Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (3): 539-554.doi: 10.3864/j.issn.0578-1752.2024.03.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia

WANG YueMei1(), TIAN HaiMei1, WANG XiNa1(), HAO WenYue1, LÜ ZheMing1, YU JinMing1, TAN JunLi2, WANG ZhaoHui3   

  1. 1 Agricultural College of Ningxia University, Yinchuan 750021
    2 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021
    3 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2023-03-09 Accepted:2023-05-05 Online:2024-02-01 Published:2024-02-05

Abstract:

【Objective】The objective of this study was to explore the effects of continuous reduction of chemical fertilizer on supply of soil nitrogen, phosphorus and potassium, and grain yield of spring wheat in Yellow River Irrigation Area of Ningxia (NYRIA), and to analyze the factors affecting yield stability, and then to provide a theoretical basis for rational fertilizer reduction and high yield and stable yield of spring wheat. 【Method】The field positioning experiment of chemical fertilizer reduction application was carried out for four consecutive years from 2019 to 2022, with Ningchun 4 of spring wheat cultivar as the test crop. The field treatments included conventional fertilization (CF with N 270 kg·hm-2, P2O5 150 kg·hm-2, K2O 75 kg·hm-2), the lower limit of reduced fertilization (RF1) with N180 kg·hm-2, P2O5 45 kg·hm-2, and K2O 30 kg·hm-2 (which reduced N, P2O5, and K2O by 33.3%, 70.0%, and 60.0%, respectively, compared with conventional fertilization), the upper limit of fertilization reduction (RF2) with N 225 kg·hm-2, P2O5 75 kg·hm-2, K2O 45 kg·hm-2 (which reduced N, P2O5, K2O by 17.0%, 50.0%, 40.0%, respectively, compared with traditional fertilization), and no fertilization (CK). The climatic factors during the growth period of spring wheat, soil moisture content before sowing and harvest of spring wheat, soil mineral nitrogen, available phosphorus and available potassium content, dry matter accumulation in shoot, grain yield and yield components of spring wheat at harvest were analyzed, and correlations among them were also discussed. 【Result】The soil moisture content before sowing were inter-annual differences in 2019-2022, among which the average was only 19.5% in 2022; the soil moisture content before sowing was significantly affected by fertilization treatment in 2020, there was no significant difference of soil moisture content before sowing between fertilization treatments in other years. The content of mineral nitrogen, available potassium and available phosphorus in the soil before sowing and harvesting were higher under conventional fertilization CF treatment, followed by RF2 treatment; there was no significant difference between them, while which of the RF1 treatment tended to decrease. In 2019, the CF treatment had the highest accumulation of dry matter in shoot and grain yield, which was 23 261.7 kg·hm-2 and 9 449.0 kg·hm-2, respectively, and had an increase of 2.8%-4.5% and 3.2%-16.0% compared with the RF2 treatment. However, from 2020 to 2022, the RF2 treatment had the highest accumulation of dry matter in shoot and grain yield, and there was no significant difference between the RF2 treatment and the CF treatment, but the yield of RF2 treatment performed the most stable at 4 years. From the perspective of inter-annual changes, the number of ears, 1000 grain weights and yields of hectares for all treatments showed a downward trend year by year, so the fertilization rate was not the main reason for the inter-annual difference in grain yield, but which was closely related to soil moisture before sowing, precipitation, temperature, humidity and wind speed. The decrease in yield in 2022 was accompanied by a lower soil moisture before sowing, hot dry air phenomenon during the filling period and a change in the nitrogen fertilizer base ratio. 【Conclusion】 In NYRIA, continuous and appropriate reduced application of chemical fertilizer with N 225 kg·hm-2, P2O5 75 kg·hm-2, K2O 45 kg·hm-2 would not significantly reduce the supply capacity of soil nitrogen, phosphorus and potassium, and increase the number of ears, ear grains and 1000 grain weights in the hectares of spring wheat, and promote the transfer and accumulation of dry matter in shoot to grains to a certain extent, then tend to increase the grain yield of spring wheat. However, there were interannual differences in spring wheat yield due to climate factors, such as rainfall, wind speed, and humidity, as well as soil moisture, continuous cropping obstacles, and nitrogen fertilizer application ratios. Among them, temperature, relative humidity, and wind speed were the main factors affecting interannual variation of wheat yield, and their impact on fertilization effects needed further research.

Key words: spring wheat, continuous reduction of fertilizer application, soil available nutrients, dry matter mass, yield stability, Yellow River Irrigation Area of Ningxia

Table 1

Climatic factors from 2019 to 2022"

月份
Month
年份
Year
平均气温
Average temperature (℃)
平均相对湿度
Average relative humidity (%)
月降水量
Monthly precipitation (mm)
平均风速
Average wind speed (m·s-1)
2月
February
2019 -1.69 41.13 0 1.73
2020 0.84 36.94 0 1.42
2021 2.39 39.61 3.30 2.91
2022 2.42 35.48 0 2.79
平均值 Average 0.99 38.29 0.83 2.21
3月
March
2019 6.21 31.81 0 1.77
2020 7.47 29.55 0 1.74
2021 7.02 45.68 25.50 2.37
2022 8.64 51.6 1.30 2.79
平均值Average 7.34 39.66 6.70 2.17
4月
April
2019 15.98 32.15 9.10 2.01
2020 13.17 21.85 0.60 1.77
2021 11.76 51.3 13.60 2.64
2022 15.25 52.38 3.20 2.55
平均值Average 14.04 39.42 6.63 2.24
5月
May
2019 17.76 39.1 11.40 1.78
2020 17.36 33.79 8.60 1.88
2021 18.47 37.94 22.40 2.65
2022 19.49 36.96 5.50 2.25
平均值Average 18.27 36.95 11.98 2.14
6月
June
2019 22.61 54.63 100.60 1.76
2020 23.91 52.15 42.10 1.62
2021 22.86 50.23 12.10 2.08
2022 24.74 45.73 22.40 1.88
平均值Average 23.53 50.69 44.30 1.84
7月
July
2019 24.66 51.62 5.30 1.61
2020 25.30 50.87 17.6 1.69
2021 25.93 55.19 0.90 1.85
2022 26.34 61.78 37.70 1.77
平均值Average 18.97 54.87 15.38 1.73

Table 2

Test treatment and fertilizer consumption"

年份
Year
施肥方式
Fertilization method
处理
Treatment
施肥量Fertilization amount (kg·hm-2)
N P2O5 K2O
2019-2022 CK 0 0 0
CF 270 150 75
RF1 180 45 30
RF2 225 75 45
2019-2021 基施 Base application (60%) CK 0 0 0
CF 162 150 75
RF1 108 45 30
RF2 135 75 45
追施 Top-dressing (40%) CK 0 0 0
CF 108 0 0
RF1 62 0 0
RF2 90 0 0
2022
基施 Base application (40%) CK 0 0 0
CF 108 105 45.6
RF1 72 31.5 21.15
RF2 90 52.5 30.3
追施 Top dressing (60%) CK 0 0 0
CF 162 45 29.4
RF1 108 13.5 8.85
RF2 135 22.5 14.7

Table 3

Fertilization time and method from year of 2019 to 2022"

年份
Year
施肥方式
Fertilization treatment
施肥时间
Fertilization time
2019 基施Base application (60%) 3月2日March 2
第1次追施First top-dressing (24%) 4月25日April 25
第2次追施Second top-dressing (16%) 5月15日May 15
2020 基施Base application(60%) 2月26日February 26
第1次追施First top-dressing (24%) 4月27日 April 27
第2次追施Second top-dressing (16%) 5月15日May 15
2021 基施Base application (60%) 3月2日March 2
第1次追施First top-dressing (24%) 4月26日May 26
第2次追施Second top-dressing (16%) 5月14日May 14
2022 基施Base application (40%) 3月5日March 5
第1次追施First top dressing (30%) 4月15日April 15
第2次追施Second top-dressing (18%) 4月30日April 30
第3次追施Third top-dressing (12%) 5月15日May 15

Table 4

Field management of spring wheat from 2019 to 2022"

年份
Year
播种时间
Sowing time
收获时间
Harvest time
灌水日期 Irrigation date 除草时间
Weeding
time
除虫时间Disinfestation time 冬灌时间
Winter irrigation time
土壤采样时间
Soil sampling time
第一次First 第二次Second 第三次Third 第四次
Fourth
播前
Before sowing
收获期
Harvest stage
2019 March 3 July 10 April 26 May 16 June 25 - April 20 June 10 Early November 2018 March 4 July 12
2020 February 27 July 10 April 27 May 16 June 25 - April 20 June 10 Early November 2019 February 25 July 14
2021 March 3 July 8 April 27 May 15 May 30 June 24 April 21 June 10 Early November 2020 March 1 July 11
2022 March 6 July 5 April 27 May 14 May 30 June 24 April 10
and May 10
June 11 Early November 2021 March 4 July 10

Table 5

Soil moisture content before sowing from 2019 to 2022 (%)"

试验处理
Test treatment
年份 Year
2019 2020 2021 2022
CK 24.08±2.95aAB 25.07±1.57abA 25.07±2.24aA 19.51±0.30aB
CF 24.08±2.95aAB 26.28±0.84aA 22.69±0.74aB 21.10±1.92aB
RF1 24.08±2.95aA 24.57±0.941abA 23.83±0.75aA 18.81±0.50aB
RF2 24.08±2.95aA 23.32±0.98bA 21.21±0.16aB 18.48±0.54aB
平均值Average 24.08A 24.81A 23.20A 19.48B

Fig. 1

Mineral nitrogen content of soil under reducing fertilizer application from 2019 to 2022 In the same stage of the same year, different lowercase letters indicate significant differences between means of different fertilization treatments at levels of P<0.05. The same as Fig. 2 and Fig. 3"

Fig. 2

Soil available phosphorus content under reducing fertilizer application from 2019 to 2022"

Fig. 3

Soil available potassium content under reducing fertilizer application from 2019 to 2022"

Fig. 4

Dry matter mass of above ground parts of various organs of spring wheat at mature stage after reducing fertilizer application from 2019 to 2022 The vegetative organ includes stem, leaf and glume. In the same year, different lowercase letters indicate significant differences between dry matter in shoot of different fertilization treatments at levels of P<0.05"

Table 6

Effect of continuous reduction of fertilizer application on yield components of spring wheat"

年份
Year
处理
Treatment
公顷穗数
Ears per hectare(×104·hm-2
千粒重
1 000 grain weight (g)
穗粒数
Number of grains per spike
2019 CK 616.28±8.45b 43.52±2.50a 29.97±1.47b
CF 861.28±10.98a 42.96±1.23a 32.22±0.10ab
RF1 713.34±11.01ab 41.57±0.14a 32.94±0.42a
RF2 848.90±12.10a 42.21±0.51a 34.62±2.59a
平均值 Average 714.95±116.89A 42.57±0.85 B 32.24±1.93A
2020 CK 604.12±9.27b 47.93±1.63a 19.03±3.06b
CF 798.43±16.92a 47.64±2.52a 28.64±2.89ab
RF1 709.62±12.82a 46.72±1.24a 33.83±3.18a
RF2 813.74±8.76a 48.81±0.89a 35.62±3.21a
平均值 Average 731.48±96.52A 47.77±0.86 A 29.28±7.45A
2021 CK 507.03±1.81b 45.01±3.51a 19.13±2.03b
CF 671.70±13.51a 40.01±2.03a 35.50±0.89a
RF1 669.48±28.37a 40.92±2.00a 32.82±1.73a
RF2 674.14±21.22a 42.58±2.55a 37.10±1.86a
平均值 Average 630.59±82.39B 42.13±2.19B 31.14±8.20A
2022 CK 489.67±8.91b 32.67±1.65b 20.19±0.68c
CF 643.37±13.21a 33.81±1.40ab 36.67±2.10ab
RF1 627.18±9.81a 31.20±0.91b 32.38±0.56b
RF2 658.91±10.71a 38.00±1.51a 39.77±1.29a
平均值 Average 604.78±77.83B 33.92±2.29C 32.25±8.59A

Fig. 5

Spring wheat yield in different fertilizer treatments from 2019 to 2022"

Table 7

Average yield and stability index of spring wheat"

处理
Treatment
2019-2022年平均产量
Average yield from
2019 to 2022 (kg·hm-2)
2019-2022年产量稳定性系数
Yield stability coefficient
from 2019 to 2022 (%)
CK 4271.45 0.108
CF 7034.95 0.096
RF1 6160.98 0.107
RF2 7268.48 0.094

Fig. 6

Correlation between various factors and yield of spring wheat YIELD represents yield; AT represents the average temperature; ARH represents average relative humidity; MP represents monthly precipitation; AWS represents the average wind speed; MNBS represents soil mineral nitrogen before sowing; MNHP represents soil mineral nitrogen during the harvest period; IPBS represents soil available phosphorus before sowing; HPAP represents soil available phosphorus during the harvest period; APBS represents soil available potassium before sowing; APHP represents soil available potassium during the harvest period; SM represents soil moisture"

[1]
赵营. 宁夏引黄灌区不同类型农田氮素累积与淋洗特征研究[D]. 北京: 中国农业科学院, 2012.
ZHAO Y. Study on nitrogen accumulation and leaching characteristics of different types of farmland in Ningxia Yellow River irrigation area[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[2]
杨滨键, 尚杰, 于法稳. 农业面源污染防治的难点、问题及对策. 中国生态农业学报(中英文), 2019(2): 236-245.
YANG B J, SHANG J, YU F W. Difficulty, problems and countermeasures of agricultural non-point sources pollution control in China. Chinese Journal of Eco-Agriculture, 2019(2): 236-245. (in Chinese)
[3]
李芳, 冯淑怡, 曲福田. 发达国家化肥减量政策的适用性分析及启示. 农业资源与环境学报, 2017, 34(1): 15-23.
LI F, FENG S Y, QU F T. Fertilizer reduction policies in developed countries: suitability and implications. Journal of Agricultural Resources and Environment, 2017, 34(1): 15-23. (in Chinese)
[4]
石元亮, 王玲莉, 刘世彬, 聂鸿光. 中国化学肥料发展及其对农业的作用. 土壤学报, 2008, 45(5): 852-864.
SHI Y L, WANG L L, LIU S B, NIE H G. Development of chemical fertilizer industry and its effect on agriculture in China. Acta Pedologica Sinica, 2008, 45(5): 852-864. (in Chinese)
[5]
刘钦普. 中国化肥施用强度及环境安全阈值时空变化. 农业工程学报, 2017, 33(6): 214-221.
LIU Q. Spatio-temporal changes of fertilization intensity and environmental safety threshold in China. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 214-221. (in Chinese)
[6]
李东坡, 武志杰. 化学肥料的土壤生态环境效应. 应用生态学报, 2008, 19(5): 1158-1165.
LI D P, WU Z J. Impact of chemical fertilizers application on soil ecological environment. Chinese Journal of Applied Ecology, 2008, 19(5): 1158-1165. (in Chinese)
[7]
吴良泉, 武良, 崔振岭, 陈新平, 张福锁. 中国小麦区域氮磷钾肥推荐用量及肥料配方研究. 中国农业大学学报, 2016, 21(9): 1-13
WU L Q, WU L, CUI Z L, CHEN X P, ZHANG F S. Studies on recommended nitrogen, phosphorus and potassium application rates and special fertilizer formulae for wheat in China. Journal of China Agricultural University, 2016, 21(9): 1-13 (in Chinese)
[8]
汪玉, 赵旭, 王磊, 程谊, 王慎强. 太湖流域稻麦轮作农田磷素累积现状及其环境风险与控制对策. 农业环境科学学报, 2014, 33(5): 829-835.
WANG Y, ZHAO X, WANG L, CHENG Y, WANG S Q. Accumulation, environmental risk and control of phosphorus in rice/wheat rotation farmland in Taihu Lake watershed. Journal of Agro-Environment Science, 2014, 33(5): 829-835. (in Chinese)
[9]
刘建玲, 贾可, 廖文华, 高志岭, 吕英华, 贾文竹. 太行山山麓平原30年间土壤养分与供肥能力变化. 土壤学报, 2015, 52(6): 1325-1335.
LIU J L, JIA K, LIAO W H, GAO Z L, Y H, JIA W Z. Changes of soil nutrients and fertilizer supply capacity in Taihang Mountain piedmont plain in the past 30 years. Acta Pedologica Sinica, 2015, 52(6): 1325-1335. (in Chinese)
[10]
李国强, 朱云集, 郭天财, 田文仲. 氮磷钾硫的施用对冬小麦光合特性及产量的影响. 水土保持学报, 2006, 20(6): 175-178.
LI G Q, ZHU Y J, GUO T C, TIAN W Z. Effect of N, P, K and S fertilization on photosynthetic characteristics and grain yield of winter wheat. Journal of Soil and Water Conservation, 2006, 20(6): 175-178. (in Chinese)
[11]
王正福, 黄翠菊, 吕家贵. 长期定位监测不同施肥制度对水稻、蚕豆产量及土壤养分的影响. 云南农业科技, 2012(4): 20-22.
WANG Z F, HUANG C J, J G. Long-term monitoring of the effects of different fertilization systems on the yield of rice and broad bean and soil nutrients. Yunnan Agricultural Science and Technology, 2012(4): 20-22. (in Chinese)
[12]
闻磊, 张富仓, 邹海洋, 陆军胜, 郭金金, 薛占琪. 水分亏缺和施氮对春小麦生长和水氮利用的影响. 麦类作物学报, 2019, 39(4): 478-486.
WEN L, ZHANG F C, ZOU H Y, LU J S, GUO J J, XUE Z Q. Effect of water deficit and nitrogen rate on the growth, water and nitrogen use of spring wheat. Journal of Triticeae Crops, 2019, 39(4): 478-486. (in Chinese)
[13]
王西娜, 于金铭, 谭军利, 张佳群, 魏照清, 王朝辉. 宁夏引黄灌区春小麦氮磷钾需求及化肥减施潜力. 中国农业科学, 2020, 53(23): 4891-4903. doi: 10.3864/j.issn.0578-1752.2020.23.014.
WANG X N, YU J M, TAN J L, ZHANG J Q, WEI Z Q, WANG Z H. Requirement of nitrogen, phosphorus and potassium and potential of reducing fertilizer application of spring wheat in Yellow River Irrigation Area of Ningxia. Scientia Agricultura Sinica, 2020, 53(23): 4891-4903. doi: 10.3864/j.issn.0578-1752.2020.23.014. (in Chinese)
[14]
李志宏, 张福锁, 王兴仁. 我国北方地区几种主要作物氮营养诊断及追肥推荐研究 Ⅲ. 春小麦氮营养诊断及追肥推荐体系的研究. 植物营养与肥料学报, 1997, 3(4): 349-356.
LI Z H, ZHANG F S, WANG X R. Nitrogen nutritional diagnosis and recommendation as topdressing fertilizer N for several crops in North China Ⅲ. Nitrogen nutritional diagnosis and recommendation as topdressing fertilizer N for spring wheat. Plant Nutrition and Fertilizer Science, 1997, 3(4): 349-356. (in Chinese)
[15]
吴光磊, 曾彦, 郭立月, 崔正勇, 李勇, 尹燕枰, 王振林, 蒋高明. 麦季氮肥运筹对冬小麦-夏玉米种植体系物质生产及氮肥利用的影响. 作物学报, 2012, 38(11): 2100-2107.

doi: 10.3724/SP.J.1006.2012.02100
WU G L, ZENG Y, GUO L Y, CUI Z Y, LI Y, YIN Y P, WANG Z L, JIANG G. Effects of nitrogen management in wheat season on matter production and nitrogen use efficiency in winter wheat-summer maize rotation system. Acta Agronomica Sinica, 2012, 38(11): 2100-2107. (in Chinese)

doi: 10.3724/SP.J.1006.2012.02100
[16]
陈磊, 郝明德, 张少民. 黄土高原长期施肥对小麦产量及肥料利用率的影响. 麦类作物学报, 2006, 26(5)101-105
CHEN L, HAO M D, ZHANG S M. Effect of long-term application of fertilizer on wheat yield and fertilizer use efficiency in loess plateau. Journal of Triticeae Crops, 2006, 26(5)101-105 (in Chinese)
[17]
田生昌, 马建军, 叶陆明. 宁夏平罗春小麦氮、磷、钾肥肥效及适宜用量. 宁夏大学学报(自然科学版), 2012, 33(4): 396-399.
TIAN S C, MA J J, YE L M. Spring wheat N-P-K fertilizer efficiency and the appropriate amount for Pingluo in Ningxia. Journal of Ningxia University (Natural Science Edition), 2012, 33(4): 396-399. (in Chinese)
[18]
黄兴成, 李渝, 白怡婧, 张雅蓉, 刘彦伶, 张文安, 蒋太明. 长期不同施肥下黄壤综合肥力演变及作物产量响应. 植物营养与肥料学报, 2018, 24(6): 1484-1491.
HUANG X C, LI Y, BAI Y J, ZHANG Y R, LIU Y L, ZHANG W A, JIANG T M. Evolution of yellow soil fertility under long-term fertilization and response of crop yield. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1484-1491. (in Chinese)
[19]
徐娜, 党廷辉, 刘文兆. 黄土高塬沟壑区农田土壤养分与作物产量变化的长期监测. 植物营养与肥料学报, 2016, 22(5): 1240-1248.
XU N, DANG T H, LIU W Z. Soil nutrient balance and crop yields after 10-years' fertilization in the gully area of the Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1240-1248. (in Chinese)
[20]
何文寿, 何进勤, 郭瑞英. 宁夏引黄灌区春小麦不同生育期吸收氮、磷、钾养分的特点. 植物营养与肥料学报, 2006, 12(6): 789-796.
HE W S, HE J Q, GUO R Y. Characteristics of N, P and K uptake at different growth stages of spring wheat in irrigating region of Ningxia. Plant Nutrition and Fertilizer Science, 2006, 12(6): 789-796. (in Chinese)
[21]
蔡炳祥, 刘晓霞, 李建国, 宓盛. 连续实施化肥减量对水稻产量和土壤肥力的影响. 浙江农业科学, 2016, 57(4): 471-474.
CAI B X, LIU X X, LI J G, MI S. Effect of continuous implementation of chemical fertilizer reduction on rice yield and soil fertility. Journal of Zhejiang Agricultural Sciences, 2016, 57(4): 471-474. (in Chinese)
[22]
陈正刚, 崔宏浩, 张钦, 李剑, 朱青, 张箐, 赵崇平. 光叶苕子与化肥减量配施对土壤肥力及玉米产量的影响. 江西农业大学学报(自然科学版), 2015, 37(3): 411-416, 496.
CHEN Z G, CUI H H, ZHANG Q, LI J, ZHU Q, ZHANG Q, ZHAO C P. Effects of burying Vicia villosa rothvar and chemical fertilizer reduction on soil fertility and corn yield. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2015, 37(3): 411-416, 496. (in Chinese)
[23]
黄忆红, 邱琴, 徐益章. 氮化肥减量对水稻生产和土壤肥力的影响. 上海农业科技, 2006(2): 39-40.
HUANG Y H, QIU Q, XU Y Z. Effects of nitrogen fertilizer reduction on rice production and soil fertility. Shanghai Agricultural Science and Technology, 2006(2): 39-40. (in Chinese)
[24]
姚春霞, 陈振楼, 邱琴, 黄忆红, 尹君, 张家训, 李春华, 茅国芳. 西瓜设施栽培化肥减量对其产量和品质的影响. 华北农学报, 2005, 20(2): 76-79.

doi: 10.3321/j.issn:1000-7091.2005.02.020
YAO C X, CHEN Z L, QIU Q, HUANG Y H, YIN J, ZHANG J X, LI C H, MAO G F. Influence of nitrogen fertilizer reduction amount on watermelon yield and quality under canopy cultivation. Acta Agriculturae Boreali-Sinica, 2005, 20(2): 76-79. (in Chinese)
[25]
惠晓丽, 马清霞, 王朝辉, 张翔, 罗来超. 基于旱地小麦高产优质的氮肥用量优化. 植物营养与肥料学报, 2020, 26(2): 233-244.
HUI X L, MA Q X, WANG Z H, ZHANG X, LUO L C. Optimization of nitrogen rate based on grain yield and nutrient contents in dryland wheat production. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 233-244. (in Chinese)
[26]
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[27]
陈磊, 云鹏, 高翔, 卢昌艾, 刘荣乐, 汪洪. 磷肥减施对玉米根系生长及根际土壤磷组分的影响. 植物营养与肥料学报, 2016, 22(6): 1548-1557.
CHEN L, YUN P, GAO X, LU C A, LIU R L, WANG H. Effects of reducing phosphorus fertilizer rate on root growth and phosphorus fractions in rhizosphere soils of summer maize. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1548-1557. (in Chinese)
[28]
王伟妮, 鲁剑巍, 李银水, 邹娟, 苏伟, 李小坤, 李云春. 当前生产条件下不同作物施肥效果和肥料贡献率研究. 中国农业科学, 2010, 43(19): 3997-4007. doi: 10.3864/j.issn.0578-1752.2010.19.012.
WANG W N, LU J W, LI Y S, ZOU J, SU W, LI X K, LI Y C. Study on fertilization effect and fertilizer contribution rate of different crops at present production conditions. Scientia Agricultura Sinica, 2010, 43(19): 3997-4007. doi: 10.3864/j.issn.0578-1752.2010.19.012. (in Chinese)
[29]
杨长琴, 张国伟, 刘瑞显, 倪万潮, 张雷, 周关印. 氮肥运筹对麦后直播棉产量与氮素利用的影响. 中国生态农业学报, 2016, 24(12): 1607-1613.
YANG C Q, ZHANG G W, LIU R X, NI W C, ZHANG L, ZHOU G Y. Effect of nitrogen management on lint yield and nitrogen utilization of field-seeded cotton after barley harvest. Chinese Journal of Eco-Agriculture, 2016, 24(12): 1607-1613. (in Chinese)
[30]
王子胜, 徐敏, 刘瑞显, 吴晓东, 朱鹤, 陈兵林, 周治国. 施氮量对不同熟期棉花品种的生物量和氮素累积的影响. 棉花学报, 2011, 23(6): 537-544.

doi: 10.11963/cs110608
WANG Z S, XU M, LIU R X, WU X D, ZHU H, CHEN B L, ZHOU Z G. Effects of nitrogen rates on biomass and nitrogen accumulation of cotton with different varieties in growth duration. Cotton Science, 2011, 23(6): 537-544. (in Chinese)
[31]
申丽霞, 魏亚萍, 王璞, 易镇邪, 张红芳, 兰林旺. 施氮对夏玉米顶部籽粒早期发育及产量的影响. 作物学报, 2006, 32(11): 1746-1751.
SHEN L X, WEI Y P, WANG P, YI Z X, ZHANG H F, LAN L W. Effect of nitrogen supply on early kernel development and yield in summer maize (Zea mays L.). Acta Agronomica Sinica, 2006, 32(11): 1746-1751. (in Chinese)
[32]
蔡瑞国, 张迪, 张敏, 李瑞奇, 王文颇. 雨养和灌溉条件下施氮量对小麦干物质积累和产量的影响. 麦类作物学报, 2014, 34(2): 194-202.
CAI R G, ZHANG D, ZHANG M, LI R Q, WANG W P. Effects of nitrogen application rate on dry matter accumulation and grain yield of winter wheat under irrigated and rainfed conditions. Journal of Triticeae Crops, 2014, 34(2): 194-202. (in Chinese)
[33]
刘恩科, 赵秉强, 胡昌浩, 李秀英, 李燕婷. 长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响. 植物营养与肥料学报, 2007, 13(5): 789-794.
LIU E K, ZHAO B Q, HU C H, LI X Y, LI Y T. Effects of long-term nitrogen, phosphorus and potassium fertilizer applications on maize yield and soil fertility. Plant Nutrition and Fertilizer Science, 2007, 13(5): 789-794. (in Chinese)
[34]
俄胜哲, 丁宁平, 李利利, 袁金华, 车宗贤, 周海燕, 尚来贵. 长期施肥条件下黄土高原黑垆土作物产量与土壤碳氮的关系. 应用生态学报, 2018, 29(12): 4047-4055.

doi: 10.13287/j.1001-9332.201812.028
E S Z, DING N P, LI L L, YUAN J H, CHE Z X, ZHOU H Y, SHANG L G. Relationship of crop yield and soil organic carbon and nitrogen under long-term fertilization in black loessial soil region on the Loess Plateau in China. Chinese Journal of Applied Ecology, 2018, 29(12): 4047-4055. (in Chinese)
[35]
吴光磊. 麦季氮肥运筹调控冬小麦—夏玉米两作体系氮素利用及氮肥残效研究[D]. 泰安: 山东农业大学, 2012.
WU G L. Effects of nitrogen fertilizer management in wheat growth season on nitrogen utilization and residual effect in winter wheat and summer maize cropping system[D]. Taian: Shandong Agricultural University, 2012. (in Chinese)
[36]
戴健, 王朝辉, 李强, 李孟华, 李富翠. 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013, 50(5): 956-965.
DAI J, WANG Z H, LI Q, LI M H, LI F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedologica Sinica, 2013, 50(5): 956-965. (in Chinese)
[37]
KAMRAN M, YAN Z G, CHANG S H, NING J, LOU S N, AHMAD I, GHANI M U, ARIF M, EL SABAGH A, HOU F J. Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest China. Agricultural Water Management, 2023, 275: 108000.

doi: 10.1016/j.agwat.2022.108000
[38]
李世清, 邵明安, 李紫燕, 伍维模, 张兴昌. 小麦籽粒灌浆特征及影响因素的研究进展. 西北植物学报, 2003, 23(11): 2031-2039.
LI S Q, SHAO M A, LI Z Y, WU W M, ZHANG X C. Review of characteristics of wheat grain fill and factors to influence it. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(11): 2031-2039. (in Chinese)
[39]
董茜, 雍太文, 刘小明, 刘文钰, 徐婷, 宋春, 王小春, 杨文钰. 施氮方式对玉米-大豆套作体系中作物产量及玉米籽粒灌浆特性的影响. 作物学报, 2014, 40(11): 2028-2039.

doi: 10.3724/SP.J.1006.2014.02028
DONG Q, YONG T W, LIU X M, LIU W Y, XU T, SONG C, WANG X C, YANG W Y. Effect of nitrogen application methods on crop yield and grain filling characteristics of maize in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2014, 40(11): 2028-2039. (in Chinese)

doi: 10.3724/SP.J.1006.2014.02028
[40]
陈平, 杜青, 周丽, 杨欢, 董茜, 宋春, 杨文钰, 雍太文. 减量施氮及施肥距离对玉米/大豆套作系统增产节肥的影响. 应用生态学报, 2016, 27(10): 3247-3256.

doi: 10.13287/j.1001-9332.201610.031
CHEN P, DU Q, ZHOU L, YANG H, DONG Q, SONG C, YANG W Y, YONG T W. Effects of N application reduction and fertilizing distance on saving fertilizer and improving yield in maize/soybean intercropping system. Chinese Journal of Applied Ecology, 2016, 27(10): 3247-3256. (in Chinese)

doi: 10.13287/j.1001-9332.201610.031
[41]
LIU A D, MA X L, ZHANG Z, LIU J H, LUO D, YANG L R, N, ZHANG Y J, YANG G Z, DONG H Z. Single dose fertilization at reduced nitrogen rate improves nitrogen utilization without yield reduction in late-planted cotton under a wheat-cotton cropping system. Industrial Crops and Products, 2022, 176: 114346.

doi: 10.1016/j.indcrop.2021.114346
[42]
XU J, CAI H J, WANG X Y, MA C G, LU Y J, DING Y B, WANG X W, CHEN H, WANG Y F, SADDIQUE Q. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agricultural Water Management, 2020, 228: 105904.

doi: 10.1016/j.agwat.2019.105904
[43]
杨尚威. 中国小麦生产区域专业化研究[D]. 重庆: 西南大学, 2011.
YANG S W. Study on regional specialization of wheat production in China[D]. Chongqing: Southwest University, 2011. (in Chinese)
[44]
杨子光, 冀天会, 郭军伟, 马雯, 王向阳. 北部冬麦区旱地小麦新品种产量稳定性分析. 干旱地区农业研究, 2004, 22(1): 70-72.
YANG Z G, JI T H, GUO J W, MA W, WANG X Y. Analysis on high and stable yield ability of dry-land wheat in north part of China. Agricultural Research in the Arid Areas, 2004, 22(1): 70-72. (in Chinese)
[45]
周义, 覃志豪, 包刚. 气候变化对农业的影响及应对. 中国农学通报, 2011, 27(32): 299-303.
ZHOU Y, QIN Z H, BAO G. Impacts of climate change on agriculture and its responses. Chinese Agricultural Science Bulletin, 2011, 27(32): 299-303. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2011-1328
[46]
LI H Y, ZHANG Y H, ZHANG Q, AHMAD N, LIU P Z, WANG R, LI J, WANG X L. Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: a 12-yr in situ study in the Loess Plateau, China. Agricultural Water Management, 2021, 256: 107062.

doi: 10.1016/j.agwat.2021.107062
[47]
WANG C, NING P, LI J Y, WEI X M, GE T D, CUI Y X, DENG X P, JIANG Y L, SHEN W J. Responses of soil microbial community composition and enzyme activities to long-term organic amendments in a continuous tobacco cropping system. Applied Soil Ecology, 2022, 169: 104210.

doi: 10.1016/j.apsoil.2021.104210
[1] WANG RongRong, CHEN TianPeng, YIN HaoJie, JIANG GuiYing. Response and Drip Irrigation Re-Watering Compensation Effect of Spring Wheat Roots to Drought Stress with Different Drought Tolerance Varieties [J]. Scientia Agricultura Sinica, 2023, 56(24): 4826-4841.
[2] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
[3] CHEN GuiPing, CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen. Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions [J]. Scientia Agricultura Sinica, 2023, 56(13): 2461-2473.
[4] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
[5] LIU YuYing, SHEN Feng, YANG JinFeng, CAI FangFang, FU ShiFeng, LUO PeiYu, LI Na, DAI Jian, HAN XiaoRi. Variation Characteristics of Soybean Yield and Soil Nitrogen Distribution in Brown Soil Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(10): 1920-1934.
[6] BiJiao MA, ZhiWen GOU, Wen YIN, AiZhong YU, ZhiLong FAN, FaLong HU, Cai ZHAO, Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[7] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[8] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[9] JIAN TianCai,WU HongLiang,KANG JianHong,LI Xin,LIU GenHong,CHEN Zhuo,GAO Di. Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368.
[10] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[11] WANG XiNa,YU JinMing,TAN JunLi,ZHANG JiaQun,WEI ZhaoQing,WANG ZhaoHui. Requirement of Nitrogen, Phosphorus and Potassium and Potential of Reducing Fertilizer Application of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2020, 53(23): 4891-4903.
[12] JIA LiGuo,SHI XiaoHua,SUYALA Qiqige,QIN YongLin,YU Jing,CHEN Yang,FAN MingShou. Potential Analysis of Organic Fertilizer Substitution for Chemical Fertilizer in Spring Wheat Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4855-4865.
[13] XIANG JiShan,LIU PengPeng,SANG Wei,CUI FengJuan,HAN XinNian,NIE YingBin,KONG DeZhen,ZOU Bo,XU HongJun,MU PeiYuan. Allelic Variations of Pins Genes in Xinjiang Spring Wheat Varieties and Their Influence on Processing Quality of Xinjiang Hand-Stretched Noodles [J]. Scientia Agricultura Sinica, 2020, 53(19): 3857-3866.
[14] LI BaoXin,YANG LiPing,LU YanLi,SHI XiaoXin,DU GuoQiang. Status of Soil Fertility in Main Grape Producing Areas of China [J]. Scientia Agricultura Sinica, 2020, 53(17): 3553-3566.
[15] JIAO YaPeng,QI Peng,WANG XiaoJiao,WU Jun,YAO YiMing,CAI LiQun,ZHANG RenZhi. Effects of Different Nitrogen Application Rates on Soil Organic Nitrogen Components and Enzyme Activities in Farmland [J]. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!