Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2282-2294.doi: 10.3864/j.issn.0578-1752.2024.12.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment of High-Throughput Detection Method for Phytic Acid Content in Sesame Seeds and Screening of Low Phytic Acid Germplasms

YANG Xi1,2(), YOU Jun1(), ZHOU Rong1, FANG Sheng2, ZHANG YanXin1, WU ZiMing2(), WANG LinHai1()   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062
    2 Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045
  • Received:2023-12-08 Accepted:2024-02-06 Online:2024-06-16 Published:2024-06-25
  • Contact: WU ZiMing, WANG LinHai

Abstract:

【Objective】 Phytic acid is one of the main anti-nutritional components in sesame. To explore the optimal conditions for efficient extraction of phytic acid from sesame seeds, establish a high-throughput detection method for phytic acid content, and apply it to the detection of phytic acid content variation in sesame population materials and the screening of low phytic acid germplasm resources, so as to promote the basic research of phytic acid in sesame and the breeding of sesame varieties with low phytic acid content. 【Method】Using 0.4 mol·L-1 HCl as the extraction solvent, single factor tests such as seed weight, crusher time, crusher frequency and extraction solution volume were carried out to extract phytic acid from sesame seeds, and the content of phytic acid was determined in a high-throughput manner using modified iron precipitation method. On the basis of the single factor test, the response surface experiment of Box-Behnken four factors and three levels was carried out. The quadratic polynomial regression equation model with phytic acid yield as the response value was established, and the response surface plot and contour plot were drawn. The main factors affecting phytic acid yield and the interaction between the factors were analyzed to determine the optimal extraction conditions for the detection of phytic acid content. Using this parameter condition, the phytic acid content of 200 sesame germplasm resources planted in two environments was determined to screen low phytic acid germplasm. 【Result】Analysis of variance (ANOVA) showed that the established regression model was highly significant (P<0.0001), the lack of fit was not significant (P>0.05), the equation fitted the test well, and this regression equation could be used to optimize the extraction of phytic acid from sesame seeds. The linear term of the four factors had a very significant effect on phytic acid yield, and the order of influence on the yield of phytic acid was seed weight>crusher time>crusher frequency>extract solution volume. The response surface analysis diagram showed that there were some interactions between seed weight and crusher time, seed weight and crusher frequency, crusher time and crusher frequency, crusher time and extraction solution volume, and crusher frequency and extraction solution volume. The optimal phytic acid extraction conditions optimized by single factor test and response surface design were as follows: seed weight of 30 mg, crusher time of 6.5 min, crusher frequency of 50 Hz, extraction solution volume of 435 μL. The predicted phytic acid yield under this condition was 14.03 mg·g-1, and the actual average phytic acid yield was 14.14 mg·g-1, the model prediction was very close to the actual value of the test. Three stable low phytic acid sesame germplasms were screened out from 200 germplasm resources, with an average content of 11.63 mg·g-1【Conclusion】 An efficient phytic acid extraction and detection technology for sesame seeds was established, which could significantly reduce the experimental time and the amount of samples used, and provided a feasible method for the high-throughput detection of phytic acid content in sesame seeds with good reproducibility and high accuracy.

Key words: sesame, phytic acid, extraction process, response surface analysis methodology, screening germplasm

Table 1

The factors and levels of response surface test"

水平/因子
Level/Factor
种子量
Seed weight (mg)
捣碎时间
Crusher time (min)
捣碎频率
Crusher frequency (Hz)
提取液体积
Extraction volume (μL)
-1 20 4 40 200
0 30 6 50 400
1 40 8 60 800

Fig. 1

Working curve of phytic acid standard solution"

Fig. 2

The effects of different seed weight on phytic acid yield"

Fig. 3

The effects of different crusher time on phytic acid yield"

Fig. 4

The effects of different crusher frequency on phytic acid yield"

Fig. 5

The effects of different extraction volume on phytic acid yield"

Table 2

The results of response surface experimental design"

试验号
Test number
种子量
Seed weight (mg)
捣碎时间
Crusher time (min)
捣碎频率
Crusher frequency (Hz)
提取液体积
Extraction volume (μL)
植酸得率
Phytic acid yield (mg·g-1)
1 20 4 50 400 13.1947
2 40 4 50 400 12.1604
3 20 8 50 400 13.5056
4 40 8 50 400 13.4174
5 30 6 40 200 13.4035
6 30 6 60 200 12.8243
7 30 6 40 600 13.2846
8 30 6 60 600 13.6042
9 20 6 50 200 13.2609
10 40 6 50 200 12.5203
11 20 6 50 600 13.6390
12 40 6 50 600 13.2934
13 30 4 40 400 13.4049
14 30 8 40 400 13.5754
15 30 4 60 400 12.5396
16 30 8 60 400 13.8098
17 20 6 40 400 13.2217
18 40 6 40 400 13.4764
19 20 6 60 400 13.4724
20 40 6 60 400 12.3784
21 30 4 50 200 12.4585
22 30 8 50 200 13.5933
23 30 4 50 600 13.5672
24 30 8 50 600 13.3649
25 30 6 50 400 13.9232
26 30 6 50 400 13.9855
27 30 6 50 400 13.9346
28 30 6 50 400 13.9979
29 30 6 50 400 13.8496

Table 3

Analysis of variance table of regression model"

方差来源
Sources of variance
平方和
Sum of squares
自由度
df
均方
Mean square
F
F value
P
P value
显著性
Significance
模型Model 6.96 14 0.50 37.48 <0.0001 **
A 0.77 1 0.77 58.33 <0.0001 **
B 1.29 1 1.29 97.52 <0.0001 **
C 0.25 1 0.25 18.96 0.0007 **
D 0.60 1 0.60 45.52 <0.0001 **
AB 0.22 1 0.22 16.86 0.0011 **
AC 0.45 1 0.45 34.26 <0.0001 **
AD 0.039 1 0.039 2.94 0.1086
BC 0.30 1 0.30 22.78 0.0003 **
BD 0.45 1 0.45 33.68 <0.0001 **
CD 0.20 1 0.20 15.22 0.0016 **
A2 1.52 1 1.52 114.3 <0.0001 **
B2 0.80 1 0.80 60.63 <0.0001 **
C2 0.59 1 0.59 44.51 <0.0001 **
D2 0.68 1 0.68 51.44 <0.0001 **
残差Residual 0.19 14 0.013
失拟误差Lack of Fit 0.17 10 0.017 4.95 0.0684
纯误差Pure Error 0.014 4 3.472E-003
总和Total 7.15 28
R2=0.974, R2adj=0.948, CV=0.86%

Fig. 6

Response surface plot showing the effects of seed weight (A), crusher time (B), crusher frequency (C), and extraction volume (D) on the phytic acid yield"

Table 4

Results of repetitive experiments"

序号
Number
种子量
Seed weight (mg)
样品提取液植酸含量
Phytic acid content of sample extracts (μg·mL-1)
种子植酸含量
Seed phytic acid content (mg·g-1)
相对标准偏差
Relative standard deviation
1 32.4 452.04 13.9520 0.69
2 30.5 429.82 14.0925
3 29.0 412.04 14.2084
4 32.0 448.49 14.0153
5 32.1 450.71 14.0408

Table 5

Results of recovery experiments"

序号
Serial number
样品提取液植酸含量
Phytic acid content of sample extracts (μg·mL-1)
标准品加入量
Amount of standard added (μg)
测得量
Measured
amount (μg)
回收率
Recovery rate
(%)
平均回收率
Average recovery rate (%)
相对标准偏差
Relative standard deviation
1 394.27 1.0 1.05 104.67 99.76 4.01
2 366.27 0.8 0.77 95.83
3 347.60 0.6 0.58 96.67
4 328.93 0.4 0.39 98.33
5 289.6 0.2 0.21 103.33

Fig. 7

Distribution of phytic acid content in sesame germplasm resources in different environments"

[1]
邵家威, 祁国栋, 张桂香, 付建鑫, 张炳文. 芝麻的营养与功能价值评价研究进展. 粮油食品科技, 2019, 27(6): 86-92.
SHAO J W, QI G D, ZHANG G X, FU J X, ZHANG B W. Research progress of evaluation of nutrition and functional value of sesame. Science and Technology of Cereals, Oils and Foods, 2019, 27(6): 86-92. (in Chinese)
[2]
TEBOUL N, GADRI Y, BERKOVICH Z, REIFEN R, PELEG Z. Genetic architecture underpinning yield components and seed mineral-nutrients in sesame. Genes, 2020, 11(10): 1221.
[3]
WEI P P, ZHAO F L, WANG Z, WANG Q B, CHAI X Y, HOU G G, MENG Q G.Sesame (Sesamum indicum L.): A comprehensive review of nutritional value, phytochemical composition, health benefits, development of food, and industrial applications. Nutrients, 2022, 14(19): 4079.
[4]
张美月, 郝征红, 杨东霖, 王其峰, 赵微, 颜凤, 于世幸, 孙子恒. 萌育对芝麻籽粒含氮物质的影响. 中国油脂, 2022, 47(9): 95-101.
ZHANG M Y, HAO Z H, YANG D L, WANG Q F, ZHAO W, YAN F, YU S X, SUN Z H. Effect of germination on nitrogen-containing substances in sesame seeds. China Oils and Fats, 2022, 47(9): 95-101. (in Chinese)
[5]
CAPRONI L, RAGGI L, TALSMA E F, WENZL P, NEGRI V. European landrace diversity for common bean biofortification: A genome-wide association study. Scientific Reports, 2020, 10(1):19775.

doi: 10.1038/s41598-020-76417-3 pmid: 33188249
[6]
KUMAR A, SINGH B, RAIGOND P, SAHU C, MISHRA U N, SHARMA S, LAL M K. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Research International, 2021, 142: 110193.
[7]
WANG R C, GUO S T. Phytic acid and its interactions: contributions to protein functionality, food processing, and safety. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(2): 2081-2105.

doi: 10.1111/1541-4337.12714 pmid: 33559386
[8]
苏达, 吴良泉, RASMUSSEN SOREN K, 周庐建, 潘刚, 程方民. 磷营养对水稻籽粒锌生物有效性的影响及其与植酸等磷酸肌醇谱含量的关系. 作物学报, 2020, 46(2): 228-237.
SU D, WU L Q, RASMUSSEN S K, ZHOU L J, PAN G, CHENG F M. Influence of phosphorus on rice (Oryza sativa L.) grain zinc bioavailability and its relation to inositol phosphate profiles concentration. Acta Agronomica Sinica, 2020, 46(2): 228-237. (in Chinese)
[9]
苏达, 吴良泉, KRASMUSSEN S R, 周庐建, 程方民. 低植酸水稻种质资源筛选、遗传生理调控与环境生态适应性研究进展. 中国水稻科学, 2019, 33(2): 95-107.

doi: 10.16819/j.1001-7216.2019.8083 95
SU D, WU L Q, KRASMUSSEN S R, ZHOU L J, CHENG F M. Research advances on the low phytic acid rice breeding and their genetic physiological regulation and environmental adaptability. Chinese Journal of Rice Science, 2019, 33(2): 95-107. (in Chinese)

doi: 10.16819/j.1001-7216.2019.8083 95
[10]
PRAMITHA J L, RANA S M, AGGARWAL P R, RAVIKESAVAN R, JOEL A J, MUTHAMILARASAN M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. Advances in Genetics, 2021, 107: 89-120.

doi: 10.1016/bs.adgen.2020.11.003 pmid: 33641749
[11]
RABOY V, GERBASI P F, YOUNG K A, STONEBERG S D, PICKETT S G, BAUMAN A T, MURTHY P P N, SHERIDAN W F, ERTL D S. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiology, 2000, 124(1): 355-368.
[12]
SHI J R, WANG H Y, SCHELLIN K, LI B L, FALLER M, STOOP J M, MEELEY R B, ERTL D S, RANCH J P, GLASSMAN K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature Biotechnology, 2007, 25(8): 930-937.

doi: 10.1038/nbt1322 pmid: 17676037
[13]
MCKIE V A, MCCLEARY B V. A novel and rapid colorimetric method for measuring total phosphorus and phytic acid in foods and animal feeds. Journal of AOAC International, 2016, 99(3): 738-743.
[14]
RABOY V, JOHNSON A, BILYEU K, BRINCH-PEDERSEN H, CICHY K, HURRELL R F, ZEDER C, RASMUSSEN S K, WARKENTIN T D, THAVARAJAH P, SHI J R, ZHOU L, SHU Q Y. Evaluation of simple and inexpensive high‐throughput methods for phytic acid determination. Journal of the American Oil Chemists' Society, 2017, 94(3): 353-362.
[15]
AGOSTINHO A J, DE SOUZA OLIVEIRA W, SANTOS ANUNCIAÇÃO D, SANTOS J C C. Simple and sensitive spectrophotometric method for phytic acid determination in grains. Food Analytical Methods, 2016, 9(7): 2087-2096.
[16]
THAVARAJAH P, THAVARAJAH D. Inaccuracies in phytic acid measurement: implications for mineral biofortification and bioavailability. American Journal of Plant Sciences, 2014, 5(1): 29-34.
[17]
MAROLT G, KOLAR M. Analytical methods for determination of phytic acid and other inositol phosphates: A review. Molecules, 2020, 26(1): 174.
[18]
HEUBNER W, STADLER H. On a titration method of determing phytate. Biochemische Zeitschrift, 1914, 64: 422-437.
[19]
YOUNG L. The determination of phytic acid. The Biochemical Journal, 1936, 30(2): 252-257.
[20]
HAUG W, LANTZSCH H J. Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 1983, 34(12): 1423-1426.
[21]
张倩雯. 甘蓝型油菜种子植酸含量的遗传解析[D]. 武汉: 华中农业大学, 2018.
ZHANG Q W. Genetic analisis of phytic content in Brassica napus seeds[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[22]
PARK H R, AHN H J, KIM S H, LEE C H, BYUN M W, LEE G W. Determination of the phytic acid levels in infant foods using different analytical methods. Food Control, 2006, 17(9): 727-732.
[23]
ANDARGIE M, VINAS M, RATHGEB A, MÖLLER E, KARLOVSKY P. Lignans of sesame (Sesamum indicum L.): A comprehensive review. Molecules, 2021, 26(4): 883.
[24]
IDOWU A O, ALASHI A M, NWACHUKWU I D, FAGBEMI T N, ALUKO R E. Functional properties of sesame (Sesamum indicum Linn) seed protein fractions. Food Production, Processing and Nutrition, 2021, 3(1): 4.
[25]
DEME T, HAKI G D, RETTA N, WOLDEGIORGIS A, GELETA M. Mineral and anti-nutritional contents of niger seed (Guizotia abyssinica (L.f.) Cass., linseed (Linum usitatissimum L.) and sesame (Sesamum indicum L.) varieties grown in Ethiopia. Foods, 2017, 6(4): 27.
[26]
李莉, 张赛, 何强, 胡学斌. 响应面法在试验设计与优化中的应用. 实验室研究与探索, 2015, 34(8): 41-45.
LI L, ZHANG S, HE Q, HU X B. Application of response surface methodology in experiment design and optimization. Research and Exploration in Laboratory, 2015, 34(8): 41-45. (in Chinese)
[27]
王永菲, 王成国. 响应面法的理论与应用. 中央民族大学学报(自然科学版), 2005, 14(3): 236-240.
WANG Y F, WANG C G. The theory and application of response surface methodology. Journal of Minzu University of China (Natural Sciences Edition), 2005, 14(3): 236-240. (in Chinese)
[28]
杨文雄, 高彦祥. 响应面法及其在食品工业中的应用. 中国食品添加剂, 2005(2): 68-71.
YANG W X, GAO Y X. Response surface methodology and its application in food industry. China Food Additives, 2005(2): 68-71. (in Chinese)
[29]
KHURI A I, MUKHOPADHYAY S. Response surface methodology. WIREs Computational Statistics, 2010, 2(2): 128-149.
[30]
程敬丽, 郑敏, 楼建晴. 常见的试验优化设计方法对比. 实验室研究与探索, 2012, 31(7): 7-11.
CHENG J L, ZHENG M, LOU J Q. Comparison of several common optimal experimental design methods. Research and Exploration in Laboratory, 2012, 31(7): 7-11. (in Chinese)
[31]
DRAGICEVIC V, SREDOJEVIC S, PERIC V, NISAVIC A, SREBRIC M. Validation study of a rapid colorimetric method for the determination of phytic acid and inorganic phosphorus from seeds. Acta Periodica Technologica, 2011(42): 11-21.
[32]
TALAMOND P, DOULBEAU S, ROCHETTE I, GUYOT J P, TRECHE S. Anion-exchange high-performance liquid chromatography with conductivity detection for the analysis of phytic acid in food. Journal of Chromatography A, 2000, 871(1/2): 7-12.
[33]
RABOY V, GIBSON R S, BAILEY K B, KING J C. Comparison of four methods for phytate analysis in plant-based foods. Journal of Food Composition and Analysis, 2020, 90: 103481.
[34]
刘杰, 陈卓, 刘军海, 马建岗. 植酸提取的研究进展. 辽宁化工, 2019, 48(10): 986-989.
LIU J, CHEN Z, LIU J H, MA J G. Research progress of phytic acid extraction. Liaoning Chemical Industry, 2019, 48(10): 986-989. (in Chinese)
[35]
HANDA V, SHARMA D, KAUR A, ARYA S K. Biotechnological applications of microbial phytase and phytic acid in food and feed industries. Biocatalysis and Agricultural Biotechnology, 2020, 25: 101600.
[36]
TP M A, KUMAR A, ANILKUMAR C, SAH R P, BEHERA S, MARNDI B C. Understanding natural genetic variation for grain phytic acid content and functional marker development for phytic acid-related genes in rice. BMC Plant Biology, 2022, 22(1): 446.

doi: 10.1186/s12870-022-03831-2 pmid: 36114452
[37]
WANG W, XIE Y W, LIU L, KING G J, WHITE P, DING G D, WANG S L, CAI H M, WANG C, XU F S, SHI L. Genetic control of seed phytate accumulation and the development of low-phytate crops: A review and perspective. Journal of Agricultural and Food Chemistry, 2022, 70(11): 3375-3390.

doi: 10.1021/acs.jafc.1c06831 pmid: 35275483
[38]
曹倩. 低植酸大豆育种早代选择与高代系评价[D]. 杨凌: 西北农林科技大学, 2022.
CAO Q. Early generation selection and high generation line evaluation of low phytic acid soybean breeding[D]. Yangling: Northwest A & F University, 2022. (in Chinese)
[39]
GAO X, ZHAO C C, LU H F, GAO F, MA H Y. Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions. Electrochimica Acta, 2014, 150: 188-196.
[40]
LOTT J N A, OCKENDEN I, RABOY V, BATTEN G D. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Science Research, 2000, 10(1): 11-33.
[41]
陈广凤, 李冬梅, 邓志英, 冯建英, 郑世英, 郑芳, 吴秀芬, 田纪春. 小麦籽粒植酸含量聚类及相关基因位点研究. 粮油食品科技, 2021, 29(2): 25-33.
CHEN G F, LI D M, DENG Z Y, FENG J Y, ZHENG S Y, ZHENG F, WU X F, TIAN J C. Cluster analysis and association mapping of phytic acid content among wheat cultivars. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 25-33. (in Chinese)
[42]
OLTMANS S E, FEHR W R, WELKE G A, RABOY V, PETERSON K L. Agronomic and seed traits of soybean lines with low-phytate phosphorus. Crop Science, 2005, 45: 593-598.
[1] RONG YaSi, LI Feng, ZHANG PengYu, WANG DongYong, SU XiaoYu, TIAN Yuan, GAO TongMei. Evaluation of High Temperature Tolerance and Selection of Sesame (Sesamum indicum L.) Cultivars at Full Flowering Stage Based on Principal Components-Cluster Analysis [J]. Scientia Agricultura Sinica, 2024, 57(20): 3957-3973.
[2] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[3] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[4] Biao SONG,KaiYue XU,XiaoHua WANG,JiuXin GUO,LiangQuan WU,Da SU. Spatial Distribution of Phytic Acid and Minerals’ Availability in Pomelo Fruit [J]. Scientia Agricultura Sinica, 2021, 54(6): 1229-1242.
[5] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[6] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[7] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[8] ZHOU Rong,LIU Pan,LI DongHua,ZHANG YanXin,WANG LinHai,ZHANG XiuRong,WEI Xin. Cloning and Functional Characterization of Sesame SiSAD Gene [J]. Scientia Agricultura Sinica, 2019, 52(10): 1678-1685.
[9] HAN YaFei, WANG XueDe, ZHENG YongZhan, MEI HongXian, WEI AnChi, LIU YanYang. Study on Changes of Sesame Protein Content and Its Components of Yuzhi 11 Sesame Seed During Growth Period [J]. Scientia Agricultura Sinica, 2018, 51(4): 652-661.
[10] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[11] LIU WenPing, Lü Wei, LI DongHua, REN GuoXiang, ZHANG YanXin, WEN Fei, HAN JunMei, ZHANG XiuRong. Drought Resistance of Sesame Germplasm Resources and Association Analysis at Adult Stage [J]. Scientia Agricultura Sinica, 2017, 50(4): 625-639.
[12] LIU YanYang, MEI HongXian, DU ZhenWei, WU Ke, ZHENG YongZhan, CUI XiangHua, ZHENG Lei. Construction of Core Collection of Sesame Based on Phenotype and Molecular Markers [J]. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441.
[13] YANG MinMin, LIU HongYan, ZHOU Ting, QU HongHao, YANG YuanXiao, WEI Xin, ZUO Yang, ZHAO YingZhong. Production and Identification of F1 Interspecific Hybrid Between Sesamum indicum and Wild Relative S. Indicatum [J]. Scientia Agricultura Sinica, 2017, 50(10): 1763-1771.
[14] WU Xiang-yang, CHENG Chao-ze, Lü Gao-qiang, WANG Xin-yu. Identification and Characterization of the AQP Gene Family in Sesame [J]. Scientia Agricultura Sinica, 2016, 49(10): 1844-1858.
[15] ZHANG Yan-Xin, WANG Lin-Hai, LI Dong-Hua, GAO Yuan, 吕Hai-Xia , ZHANG Xiu-Rong. Mapping of Sesame Waterlogging Tolerance QTL and Identification of Excellent Waterlogging Tolerant Germplasm [J]. Scientia Agricultura Sinica, 2014, 47(3): 422-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!