Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (20): 3945-3956.doi: 10.3864/j.issn.0578-1752.2024.20.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Yield Gain Analysis of Wheat Varieties in Sichuan from 2000 to 2020

LUO JiangTao(), ZHENG JianMin, DENG QingYan, LIU PeiXun, PU ZongJun()   

  1. Crop Research Institute of Sichuan Academic of Agricultural Sciences (Sichuan Provincial Germplasm Resources Center)/ Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province/Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066
  • Received:2024-04-02 Accepted:2024-04-22 Online:2024-10-16 Published:2024-10-24

Abstract:

【Objective】Analyzing the yield and yield related traits of Sichuan wheat varieties from 2000 to 2020, providing reference for genetic improvement of yield in Sichuan wheat varieties. 【Method】From 2019 to 2022, a community trial design was used to measure the yield and related traits of 145 wheat varieties in Sichuan Province since 2001 to 2016, as well as 60 high-yield wheat varieties (Varieties with top yields in regional trials in Sichuan Province over the years) since 2000 to 2020. This data was used to analyze the trend of yield and yield related trait changes in Sichuan wheat cultivars cultivated from 2000 to 2020. 【Result】145 Sichuan wheat varieties from 2001 to 2016 have an average annual genetic gain of 37.20 kg·hm-2 or 0.66% in yield. Grain number per spike and effective spike number per unit area showed an increasing trend, while thousand grain weight and plant height showed a decreasing trend. Correlation analysis showed that effective spike number per unit area was positively correlated with yield. Path analysis showed that the continuous increase of effective spike number per unit area (annual increase 0.42×104/hm2 or 0.13%) was the main factor for the increase of yield potential of high-yielding varieties. The average annual yield genetic gain of 60 high-yield wheat varieties from 2000 to 2020 was 61.10 kg·hm-2 or 0.89%, the effective spike number per unit area showed an increasing trend, the plant height showed a decreasing trend, and the grain number per spike and thousand grain weight had almost no change. Correlation analysis shows that there was a significant positive correlation between yield and the number of effective ears per unit area. Path analysis showed that the continuous increase in effective spike number per unit area (with an average annual increase of 1.80×104/hm2 or 0.51%) was also a major factor in improving the yield potential of 60 high-yield wheat varieties in Sichuan from 2000 to 2020. 【Conclusion】The improvement and breeding of wheat yield heritage in Sichuan Province has made some progress, especially the improvement effect of high yield breeding is remarkable, and the yield level of wheat varieties in Sichuan Province is gradually increasing. The continuous increase in effective ears per unit area was the main factor for improving the yield potential of Sichuan wheat varieties. High grain number per spike and thousand grain weight are important foundations for high yield in Sichuan wheat, but their genetic improvement is in a bottleneck period. Increasing the effective spike number per unit area is the key to furtherly improve the yield of wheat in Sichuan.

Key words: Sichuan wheat, breed, genetic gain, yield, yield related trait

Table 1

Variance analysis of yield and related traits of 145 varieties"

性状
Trait
年份
Year
品种
Varieties
重复
Repeat
年份×品种
Year×varieties
误差
Error
产量Yield 12766817.7** 241570326.9** 47606124.5** 102646779.1** 229846648.8
千粒重Thousand grain weight 276.65** 19576.32** 105.02** 3104.97** 5405.56
单位面积有效穗数Effective spike number per unit area 2526374.65** 1932820.5** 70906.31** 915112.12** 941236.15
穗粒数Grains per spike 623.4** 30898.62** 1081.06** 10600.97** 21101.79
株高Plant height 1277.33** 36620.10** 351.52** 6064.48** 8134.95

Fig. 1

Yield variation trend of 145 varieties A: Jingyang district in 2019; B: Guanghan in 2020; C: The average of two-year; D: Regional test of Sichuan province"

Table 2

Progress in improvement of yield potential of 145 varieties"

试验地点
Test site
试验年份
Test year
平均产量
Average yield (kg·hm-2)
年均遗传增益
Annual genetic gain (kg·hm-2, %)
德阳市旌阳区 Jingyang District, Deyang 2019 5782.54 +32.40 (+0.55)
广汉市 Guanghan 2020 5541.44 +41.05 (+0.74)
平均 Average 5658.10 +37.20 (+0.66)
四川省区试 Regional test of Sichuan province 5424.83 +33.81 (+0.63)

Fig. 2

Variation trend of yield-related traits of 145 varieties A: Effective spike number per unit area; B: Grains per spike; C: Thousand grain weight; D: Plant height"

Table 3

Progress of genetic improvement of yield-related traits in 145 varieties"

试验地点
Test site
试验年份
Test year
单位面积有效穗数
Effective spike number per unit area
穗粒数
Grains per spike
千粒重
Thousand grain weight
株高
Plant height
均值
Average (104/hm2)
年均增益
Average annual gain (104/hm2, %)
均值
Average
年均增益
Average annual gain
均值
Average
(g)
年均增益
Average annual gain (g, %)
均值
Average
(cm)
年均增益
Average annual gain (cm, %)
德阳市旌阳区
Jingyang District, Deyang
2019 411.19 +0.47
(+0.16)
53.32 +0.30
(+0.56)
46.24 -0.03
(-0.09)
86.09 -0.39
(-0.45)
广汉市
Guanghan
2020 299.73 +0.56
(+0.19)
54.98 +0.27
(+0.51)
47.44 -0.05
(-0.12)
88.47 -0.27
(-0.31)
平均
Average
353.06 +0.42
(+0.13)
54.14 +0.28
(+0.52)
46.81 -0.05
(-0.13)
87.26 -0.34
(-0.36)

Table 4

Correlation analysis of yield and yield related traits in 145 varieties"

性状
Trait
产量
Yield
单位面积有效穗数
Effective spike number per unit area
千粒重
Thousand grain weight
穗粒数
Grains per spike
株高
Plant height
产量Yield 1.00 0.27** 0.25** 0.10 0.01
单位面积有效穗数Effective spike number per unit area 1.00 0.04 -0.39** -0.02
千粒重Thousand grain weight 1.00 -0.26* 0.43**
穗粒数Grains per spike 1.00 -0.06
株高Plant height 1.00

Table 5

Path analysis of yield and yield related traits in 145 varieties"

性状
Trait
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient
X1 X2 X3 X4
X1 0.4220 -0.1625 -0.0186 -0.0063
X2 0.3630 -0.1398 -0.0937 0.0200
X3 0.4210 -0.0185 -0.1086 0.1802
X4 -0.1410 -0.0021 -0.0078 0.0603

Table 6

Variance analysis of yield and related traits of 60 high-yielding varieties"

类型 Type 品种 Varieties 重复 Repeat 误差 Error
产量 Yield 104132739.70** 1008852.90* 68175557.40
千粒重 Thousand grain weight 2517.46** 658.25** 802.20
单位面积有效穗数 Effective spike number per unit area 236280.09** 14812.10* 283546.69
穗粒数 Grains per spike 11121.49** 1203.86** 16.99
株高 Plant height 3792.20** 223.63* 2896.37

Fig. 3

Yield gain trend of 60 high-yield wheat varieties A: Xindu District in 2022; B: Regional test of Sichuan province"

Table 7

Progress of genetic improvement of yield-related traits in 60 high-yielding varieties"

试验地点
Test site
试验年份
Test year
单位面积穗数
Effective spike number per unit area
穗粒数
<BOLD>G</BOLD>rains per spike
千粒重
<BOLD>T</BOLD>housand grain weight
株高
<BOLD>P</BOLD>lant height
均值
Average (104/hm2)
年均增益
Average annual gain (104/hm2, %)
均值
Average
年均增益Average annual gain (%) 均值
Average
(g)
年均增益
Average annual gain (g, %)
均值
Average
(cm)
年均增益
Average annual gain (cm, %)
成都市新都区
Xindu District, Chengdu
2022 336.15 +1.80
(+0.51)
63.42 +0.0001
(+0.001)
52.97 -0.001
(-0.02)
84.57 -0.08 (-0.10)

Fig. 4

Variation trend of yield-related traits of 60 high-yielding varieties A: Effective spike number per unit area; B: Grains per spike; C: Thousand grain weight; D: Plant height"

Table 8

Correlation analysis of yield and yield-related traits of 60 high-yielding varieties"

类型
Type
产量
Yield
单位面积穗数
Effective spike number per unit area
千粒重
Thousand grain weight
穗粒数
Grains per spike
株高
Plant height
产量Yield 1.00 0.27* 0.19 0.14 0.27*
单位面积有效穗数Effective spike number per unit area 1.00 0.05 -0.18 -0.17
千粒重Thousand grain weight 1.00 -0.39** 0.13
穗粒数Grains per spike 1.00 0.19
株高Plant height 1.00

Table 9

Path analysis of yield and yield related traits in 60 high-yielding varieties"

类型
Type
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient
X1 X2 X3 X4
X1 0.3470 -0.0611 0.0156 -0.0583
X2 0.2460 -0.0433 -0.0959 0.0477
X3 0.2400 0.0108 -0.0936 0.0310
X4 0.2560 -0.0430 0.0497 0.0330
[1]
MANÈS Y, GOMEZ H F, PUHL L, REYNOLDS M, BRAUN H J, TRETHOWAN R. Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010. Crop Science, 2012, 52(4): 1543-1552.
[2]
GREEN A J, BERGER G, GRIFFEY C A, PITMAN R, THOMASON W, BALOTA M, AHMED A. Genetic yield improvement in soft red winter wheat in the eastern United States from 1919 to 2009. Crop Science, 2012, 52(5): 2097-2108.
[3]
IQBAL M, MOAKHAR N P, STRENZKE K, HAILE T, POZNIAK C, HUCL P, SPANER D. Genetic improvement in grain yield and other traits of wheat grown in western Canada. Crop Science, 2016, 56(2): 613-624.
[4]
NEHE A, AKIN B, SANAL T, EVLICE A K, ÜNSAL R, DINÇER N, DEMIR L, GEREN H, SEVIM I, ORHAN Ş, YAKTUBAY S, EZICI A, GUZMAN C, MORGOUNOV A. Genotype × environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. PLoS ONE, 2019, 14(7): e0219432.
[5]
BECHE E, BENIN G, DA SILVA C L, MUNARO L B, MARCHESE J A. Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. European Journal of Agronomy, 2014, 61: 49-59.
[6]
MORGOUNOV A, ZYKIN V, BELAN I, ROSEEVA L, ZELENSKIY Y, GOMEZ-BECERRA H F, BUDAK H, BEKES F. Genetic gains for grain yield in high latitude spring wheat grown in Western Siberia in 1900-2008. Field Crops Research, 2010, 117(1): 101-112.
[7]
KHAN H, KRISHNAPPA G, KUMAR S, MISHRA C N, PARKASH O, RATHORE A, DAS R R, YADAV R, KRISHNA H, BISHNOI O P, SOHU V S, SENDHIL R, YADAV S S, SINGH G, SINGH G P. Genetic gains in grain yield in wheat (Triticum aestivum L.) cultivars developed from 1965 to 2020 for irrigated production conditions of northwestern Plains zone of India. Cereal Research Communications, 2023, 51(2): 437-446.
[8]
GAO F M, MA D Y, YIN G H, RASHEED A, DONG Y, XIAO Y G, XIA X C, WU X X, HE Z H. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern yellow and Huai valley since 1950. Crop Science, 2017, 57(2): 760-773.
[9]
ZHOU Y, ZHU H Z, CAI S B, HE Z H, ZHANG X K, XIA X C, ZHANG G S. Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Euphytica, 2007, 157(3): 465-473.
[10]
ZHANG Y, XU W G, WANG H W, DONG H B, QI X L, ZHAO M Z, FANG Y H, GAO C, HU L. Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province. Field Crops Research, 2016, 199: 117-128.
[11]
YAO Y R, LV L H, ZHANG L H, YAO H P, DONG Z Q, ZHANG J T, JI J J, JIA X L, WANG H J. Genetic gains in grain yield and physiological traits of winter wheat in Hebei Province of China, from 1964 to 2007. Field Crops Research, 2019, 239: 114-123.
[12]
刘仲齐, 饶世达, 蒲宗君, 余东梅, 杨武云. 1950年以来四川盆地小麦品种产量性状的遗传改良. 北京: 中国农业科技出版社, 2001.
LIU Z Q, RAO S D, PU Z J, YU D M, YANG W Y. Genetic Improvement of Yield Traits in Sichuan Basin Wheat Varieties Since 1950. Beijing: China Agricultural Science and Technology Press, 2001. (in Chinese)
[13]
唐永金. 四川小麦品种的历史、现状和未来. 麦类作物学报, 1996, 16(6): 5-6.
TANG Y J. history, present situation and future of wheat varieties in Sichuan. Journal of Triticeae Crops, 1996, 16(6): 5-6. (in Chinese)
[14]
伍玲, 朱华忠. 四川省10年来小麦育种的产量变化. 中国农学通报, 2008, 24(1): 212-219.
WU L, ZHU H Z. Wheat yield movement in Sichuan regional trial of 1996-2005. Chinese Agricultural Science Bulletin, 2008, 24(1): 212-219. (in Chinese)
[15]
蒋云, 张洁, 郑建敏, 王相权, 刘登才, 宣朴, 王颖, 郭元林. 四川省近10年小麦区试产量性状分析. 四川农业大学学报, 2019, 37(5): 589-595.
JIANG Y, ZHANG J, ZHENG J M, WANG X Q, LIU D C, XUAN P, WANG Y, GUO Y L. Wheat yield traits of Sichuan province trials in last decade. Journal of Sichuan Agricultural University, 2019, 37(5): 589-595. (in Chinese)
[16]
蒋进, 蒋云, 王淑荣. 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019, 39(6): 682-691.
JIANG J, JIANG Y, WANG S R. Agronomic and quality traits of wheat varieties bred in Sichuan in recent years. Journal of Triticeae Crops, 2019, 39(6): 682-691. (in Chinese)
[17]
管方念. 2000年以来四川小麦育成品种产量、品质及抗病性相关性状演变分析[D]. 雅安: 四川农业大学, 2021.
GUAN F N. Trend analysis of yield, quality and disease resistance relative traits of wheat varieties in Sichuan province since 2000[D]. Yaan: Sichuan Agricultural University, 2021. (in Chinese)
[18]
LIU D C, ZHANG L Q, HAO M, NING S Z, YUAN Z W, DAI S F, HUANG L, WU B H, YAN Z H, LAN X J, ZHENG Y L. Wheat breeding in the hometown of Chinese Spring. The Crop Journal, 2018, 6(1): 82-90.
[19]
ORTIZ-MONASTERIOR J I, SAYRE K D, RAJARAM S, MCMAHON M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Science, 1997, 37(3): 898-904.
[20]
CHEN W, ZHANG J J, DENG X P. Winter wheat yield improvement by genetic gain across different provinces in China. Journal of Integrative Agriculture, 2024, 23(2): 468-483.
[21]
田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 32(11): 1699-1705.
TIAN J C, DENG Z Y, HU R B, WANG Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agronomica Sinica, 2006, 32(11): 1699-1705. (in Chinese)
[22]
李式昭, 朱华忠, 郑建敏, 蒲宗君, 伍玲. 四川小麦品种的产量潜力研究. 西南农业学报, 2014, 27(1): 24-29.
LI S Z, ZHU H Z, ZHENG J M, PU Z J, WU L. Study on yield potential of wheat cultivars in Sichuan province. Southwest China Journal of Agricultural Sciences, 2014, 27(1): 24-29. (in Chinese)
[23]
郑建敏, 李浦, 廖晓虹, 杨梅, 饶世达, 蒲宗君. 四川冬小麦产量构成因子初步分析. 作物杂志, 2012(1): 105-108.
ZHENG J M, LI P, LIAO X H, YANG M, RAO S D, PU Z J. Preliminary study on yield component factors of Sichuan winter wheat. Crops, 2012(1): 105-108. (in Chinese)
[24]
RAQUEL M P, ZAHRA R F, DEL CARMEN D F M, TERESA N T M, LUIS A J, NIEVES A, RUBÉN V. Genotype-by-environment interaction for grain yield and quality traits in durum wheat: Identification of ideotypes adapted to the Spanish Region of Castile and León. European Journal of Agronomy, 2023, 151: 126951.
[25]
SABIR K, ROSE T, WITTKOP B, STAHL A, SNOWDON R J, BALLVORA A, FRIEDT W, KAGE H N, LÉON J, ORDON F, STÜTZEL H, ZETZSCHE H, CHEN T W. Stage-specific genotype- by-environment interactions determine yield components in wheat. Nature Plants, 2023, 9(10): 1688-1696.
[26]
LI X, CAI J, LIU F, DAI T, CAO W, JIANG D. Spring freeze effect on wheat yield is modulated by winter temperature fluctuations: evidence from meta-analysis and simulating experiment. Journal of Agronomy and Crop Science, 2015, 201(4): 288-300.
[27]
陈超, 庞艳梅, 张玉芳. 近50年来四川盆地气候变化特征研究. 西南大学学报(自然科学版), 2010, 32(9): 115-120.
CHEN C, PANG Y M, ZHANG Y F. On the characteristics of climate change in Sichuan basin in the recent 50 years. Journal of Southwest University (Natural Science Edition), 2010, 32(9): 115-120. (in Chinese)
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[6] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[7] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[8] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[9] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[10] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[11] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[12] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[13] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[14] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[15] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!