Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (20): 3957-3973.doi: 10.3864/j.issn.0578-1752.2024.20.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of High Temperature Tolerance and Selection of Sesame (Sesamum indicum L.) Cultivars at Full Flowering Stage Based on Principal Components-Cluster Analysis

RONG YaSi(), LI Feng, ZHANG PengYu, WANG DongYong, SU XiaoYu, TIAN Yuan, GAO TongMei()   

  1. Sesame Research Center, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Specific Oilseed Crops Genomics, Zhengzhou 450002
  • Received:2024-05-08 Accepted:2024-06-13 Online:2024-10-16 Published:2024-10-24

Abstract:

【Objective】To understand the effects of high temperature stress on the agronomic traits, yield, its components and grain quality of sesame, to accurately evaluate the high temperature tolerance level of different sesame varieties at full flowering stage, and to screen the high temperature tolerant sesame varieties.【Method】24 sesame varieties were treated with normal temperature (CK) and high temperature stress(H) at full flowering stage for 7 days. The agronomic traits such as plant height, initial capsule site, number of capsules per plant, number of capsules per capsule, 1000-grain weight, yield per plant and quality indexes such as water content, oil content and protein content were measured at maturity stage. The heat tolerance of different sesame varieties at full flowering stage was comprehensively analyzed and evaluated by means of principal component and cluster analysis.【Result】Different varieties, temperature treatments and interactions had significant effects on the indexes of sesame. After high temperature stress, compared with CK, the yield per plant, 1000-grain weight, number of capsules per plant, number of capsules per capsule, initial capsule site, capsule length and plant height of sesame decreased by 33.47%, 13.62%, 7.76%, 5.75%, 2.61%, 1.64% and 1.40%, respectively. Among which 1000-grain weight and yield per plant decreased the most, and the differences reached significant level. The difference of end length and protein content was no significant, which was 13.43% and 1.55% lower than that of the CK. The water content and oil content increased by 0.90% and 0.17% respectively compared with CK, and the difference was not significant. There is a certain correlation between the high temperature tolerance coefficients of different varieties and various indexes. The high temperature resistance coefficient was analyzed by principal component analysis, and five independent comprehensive indexes were established, and the contribution rates were 30.74%, 25.82%, 13.18%, 10.12% and 8.33%, respectively, reflecting 88.19% of the original information. The weight of each index was calculated by component matrix and eigenvalue, and the physiological comprehensive index model of high temperature stress (HTSPCI) was constructed. According to the cluster heat map analysis of high temperature tolerance coefficient of each individual index, 24 sesame germplasm resources were divided into 4 grades: high temperature resistant type, medium high temperature tolerance type, medium heat sensitive type and heat sensitive type, respectively. And the yield loss rate per plant (X6) of 6 high temperature resistant varieties was ≤9.50%, 6 medium high temperature resistant varieties was 9.50%<X6≤30%, 10 medium heat sensitive varieties was 30%<X6≤70% and 2 heat sensitive varieties was X6>70%.【Conclusion】High temperature treatment significantly affected the growth and development of sesame at full flowering stage. A comprehensive index model of high temperature stress was established by combining agronomic traits and quality indexes with principal components-cluster analysis, and 6 varieties with high temperature tolerance were selected, which could be used to evaluate the high temperature tolerance of different sesame varieties.

Key words: sesame, full flowering stage, high temperature, principal component analysis, comprehensive valuation

Table 1

Cultivar code and name"

品种编号
Cultivar code
品种名称
Variety name
籽粒颜色
Seed color
品种编号
Cultivar code
品种名称
Variety name
籽粒颜色
Seed color
C1 郑太芝4号Zhengtaizhi 4 白White C13 尉氏门楼仁柳条青Weishimenlourenliutiaoqing 白White
C2 郑芝13号Zhengzhi 13 白White C14 舆芝15号Yuzhi15 白White
C3 一把白Yibabai 白White C15 郑太芝6号Zhengtaizhi6 白White
C4 郑太芝1号Zhengtaizhi 1 白White C16 豫芝11号Yuzhi11 白White
C5 广东始兴江口
Guangdongshixingjiangkou
黑Black C17 郑黑芝1号Zhengheizhi1 黑Black
C6 豫芝NS610YuzhiNS610 白White C18 黑芝麻(ZZM2410)Heizhima 黑Black
C7 豫芝ND837YuzhiND837 白White C19 赣芝14号Ganzhi14 黑Black
C8 平舆单蒴糙Pingyudanshuocao 白White C20 湖北洋芝麻Hubeiyangzhima 黑Black
C9 郑芝14号Zhengzhi14 白White C21 鄱阳黑芝麻Poyangheizhima 黑Black
C10 河北独根立Hebeidugenli 白White C22 九股钢杈Jiugugangcha 黑Black
C11 驻芝8号Zhuzhi8 白White C23 芝麻(ZZM4007)Zhima 麻灰Heather grey
C12 驻黑芝1号Zhuheizhi1 黑Black C24 山东双筒芝麻
Shandongshuangtongzhima
浅黄Pale yellow

Fig. 1

Temperature changes in high temperature and control treatments in 2022 and 2023 a: Average temperature at all times in 2022; b: Average daily temperature for 7 days of high temperature treatment in 2022; c: Average temperature at all times in 2023; d: Average daily temperature for 7 days of high temperature treatment in 2023; CK: Control; H: High temperature; HTv, HTx and HTn: Indicates respectively the daily average temperature, maximum temperature and minimum temperature under high temperature; CKTv, CKTx and CKTn: Indicates respectively the daily average temperature, maximum temperature and minimum temperature under control treatment"

Table 2

Analysis of variance of each single index"

处理
Treatment
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 F
(0.05)
2022
品种C 8.51** 3.23** 3.03** 6.48** 4.28** 4.00** 10.82** 16.71** 80.12** 59.73** 13.35** 4.45
温度T 21.40** 5.01** 1.02 9.34** 5.19* 53.37** 9.92** 189.71** 3.34 21.84** 24.99** 5.52
品种×温度C×T 6.22** 2.72** 0.77* 4.00** 1.29 2.44** 6.71** 10.84** 1.74* 2.08** 1.64* 2.61
2023
品种C 8.37** 4.03** 7.18** 5.32** 2.18** 1.46 7.31** 12.05** 94.23** 54.61** 8.19** 4.55
温度T 6.07* 9.57** 0.60 3.97** 0.19 6.84** 1.21 33.22** 25.43** 14.47** 1.06 6.17
品种×温度C×T 5.66** 4.08** 6.10** 3.82** 1.55* 1.84** 4.18* 8.72* 50.64** 28.17** 4.03** 2.92

Table 3

Effects of high temperature treatment on agronomic characters of different sesame varieties"

品种编号
Cultivar code
株高
<BOLD>P</BOLD>lant height (cm)
始蒴部位
Initial capsule site (cm)
黄稍尖
End length (cm)
果轴长度
Capsule length (cm)
H CK H CK H CK H CK
C1 173.35bcdef 187.30abcde 51.38cdef 51.67efghi 3.80c 1.82d 118.17abcde 133.82abc
C2 187.43abcde 202.0abcd 53.38cdef 68.88abcd 5.70c 3.85bcd 128.35abcd 129.30abcde
C3 175.60abcde 174.22cdefg 42.82def 59.63bcdefg 2.80c 7.10bcd 129.98abcd 107.48bcdefg
C4 209.42abc 178.18bcdef 36.90f 49.73efghi 10.87bc 4.65bcd 161.65a 123.80abcdef
C5 182.78abcde 187.20abcde 49.38cdef 52.92efghi 5.70c 8.27bcd 127.70abcd 126.02abcdef
C6 217.67a 208.15abc 38.02ef 41.28hij 25.13a 9.52b 154.52ab 157.35a
C7 181.68abcde 172.42cdefg 45.67def 38.87ij 7.73bc 4.80bcd 128.28abcd 128.75abcdef
C8 186.45abcde 169.75defg 81.22ab 71.85abc 7.55bc 8.08bcd 97.68cde 89.82efg
C9 210.33abc 148.62fgh 56.40bcdef 65.84abcdefg 9.77bc 8.10bcd 144.17abc 74.68g
C10 216.13ab 187.33abcde 73.17abc 77.53a 5.63c 3.85bcd 137.30abc 105.95bcdefg
C11 168.83cdef 150.57fgh 46.50cdef 53.18efghi 4.93c 4.28bcd 117.40abcde 93.10defg
C12 146.00ef 166.98defg 44.52def 59.08bcdefg 4.05c 2.13cd 97.50cde 105.77bcdefg
C13 165.38def 190.47abcde 50.77cdef 37.67j 5.55c 16.08a 109.10bcde 136.72ab
C14 163.33def 183.05abcdef 49.48cdef 46.00ghij 5.82c 4.63bcd 108.00cde 132.42abcd
C15 165.85def 188.63abcde 61.13bcdef 56.63cdefgh 5.52c 6.12bcd 99.20cde 125.88abcdef
C16 182.57abcde 179.58bcdef 51.00cdef 50.77efghi 8.65bc 5.93bcd 123.00abcd 122.88abcdef
C17 132.17f 177.37bcdef 49.00cdef 50.42efghi 8.55bc 4.87bcd 74.62ef 122.08abcdef
C18 189.32abcde 160.82efg 81.87ab 74.67ab 4.70c 4.92bcd 102.75cde 81.23g
C19 155.00ef 147.03fgh 64.95bcde 55.90efghi 14.90b 16.52a 75.15ef 74.62g
C20 152.69ef 156.97efgh 69.31abcd 74.73ab 8.41bc 3.92bcd 74.98ef 78.30fg
C21 145.93ef 126.23h 50.50cdef 49.08fghij 8.48bc 4.37bcd 86.95de 72.78g
C22 199.07abcd 211.55ab 92.83a 75.13ab 5.17c 8.52bc 101.07cde 127.90abcdef
C23 149.98ef 216.40a 47.39cdef 66.22abcde 5.16c 7.33bcd 97.50cde 142.85ab
C24 94.95g 140.20gh 49.47cdef 45.17ghij 2.18c 6.20bcd 43.30f 88.83fg
变化范围Variation range 94.95-217.67 126.23-216.40 36.90-92.83 37.67-77.53 2.18-25.13 1.82-16.52 43.30-161.65 72.78-157.35
均值Mean value 173.00 175.46 55.71 57.20 7.37 6.49 109.93 111.76
变异系数
Variable coefficient (%)
20.83 16.00 33.25 23.93 81.70 71.24 32.23 25.77
曼-惠特尼U
Mann-Whitney U test
U
U value
19.00 56.50 61.50 16.00
P 0.02 0.37 0.54 0.00

Table 4

Changes of yield per plant and its constituent factors after high temperature treatment"

品种编号
Cultivar code
单株蒴果数
Number of capsules per plant
每蒴粒数
Number of capsules per capsule
千粒重
1000-grain weight (g)
单株产量
Yield per plant (g)
H CK H CK H CK H CK
C1 118abcde 129bc 57bcd 64bcde 2.93bcde 3.81ab 11.25abcdefg 23.17ab
C2 99bcdefg 106bc 62ab 61bcdef 2.99bcde 3.59bcd 16.92a 25.63a
C3 98bcdefg 84bc 54bcde 59bcdefg 3.46a 3.32d 11.30abcdefg 13.23bcdef
C4 143ab 92bc 52bcde 64bcde 3.19ab 3.75ab 16.13ab 18.062abcde
C5 114abcdef 121bc 58bcd 65bcd 2.82bcdef 2.89ef 13.82abcde 19.54abcd
C6 157a 195a 51bcde 31ij 2.94bcde 2.83efg 11.57abcdefg 16.81abcde
C7 86bcdefg 137ab 58bcd 47gh 2.07ij 2.78efgh 5.70efg 17.17abcdef
C8 123abcd 101bc 50bcde 37hi 2.41fghij 2.64fghi 8.68abcdefg 9.61def
C9 86bcdefg 63c 53bcde 54cdefg 2.38fghij 2.50hi 6.11defg 7.23f
C10 83cdefg 84bc 70a 81a 2.73cdefg 3.36cd 10.07abcdefg 14.70bcdef
C11 82cdefg 92bc 51bcde 64bcd 3.12abcd 3.45cd 5.70cdefg 18.23abcd
C12 69defg 107bc 55bcde 66bc 3.05abcde 3.64abc 9.44abcdefg 15.74abcdef
C13 104abcdefg 84bc 50cdef 52defg 3.16abc 2.91ef 12.92abcdef 8.37ef
C14 61efg 88bc 46def 22j 2.45fghi 3.31d 3.96g 11.64cdef
C15 71defg 113bc 52bcde 60bcdef 2.72cdefg 3.92a 7.91bcdefg 20.10abc
C16 64efg 79bc 44ef 58bcdefg 2.68defgh 3.39cd 5.04fg 12.03cdef
C17 48g 110bc 55bcde 62bcdef 2.33ghij 2.44i 3.45g 13.89bcdef
C18 132abc 106bc 39f 57bcdefg 2.62efgh 2.79efgh 10.99abcdefg 15.01bcdef
C19 126abcd 90bc 58bcd 68b 2.26hij 2.35i 14.72abcd 11.71cdef
C20 64efg 73bc 61abc 49fg 3.04abcde 3.39cd 11.56abcdefg 9.36def
C21 90bcdefg 84bc 60abc 50fg 2.26hij 2.55ghi 9.99abcdefg 10.96cdef
C22 101abcdefg 109bc 60abc 63bcdef 2.76bcdefg 3.02e 11.15abcdefg 11.83cdef
C23 79cdefg 118bc 46def 62bcdef 2.80bcdef 3.35cd 14.97abc 16.45abcdef
C24 58fg 81bc 26g 50efg 1.99j 3.43cd 3.55g 14.13abcdef
变化范围Variation range 48-157 63-195 26-70 22-81 1.99-3.46 2.35-3.92 3.45-16.92 7.23-25.63
均值Mean value 94 102 53 56 2.71 3.14 9.92 14.91
变异系数
Variable coefficient (%)
40.51 39.03 22.66 27.83 18.08 16.11 39.94 31.03
曼-惠特尼U
Mann-Whitney U test
U
U value
12.00 27.00 36.00 31.00
P 0.00 0.01 0.04 0.02

Table 5

Effect of high temperature treatment on seed quality of different sesame varieties"

品种编号
Cultivar code
含水量 Water content (%) 含油量 Oil content (%) 蛋白质含量 Protein content (%)
H CK H CK H CK
C1 4.61ef 4.41ef 49.98ef 51.37abc 24.04bcd 23.95bcd
C2 4.27gh 4.20f 54.70ab 54.32a 21.82efg 22.46def
C3 4.47efgh 4.33f 51.44cdef 53.02ab 23.51bcde 22.95cdef
C4 4.52efg 4.29f 50.26ef 53.26ab 24.42abcd 23.01cdef
C5 4.24h 4.27f 55.07a 54.00a 21.36fg 22.29def
C6 4.46efgh 4.33f 52.44bcde 52.91ab 22.43defg 22.69cdef
C7 4.53efg 4.49ef 51.13cdef 50.40bc 23.22bcdef 24.10bcd
C8 4.40fgh 4.27f 53.90abc 54.17a 21.79efg 21.92def
C9 4.69e 4.65de 48.80f 49.04cd 24.79abc 25.21bc
C10 4.54efg 4.36f 50.69def 52.30ab 23.88bcde 23.43bcd
C11 4.50efg 4.36f 51.04cdef 52.13ab 23.88bcde 23.60bcd
C12 4.47efgh 4.39ef 51.34cdef 51.70abc 24.02bcd 23.82bcd
C13 4.29gh 4.36ef 53.46abcd 52.55ab 22.56cdef 23.36bcde
C14 4.61ef 4.46ef 49.84ef 50.69bc 24.33abcd 24.44bcd
C15 4.45efgh 4.39ef 51.26cdef 51.60abc 23.73bcde 23.80bcd
C16 4.41efgh 4.35f 51.99bcde 52.00ab 23.93bcde 24.32bcd
C17 5.99b 5.84b 35.28i 36.78f 25.42ab 23.75bcd
C18 6.73a 6.69a 31.44j 31.35g 20.46g 20.91efg
C19 5.40c 5.43c 41.59h 39.83e 26.21a 28.37a
C20 5.52c 5.85b 42.92gh 39.97e 20.38g 20.70fg
C21 5.09d 5.42c 45.50g 41.07e 24.23abcd 25.87b
C22 5.81b 5.75b 42.94gh 41.76e 16.07h 18.96g
C23 4.57ef 4.78d 49.97ef 47.37d 23.69bcde 25.17bc
C24 4.57ef 4.43ef 50.65def 52.05ab 23.19bcdef 23.04cdef
变化范围Variation range 4.24-6.73 4.20-6.69 31.44-55.07 31.35-54.32 16.07-26.21 18.96-28.37
均值Mean value 4.80 4.75 48.65 48.57 23.06 23.42
变异系数
Variable coefficient (%)
13.22 14.56 12.22 13.31 9.98 8.27
曼-惠特尼U
Mann-Whitney U test
U
U value
71.00 49.00 38.50
P 0.95 0.18 0.05

Table 6

High temperature resistance coefficient of each single index of different sesame varieties"

品种编号Cultivar code X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
C1 0.93 2.09 0.99 0.88 0.92 0.49 0.90 0.77 1.04 0.97 1.00
C2 0.93 1.48 0.77 0.99 0.93 0.66 1.02 0.83 1.01 1.01 0.97
C3 1.01 0.39 0.72 1.21 1.18 0.85 0.91 1.04 1.03 0.97 1.02
C4 1.18 2.34 0.74 1.31 1.56 0.89 0.81 0.85 1.06 0.94 1.06
C5 0.98 0.69 0.93 1.01 0.94 0.71 0.90 0.98 0.99 1.02 0.96
C6 1.05 2.64 0.92 0.98 0.81 0.69 1.66 1.04 1.03 0.99 0.99
C7 1.05 1.61 1.17 1.00 0.63 0.33 1.25 0.74 1.01 1.01 0.96
C8 1.10 0.93 1.13 1.09 1.23 0.90 1.37 0.91 1.03 0.99 0.99
C9 1.42 1.21 0.86 1.93 1.37 0.84 0.97 0.95 1.01 1.00 0.98
C10 1.15 1.47 0.94 1.30 0.98 0.68 0.86 0.81 1.04 0.97 1.02
C11 1.12 1.15 0.87 1.26 0.89 0.31 0.80 0.90 1.03 0.98 1.01
C12 0.87 1.90 0.75 0.92 0.65 0.60 0.83 0.84 1.02 0.99 1.01
C13 0.87 0.35 1.35 0.80 1.24 1.54 0.96 1.09 0.98 1.02 0.97
C14 0.89 1.26 1.08 0.82 0.69 0.34 2.14 0.74 1.03 0.98 1.00
C15 0.88 0.90 1.08 0.79 0.63 0.39 0.87 0.69 1.01 0.99 1.00
C16 1.02 1.46 1.00 1.00 0.80 0.42 0.76 0.79 1.01 1.00 0.98
C17 0.75 1.76 0.97 0.61 0.44 0.25 0.89 0.95 1.03 0.96 1.07
C18 1.18 0.96 1.10 1.26 1.24 0.73 0.68 0.94 1.00 1.00 0.98
C19 1.05 0.90 1.16 1.01 1.39 1.26 0.85 0.96 0.99 1.04 0.92
C20 0.97 2.15 0.93 0.79 0.87 1.24 1.23 0.90 0.94 1.07 0.98
C21 1.16 1.94 1.03 1.19 1.08 0.90 1.21 0.89 0.94 1.11 0.94
C22 0.94 0.61 1.24 0.79 0.92 0.94 0.96 0.91 1.01 1.03 0.85
C23 0.69 0.70 0.72 0.68 0.67 0.91 0.74 0.84 0.96 1.05 0.94
C24 0.68 0.35 1.10 0.49 0.72 0.25 0.51 0.58 1.03 0.97 1.01
均值Mean value 0.99 1.30 0.98 1.00 0.95 0.71 1.00 0.87 1.01 1.00 0.98
标准差SD 0.17 0.65 0.17 0.30 0.28 0.34 0.34 0.12 0.03 0.04 0.04
变异系数Variable coefficient (%) 16.99 50.23 17.44 29.46 30.02 47.9 34.20 13.59 3.01 3.77 4.55

Fig.2

The correlation changes of the high temperature resistance coefficient of each single index"

Table 7

Principal component analysis of each single index under different treatment"

成分
Component
初始特征值Initial eigenvalues 提取载荷平方和Extraction eigenvalues
总计
Total
方差百分比
Variance (%)
累积
Cumulative (%)
总计
Total
方差百分比
Variance (%)
累积
Cumulative (%)
1 3.381 30.738 30.738 3.381 30.738 30.738
2 2.840 25.817 56.555 2.840 25.817 56.555
3 1.450 13.181 69.735 1.450 13.181 69.735
4 1.113 10.118 79.853 1.113 10.118 79.853
5 0.916 8.332 88.185 0.916 8.332 88.185
6 0.466 4.234 92.419
7 0.358 3.250 95.669
8 0.316 2.869 98.538
9 0.131 1.190 99.728
10 0.017 0.150 99.878
11 0.013 0.122 100.000

Table 8

Eigen vector analysis of each index mutual matrix"

指标 Index CI1 CI2 CI3 CI4 CI5
X1 0.531 0.722 0.129 0.167 -0.353
X2 -0.17 0.359 0.797 -0.101 -0.029
X3 0.206 -0.462 -0.224 0.734 -0.082
X4 0.464 0.793 0.012 -0.012 -0.302
X5 0.661 0.543 -0.307 0.088 -0.006
X6 0.860 -0.007 -0.094 -0.053 0.357
X7 0.064 -0.020 0.691 0.582 0.239
X8 0.656 0.225 -0.003 -0.059 0.606
X9 -0.600 0.558 0.038 -0.151 0.302
X10 -0.615 0.600 -0.245 0.342 0.090
X11 0.680 -0.573 0.324 -0.210 -0.207

Table 9

The weight of each indicator variable, the weight of comprehensive formula Z and weight of HTSPCI"

指标
Index
CI1 CI2 CI3 CI4 CI5 Z权重
Z weight
HTSPCI权重
HTSPCI weight
X1 0.289 0.428 0.107 0.158 -0.369 0.225 0.168
X2 -0.092 0.213 0.662 -0.096 -0.030 0.115 0.086
X3 0.112 -0.274 -0.186 0.696 -0.086 0.003 0.002
X4 0.252 0.471 0.010 -0.011 -0.316 0.196 0.147
X5 0.359 0.322 -0.255 0.083 -0.006 0.191 0.142
X6 0.468 -0.004 -0.078 -0.050 0.373 0.180 0.134
X7 0.035 -0.012 0.574 0.552 0.250 0.181 0.135
X8 0.357 0.134 -0.002 -0.056 0.633 0.216 0.162
X9 -0.334 0.356 -0.203 0.324 0.094 0.001 0.001
X10 0.370 -0.340 0.269 -0.199 -0.216 0.003 0.002
X11 -0.326 0.331 0.032 -0.143 0.316 0.026 0.020

Fig. 3

Cluster analysis of different sesame varieties and indexes"

Table 10

Comprehensive evaluation, HTSPCI value, yield per plant and yield loss rate of different sesame varieties"

综合评价
Comprehensive valuation
品种编号
Cultivar code
单株产量 Yield per plant (g) 单株产量损失率
Yield loss rate per plant (%)
高温胁迫指数
HTSPCI
H CK
热敏感型
High temperature sensitive type
C24 3.45 13.89 75.16 0.65
C17 3.55 14.13 74.88
中度热敏感型
Medium high temperature sensitive type
C11 5.70 18.23 68.76 0.93
C7 5.69 17.17 66.80
C14 3.96 11.64 65.99
C15 7.91 20.09 60.62
C16 5.04 12.03 58.12
C1 11.25 23.17 51.44
C12 9.44 15.74 40.05
C10 10.07 14.69 31.51
C6 11.57 16.81 31.20
C2 16.92 25.63 33.96
中度耐高温型
Medium high temperature resistant type
C4 16.13 18.06 10.69 1.07
C5 13.82 19.54 29.24
C18 10.99 15.01 26.74
C8 8.68 9.61 9.67
C9 6.11 7.23 15.45
C3 11.30 13.23 14.59
耐高温型
High temperature resistant type
C23 14.96 16.45 9.03 0.99
C22 11.15 11.83 5.73
C21 9.99 10.96 8.89
C13 12.92 8.37 -54.36
C19 14.72 11.71 -25.73
C20 11.56 9.36 -23.52
[1]
KUREK I, CHANG T K, BERTAIN S M, MADRIGAL A, LIU L, LASSNER M W, ZHU G H. Enhanced thermostability of Arabidopsis rubisco activase improves photosynthesis and growth rates under moderate heat stress. The Plant Cell, 2007, 19(10): 3230-3241.
[2]
穆心愿, 马智艳, 卢良涛, 吕姗姗, 刘天学, 胡秀丽, 李树岩, 蒋寒涛, 范艳萍, 赵霞, 唐保军, 夏来坤. 授粉期高温胁迫对夏玉米植株形态、叶片光合及产量的影响. 中国生态农业学报, 2024, 32(1): 106-118.
MU X Y, MA Z Y, LU L T, S S, LIU T X, HU X L, LI S Y, JIANG H T, FAN Y P, ZHAO X, TANG B J, XIA L K. Effects of high temperature stress during pollination on plant morphology, leaf photosynthetic characteristics, and yield of summer maize. Chinese Journal of Eco-Agriculture, 2024, 32(1): 106-118. (in Chinese)
[3]
高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响. 作物学报, 2023, 49(3): 821-832.

doi: 10.3724/SP.J.1006.2023.21016
GAO C H, FENG B, LI G F, LI Z X, LI S D, CAO F, CI W L, ZHAO H J. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis. Acta Agronomica Sinica, 2023, 49(3): 821-832. (in Chinese)
[4]
徐鹏, 贺一哲, 黄亚茹, 王辉, 尤翠翠, 何海兵, 柯健, 武立权. 花期短时高温对不同品种水稻颖花开放动态及产量的影响. 中国农业气象, 2023, 44(1): 25-35.
XU P, HE Y Z, HUANG Y R, WANG H, YOU C C, HE H B, KE J, WU L Q. Effects of short -term high temperature on spikelet opening dynamics and yield of different rice varieties during flowering period. Chinese Journal of Agrometeorology, 2023, 44(1): 25-35. (in Chinese)
[5]
郭小红, 韦清源, 汤复跃, 陈文杰, 梁江, 谢甫绨, 陈渊. 萌发期耐高温大豆种质资源筛选及耐热指标评价. 大豆科学, 2022, 41(5): 513-519.
GUO X H, WEI Q Y, TANG F Y, CHEN W J, LIANG J, XIE F T, CHEN Y. Screening of high temperature tolerant soybean germplasms and evaluation of heat-tolerant indexes during germination stage. Soybean Science, 2022, 41(5): 513-519. (in Chinese)
[6]
汪明华, 李佳佳, 陆少奇, 邵文韬, 程安东, 张文明, 王晓波, 邱丽娟. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定. 植物遗传资源学报, 2019, 20(4): 891-902.

doi: 10.13430/j.cnki.jpgr.20181027004
WANG M H, LI J J, LU S Q, SHAO W T, CHENG A D, ZHANG W M, WANG X B, QIU L J. Construction of evaluation standard for tolerance to high-temperature and screening of heat-tolerant germplasm resources in soybean. Journal of Plant Genetic Resources, 2019, 20(4): 891-902. (in Chinese)
[7]
史勇, 郑兰杰, 王晨, 郑旭, 韦胜利. 植物耐高温机制的研究进展. 河南农业大学学报, 2023, 57(5): 713-725.
SHI Y, ZHENG L J, WANG C, ZHENG X, WEI S L. Research progress on mechanisms of high temperature tolerance in plants. Journal of Henan Agricultural University, 2023, 57(5): 713-725. (in Chinese)
[8]
赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40(10): 1839-1845.

doi: 10.3724/SP.J.1006.2014.01839
ZHAO L X, ZHANG P, WANG R N, WANG P, TAO H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 2014, 40(10): 1839-1845. (in Chinese)
[9]
WANG X L, YAN Y, XU C C, WANG X Y, LUO N, WEI D, MENG Q F, WANG P. Mitigating heat impacts in maize (Zea mays L.) during the reproductive stage through biochar soil amendment. Agriculture, Ecosystems & Environment, 2021, 311: 107321.
[10]
于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71.
YU K K, LIU Y, LI Y M, SUN N N, ZHAN J, YOU D L, NIU L, LI C H, LIU T X. Screening and comprehensive evaluation of heat- tolerance of maize hybrids in flowering stage. Journal of Maize Sciences, 2016, 24(2): 62-71. (in Chinese)
[11]
HASANUZZAMAN M, NAHAR K, ALAM M M, ROYCHOWDHURY R, FUJITA M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.

doi: 10.3390/ijms14059643 pmid: 23644891
[12]
DJANAGUIRAMAN M, PRASAD P V V, BOYLE D L, SCHAPAUGH W T. Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science, 2013, 199(3): 171-177.
[13]
卢城, 宫青涛, 陶雨佳, 尹帝, 邢兴华, 邢邯, 江海东. 盛花期高温对大豆结荚及产量的影响. 大豆科学, 2021, 40(4): 504-509, 516.
LU C, GONG Q T, TAO Y J, YIN D, XING X H, XING H, JIANG H D. Effects of high temperature at full flowering stage on podding and yield of soybean. Soybean Science, 2021, 40(4): 504-509, 516. (in Chinese)
[14]
靳路真, 王洋, 张伟, 邱红梅, 陈健, 候云龙, 马晓萍, 王跃强, 谢甫绨. 大豆品种(系)耐热性鉴定及分级评鉴. 中国油料作物学报, 2016, 38(1): 77-87.
JIN L Z, WANG Y, ZHANG W, QIU H M, CHEN J, HOU Y L, MA X P, WANG Y Q, XIE F T. Grading evaluation on heat-tolerance in soybean and identification of heat-tolerant cultivars. Chinese Journal of Oil Crop Sciences, 2016, 38(1): 77-87. (in Chinese)
[15]
宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选. 作物学报, 2024, 50(1): 172-186.

doi: 10.3724/SP.J.1006.2024.33019
SONG X D, ZHU G L, ZHANG S Y, ZHANG H M, ZHOU G F, ZHANG Z L, MAO Y X, LU H H, CHEN G Q, SHI M L, XUE L, ZHOU G S, HAO D R. Identification of heat tolerance of waxy maize at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River Region. Acta Agronomica Sinica, 2024, 50(1): 172-186. (in Chinese)
[16]
苏小雨, 高桐梅, 张鹏钰, 李丰, 吴寅, 王东勇, 田媛, 卫双玲. 基于主成分分析及隶属函数法对芝麻苗期耐热性综合评价. 作物杂志, 2023(4): 52-59.
SU X Y, GAO T M, ZHANG P Y, LI F, WU Y, WANG D Y, TIAN Y, WEI S L. Comprehensive evaluation of heat resistance of sesame seedlings based on principal component analysis and membership function method. Crops, 2023(4): 52-59. (in Chinese)
[17]
王洋洋, 刘万代, 贺利, 任德超, 段剑钊, 胡新, 郭天财, 王永华, 冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究. 中国农业科学, 2022, 55(7): 1301-1318. doi: 10.3864/j.issn.0578-1752.2022.07.004.
WANG Y Y, LIU W D, HE L, REN D C, DUAN J Z, HU X, GUO T C, WANG Y H, FENG W. Evaluation of low temperature freezing injury in winter wheat and difference analysis of water effect based on multivariate statistical analysis. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318. doi: 10.3864/j.issn.0578-1752.2022.07.004. (in Chinese)
[18]
冯美臣, 牛波, 杨武德, 肖璐洁. 晋中地区荞麦品质气候区划的GIS多元分析. 地球信息科学学报, 2012, 14(6): 807-813.

doi: 10.3724/SP.J.1047.2012.00807
FENG M C, NIU B, YANG W D, XIAO L J. Climate regionalization of buckwheat quality index based on GIS multivariate analysis in Jinzhong prefecture. Journal of Geo-Information Science, 2012, 14(6): 807-813. (in Chinese)
[19]
张学鹏, 李腾, 王彪, 刘晴, 刘涵瑜, 陶志强, 隋鹏. 玉米叶片”源”的高温胁迫阈值研究. 作物杂志, 2021(2): 62-70.
ZHANG X P, LI T, WANG B, LIU Q, LIU H Y, TAO Z Q, SUI P. Study on high temperature stress threshold of maize leaves. Crops, 2021(2): 62-70. (in Chinese)
[20]
徐海, 宋波, 顾宗福, 毕研飞, 魏斌. 植物耐热机理研究进展. 江苏农业学报, 2020, 36(1): 243-250.
XU H, SONG B, GU Z F, BI Y F, WEI B. Advances in heat tolerance mechanisms of plants. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 243-250. (in Chinese)
[21]
莫先树, 梁家铭, 曹倩, 陈红梅, 商炳哲, 赵越, 梁福琴, 李得孝. 花荚期模拟热浪胁迫对大豆产量性状的影响. 西北农林科技大学学报(自然科学版), 2023, 51(6): 40-47.
MO X S, LIANG J M, CAO Q, CHEN H M, SHANG B Z, ZHAO Y, LIANG F Q, LI D X. Effect of stimulated heatwave stress on soybean yield components. Journal of Northwest A&F University (Natural Science Edition), 2023, 51(6): 40-47. (in Chinese)
[22]
卫双玲, 高桐梅, 吴寅, 李丰, 芦海灵, 王龙, 张海洋. 高温胁迫对芝麻光合特性及产量的影响. 西南农业学报, 2015, 28(5): 1977-1981.
WEI S L, GAO T M, WU Y, LI F, LU H L, WANG L, ZHANG H Y. Effects of high temperature stress on photosynthetic characteristic and grain yield in sesame (Sesamum indicum). Southwest China Journal of Agricultural Sciences, 2015, 28(5): 1977-1981. (in Chinese)
[23]
王会涛, 袁刘正, 柳家友, 王会强, 朱世蝶, 袁曼曼, 王秋岭. 花期高温对玉米的影响研究进展. 河南农业科学, 2022, 51(9): 1-9.
WANG H T, YUAN L Z, LIU J Y, WANG H Q, ZHU S D, YUAN M M, WANG Q L. Research progress on effect of high temperature on maize at flowering stage. Journal of Henan Agricultural Sciences, 2022, 51(9): 1-9. (in Chinese)
[24]
闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54(17): 3592-3608. doi:10.3864/j.issn.0578-1752.2021.17.004.
YAN Z H, LIU D Y, JIA X C, YANG Q, CHEN Y B, DONG P F, WANG Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608. doi:10.3864/j.issn.0578-1752.2021.17.004. (in Chinese)
[25]
穆心愿, 马智艳, 张兰薰, 付景, 刘天学, 丁勇, 夏来坤, 张凤启, 张君, 齐建双, 赵霞, 唐保军. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应. 中国生态农业学报, 2022, 30(1): 57-71.
MU X Y, MA Z Y, ZHANG L X, FU J, LIU T X, DING Y, XIA L K, ZHANG F Q, ZHANG J, QI J S, ZHAO X, TANG B J. Responses of photosynthetic fluorescence characteristics, pollination, and yield components of maize cultivars to high temperature during flowering. Chinese Journal of Eco-Agriculture, 2022, 30(1): 57-71. (in Chinese)
[26]
李佳佳, 龙群, 朱尚尚, 单雅敬, 吴美燕, 鲁云, 支现管, 廖威, 陈浩然, 赵振邦, 苗龙, 高慧慧, 李英慧, 王晓波, 邱丽娟. 大豆芽期耐高温评价方法构建及耐高温种质资源筛选. 作物学报, 2023, 49(11): 2863-2875.

doi: 10.3724/SP.J.1006.2023.34025
LI J J, LONG Q, ZHU S S, SHAN Y J, WU M Y, LU Y, ZHI X G, LIAO W, CHEN H R, ZHAO Z B, MIAO L, GAO H H, LI Y H, WANG X B, QIU L J. Construction of evaluation method for tolerance to high-temperature and screening of heat-tolerant germplasm resources of bud stage in soybean. Acta Agronomica Sinica, 2023, 49(11): 2863-2875. (in Chinese)
[27]
司鹏, 刘连涛, 孙红春, 张科, 白志英, 李存东, 张永江. 基于生理指标的棉花耐高温品种筛选及与根系表型关系分析. 中国生态农业学报, 2022, 30(12): 1949-1958.
SI P, LIU L T, SUN H C, ZHANG K, BAI Z Y, LI C D, ZHANG Y J. Selection of high-temperature-resistant cotton cultivars based on physiological indexes and analysis of their relationship with root phenotypes. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1949-1958. (in Chinese)
[28]
朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选. 作物学报, 2022, 48(12): 3130-3143.

doi: 10.3724/SP.J.1006.2022.13079
ZHU Y D, WANG H Q, WANG H Z, REN H, LYU J H, ZHAO B, ZHANG J W, REN B Z, YIN F W, LIU P. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage. Acta Agronomica Sinica, 2022, 48(12): 3130-3143. (in Chinese)
[29]
任茂, 张文英. 棉花品种耐热性分析及鉴定指标筛选. 核农学报, 2018, 32(4): 788-794.

doi: 10.11869/j.issn.100-8551.2018.04.0788
REN M, ZHANG W Y. Evaluation of heat tolerance and screening the index for the assessment of heat tolerance in upland cotton. Journal of Nuclear Agricultural Sciences, 2018, 32(4): 788-794. (in Chinese)

doi: 10.11869/j.issn.100-8551.2018.04.0788
[30]
王准, 张恒恒, 董强, 贵会平, 王香茹, 庞念厂, 李永年, 牛静, 靳丁沙, 汪苏洁, 张西岭, 宋美珍. 棉花耐低氮和氮敏感种质筛选及验证. 棉花学报, 2020, 32(6): 538-551.

doi: 10.11963/1002-7807.wzsmz.20201023
WANG Z, ZHANG H H, DONG Q, GUI H P, WANG X R, PANG N C, LI Y N, NIU J, JIN D S, WANG S J, ZHANG X L, SONG M Z. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm. Cotton Science, 2020, 32(6): 538-551. (in Chinese)
[31]
李霞, 孙志伟, 吕川根, 任承刚, 曹昆, 王超. 田间杂交水稻单年单点5种不同逆境的批量筛选及聚类分析. 中国生态农业学报, 2010, 18(3): 528-534.
LI X, SUN Z W, C G, REN C G, CAO K, WANG C. Mass screening and cluster analysis for tolerance to stress of hybrid rice variety under field conditions. Chinese Journal of Eco-Agriculture, 2010, 18(3): 528-534. (in Chinese)
[1] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[2] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[3] GUO Ya, REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng. High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220.
[4] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[5] XU TianJun, LÜ TianFang, LI ZiHao, ZHANG Yong, LIU HongWei, LIU YueE, CAI WanTao, ZHANG RuYang, SONG Wei, XING JinFeng, ZHAO JiuRan, WANG RongHuan. Comparison of Heat Tolerance of Maize Hybrids and Their Parental Inbreds with Different Genotypes [J]. Scientia Agricultura Sinica, 2024, 57(2): 403-415.
[6] YANG Chun, YANG DaiXing, LI Yan, LIANG SiHui, DENG XiaoQiang, QIAO DaHe, CHEN Juan, GUO Yan, LIN KaiQin, CHEN ZhengWu. Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(19): 3894-3916.
[7] YANG Xi, YOU Jun, ZHOU Rong, FANG Sheng, ZHANG YanXin, WU ZiMing, WANG LinHai. Establishment of High-Throughput Detection Method for Phytic Acid Content in Sesame Seeds and Screening of Low Phytic Acid Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(12): 2282-2294.
[8] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
[9] SHI XinRui, HAN BaiShu, WANG ZiQian, ZHANG YuanLing, LI Ping, ZONG YuZheng, ZHANG DongSheng, GAO ZhiQiang, HAO XingYu. Investigation on the Effects of Climate Change on the Growth and Yield of Different Maturity Winter Wheat Varieties in Northern China Based on the APSIM Model [J]. Scientia Agricultura Sinica, 2023, 56(19): 3772-3787.
[10] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
[11] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[12] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[13] YIN YanYu, XING YuTong, WU TianFan, WANG LiYan, ZHAO ZiXu, HU TianRan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[14] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[15] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!