13235 pmid: 33423379
[37]
XUE J, GOU L, ZHAO Y S, YAO M N, YAO H S, TIAN J S, ZHANG W F. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 2016, 188: 133-141.

doi: 10.1016/j.fcr.2016.01.003
[38]
王成雨, 代兴龙, 石玉华, 王振林, 陈晓光, 贺明荣. 氮肥水平和种植密度对冬小麦茎秆抗倒性能的影响. 作物学报, 2012, 38(1): 121-128.
WANG C Y, DAI X L, SHI Y H, WANG Z L, CHEN X G, HE M R. Effects of nitrogen application rate and plant density on lodging resistance in winter wheat stalks. Acta Agronomica Sinica, 2012, 38(1): 121-128. (in Chinese)

doi: 10.3724/SP.J.1006.2012.00121
[39]
汪灿. 荞麦茎秆特性与倒伏的关系及调控研究[D]. 重庆: 西南大学, 2015.
WANG C. Relationship between culm characteristics and lodging and its regulation study in buckwheat[D]. Chongqing: Southwest University, 2015. (in Chinese)
[40]
ZHAN X X, KONG F L, LIU Q L, LAN T Q, LIU Y Q, XU J Z, OU Q, CHEN L, KESSEL G, KEMPENAAR C, YUAN J C. Maize basal internode development significantly affects stalk lodging resistance. Field Crops Research, 2022, 286: 108611.

doi: 10.1016/j.fcr.2022.108611
[41]
赵小红, 白羿雄, 王凯, 姚有华, 姚晓华, 吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响. 作物学报, 2020, 46(4): 586-595.

doi: 10.3724/SP.J.1006.2020.91038
ZHAO X H, BAI Y X, WANG K, YAO Y H, YAO X H, WU K L. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties. Acta Agronomica Sinica, 2020, 46(4): 586-595. (in Chinese)

doi: 10.3724/SP.J.1006.2020.91038
[42]
祁炳琴. 种植密度对玉米茎秆解剖结构及结构性物质合成的影响[D]. 石河子: 石河子大学, 2022.
QI B Q. Effects of planting density on the anatomical structure and synthesis of structural carbohydrate in maize stalk[D]. Shihezi: Shihezi University, 2022. (in Chinese)
[43]
母养秀, 杨利娟, 张久盘, 穆兰海, 杜燕萍, 常克勤. 种植密度对荞麦受精结实率及产量的影响. 湖北农业科学, 2018, 57(2): 32-34.
MU Y X, YANG L J, ZHANG J P, MU L H, DU Y P, CHANG K Q. Effect of planting density on buckwheat seed setting rate and yield. Hubei Agricultural Sciences, 2018, 57(2): 32-34. (in Chinese)
[1] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[2] HE Jing, WANG ZhenHua, LIU Jian, MA ZhanLi, WEN Yue. Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.
[3] QIN Feng, WANG XiaoFei, WU Zhen, HU YiBo, WANG XiaoQin, ZHANG JiaWei, CAI Tie. Effects of Planting Density and Row Spacing Configuration on Sugar Accumulation and Lodging Performance of Wheat Stem Under Rainfall Harvesting Planting Mode [J]. Scientia Agricultura Sinica, 2024, 57(1): 65-79.
[4] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[5] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[6] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[7] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[8] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[9] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[10] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[11] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[12] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[13] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[14] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[15] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!