Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3424-3439.doi: 10.3864/j.issn.0578-1752.2024.17.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Water Saving and Nitrogen Reduction on Lodging Resistance and Grain Yield of Spring Wheat in the Yellow River Irrigation Area of Ningxia

LI Hong1,2,3(), WANG XiNa4, WEI GuangYuan1, MA YongXin1, TIAN HaiMei4, WANG YueMei4, QIAN ZhiJin4, TAN JunLi1,2,3()   

  1. 1 School of Civil and Water Conservancy Engineering of Ningxia University, Yinchuan 750021
    2 Engineering Research Center of Modern Agriculture and Efficient Utilization of Water Resources in Arid Areas, Ministry of Education, Yinchuan 750021
    3 Ningxia Engineering Technology Research Center of Water-Saving Irrigation and Water Resources Control, Yinchuan 750021
    4 College of Agriculture of Ningxia University, Yinchuan 750021
  • Received:2023-11-06 Accepted:2024-02-27 Online:2024-09-01 Published:2024-09-04
  • Contact: TAN JunLi

Abstract:

【Objective】The study on the effect of nitrogen reduction and water saving on the stem strength and grain quality of spring wheat aims to provide theoretical basis for the sustained and stable yield increase of spring wheat, efficient utilization of irrigate and nitrogen, and improvement of spring wheat’s lodging resistance in Yellow River Irrigation Area of Ningxia.【Method】Using Ningchun No.4 as test material, in 2021 and 2022, split-zone field experiment was conducted to investigate the effects of irrigation treatments (conventional irrigation (400 mm, WC), 20% water saving (320 mm, W1), and 40% water saving (240 mm, W2) and nitrogen application treatments (conventional nitrogen application (270 kg·hm-2, NC), 25% nitrogen reduction (202.5 kg·hm-2, NJ), and no nitrogen application, N0) on stem strength, yield and grain quality of spring wheat.【Result】The 25% N reduction and 20% water savings did not significantly reduce spring wheat plant height, stem diameter, or accumulation of aboveground biomass compared to conventional N application. There was no significant difference in stem strength and stem potassium content of spring wheat treated with reduced and conventional nitrogen application levels, but on the basis of reduced nitrogen, stem strength and stem potassium content of spring wheat treated with 20% water saving was significantly higher than that of conventional irrigation treatment. At the filling stage, stem strength increased by 14.9% and 16.3%, and stem potassium content increased by 13.4% and 11.9% in the water-saving 20% treatment compared to the conventional flooding treatment in both years at the reduced nitrogen level, while at the maturity stage, stem strength increased by 19.0% and 8.3%, and stem potassium content increased by 10.5% and 9.0%, respectively. Stem strength of spring wheat showed a decreasing trend as the reproductive process progressed. Correlation analysis showed that stem strength was highly significantly positively correlated with plant height and above-ground biomass, significantly positively correlated with stem potassium content, and not significantly correlated with stem diameter. Among the water-nitrogen treatments, the spring wheat yield was highest in the 20% nitrogen reduction and water conservation treatment, amounting to 8 092 and 5 516 kg•hm-2 in 2021 and 2022, respectively. At the same nitrogen application, the soluble sugar and protein contents of spring wheat grain showed an increasing and then decreasing trend with the decrease of irrigation quota, and the 25% nitrogen reduction and 20% water saving treatment reached the maximum value, which increased by 14.4%, 16.7%, and 25.5%, 23.5%, respectively, compared with the conventional water and nitrogen treatments, while there was no significant difference in starch content among the irrigation and nitrogen treatments. It was further found that stem strength was highly significantly and positively correlated with yield and protein content in grain and not significantly correlated with starch and soluble sugar content in grain.【Conclusion】Water saving of 20% under nitrogen reduction promoted the growth of spring wheat plant height and stem diameter, increased the accumulation of aboveground biomass, and increased the potassium content of stems, which in turn improved the stem strength of spring wheat, reduced the risk of lodging, increased the yield of spring wheat and improved the grain quality. Therefore, it was concluded that 20% water saving under nitrogen reduction conditions is a suitable irrigate and nitrogen management model for spring wheat in the Yellow River Irrigation Area of Ningxia.

Key words: the Yellow River Irrigation Area of Ningxia, spring wheat, water saving, nitrogen reduction, stem strength, yield, grain quality

Table 1

Basic physical and chemical properties of the experiment in 0-20 cm soil layer"

年份
Year
土层
Soil layers
(cm)
有机质
Organic matter
(g•kg-1)
全氮
Total N
(g•kg-1)
矿质态氮
Mineral N
(mg•kg-1)
全磷
Total P
(g•kg-1)
速效磷
Available P
(mg•kg-1)
速效钾
Available K
(mg•kg-1)
pH
2021 0-20 16.30 0.59 32.01 0.57 24.69 143.01 7.83
2022 0-20 21.22 0.69 42.79 0.67 26.77 149.31 7.91

Fig. 1

Monthly precipitation during the growth stage of spring wheat in 2021 and 2022"

Table 2

The design of field experiment"

处理
Treatments
施氮量
Nitrogen application
rate (kg•hm-2)
每次灌水量
Irrigating quota every time (mm/time)
灌溉定额
Irrigation
norm (mm)
NCWC 270 80 400
NCW1 270 64 320
NCW2 270 48 240
NJWC 202.5 80 400
NJW1 202.5 64 320
NJW2 202.5 48 240
N0WC 0 80 400
N0W1 0 64 320
N0W2 0 48 240

Fig. 2

Effects of irrigation and nitrogen treatment on soil average moisture content during spring wheat growth period Different lowercase letters indicate significant differences (P<0.05) between different N applications with the same irrigation quota; Different uppercase letters indicate significant differences (P<0.05) between different irrigation quotas with the same N applications. The same as below"

Fig. 3

Effects of irrigation and nitrogen treatment on soil average nitrate nitrogen content during spring wheat growth period"

Fig. 4

Effect of irrigation and nitrogen treatments on plant height of spring wheat"

Table 3

Effects of different irrigation and nitrogen treatment on stem diameter of spring wheat"

处理 Treatments 茎粗 Stem diameter (cm)
施氮
Nitrogen
灌溉
Irrigation
拔节期
Jointing stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturation stage
NC WC 0.371±0.064aA 0.360±0.026aA 0.338±0.029aA 0.366±0.027aA
W1 0.330±0.027aA 0.350±0.030aA 0.344±0.046aA 0.375±0.033aA
W2 0.298±0.019bA 0.348±0.024aA 0.372±0.024aA 0.349±0.017aA
NJ WC 0.378±0.034aA 0.364±0.018aA 0.399±0.021aA 0.368±0.023aA
W1 0.346±0.030aA 0.376±0.046aA 0.400±0.013aA 0.372±0.027aA
W2 0.363±0.024aA 0.323±0.041aA 0.342±0.019aB 0.346±0.011aA
N0 WC 0.337±0.031aA 0.370±0.007aA 0.387±0.028aA 0.376±0.031aA
W1 0.363±0.033aA 0.394±0.042aA 0.384±0.001aA 0.396±0.034aA
W2 0.326±0.045abA 0.345±0.015aA 0.372±0.026aA 0.346±0.019aA
ANOVA W ns ns ns *
N ns ns ns ns
W×N ns ns ns ns

Fig. 5

The dynamic changes of above-ground biomass accumulation of spring wheat with different irrigation and nitrogen treatments"

Fig. 6

Effects of different irrigation and nitrogen treatment on stem strength of spring wheat"

Table 4

Effect of irrigation and nitrogen treatments on potassium content in stem of spring wheat"

处理
Treatments
茎秆钾含量 Potassium content in stem (g·kg-1)
2021 2022
施氮
Nitrogen
灌溉
Irrigation
灌浆期
Filling stage
成熟期
Maturation stage
灌浆期
Filling stage
成熟期
Maturation stage
NC WC 27.48±1.89abB 31.09±0.46aA 27.48±3.95aA 23.07±3.06bB
W1 32.43±3.21aA 31.76±1.16bA 23.87±1.52bA 29.49±1.01bA
W2 28.95±0.61aAB 29.09±2.67aA 27.75±2.21aA 25.88±2.06bAB
NJ WC 29.89±1.41aB 33.09±2.90aA 26.95±2.84aA 30.96±3.64aA
W1 33.90±0.61aA 36.57±2.73aA 30.15±1.52aA 33.76±1.67aA
W2 30.56±1.81aB 32.69±2.31aA 28.15±2.67aA 32.83±2.89aA
N0 WC 23.74±3.72bA 25.08±1.16bA 26.95±1.29aB 32.69±1.52aA
W1 19.87±0.46bAB 24.14±1.62cA 31.09±1.22aA 34.16±0.46aA
W2 18.00±1.84bB 19.87±0.23bB 30.56±2.02aA 33.49±1.52aA
ANOVA W * ** ns *
N ** ** * **
W×N ** ns ns ns

Fig. 7

Effects of irrigation and nitrogen treatment on yield of spring wheat"

Fig. 8

Effects of irrigation and nitrogen treatment on grain quality of spring wheat"

Fig. 9

Correlation between stem strength and various indexes"

[1]
姚春生, 任婕, 张震, 周晓楠, 王志敏, 张英华. 微喷水肥一体化氮肥管理对冬小麦产量、品质、氮素积累和利用的影响. 中国农业大学学报, 2023, 28(3): 25-37.
YAO C S, REN J, ZHANG Z, ZHOU X N, WANG Z M, ZHANG Y H. Effects of micro-sprinkler irrigation integration and nitrogen fertilizer management on yield, quality and nitrogen accumulation and utilization of winter wheat. Journal of China Agricultural University, 2023, 28(3): 25-37. (in Chinese)
[2]
徐振剑, 华珞, 蔡典雄, 高月亮, 耿琪鹏, 何婷婷. 农田水肥关系研究现状. 首都师范大学学报(自然科学版), 2007, 28(1): 83-88.
XU Z J, HUA L, CAI D X, GAO Y L, GENG Q P, HE T T. Research of relationship between water and fertilizers on dry land. Journal of Capital Normal University (Natural Science Edition), 2007, 28(1): 83-88. (in Chinese)
[3]
LI S X, WANG Z H, HU T T, GAO Y J, STEWART B A. Nitrogen in dryland soils of China and its management. Advances in Agronomy, 2009, 101: 123-181.
[4]
PASK A, SYLVESTER-BRADLEY R, JAMIESON P, FOULKES M. Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth. Field Crops Research, 2011, 126: 104-118.
[5]
田培雨, 付文, 侯占领, 黄玉芳, 汪洋. 施氮量对不同筋度小麦产量、品质和养分吸收规律的影响. 河南农业, 2021, (17): 16-19+42.
TIAN P Y, FU W, HOU Z L, HUANG Y F, WANG Y. Effect of nitrogen application on the yield, quality and nutrient absorption rules of different gluten wheat. Agriculture of Henan, 2021, (17): 16-19+42.
[6]
孙盈盈, 王超, 王瑞霞, 牟秋焕, 米勇, 吕广德, 亓晓蕾, 孙宪印, 陈永军, 钱兆国, 吴科. 小麦倒伏原因、机理及其对产量和品质影响研究进展. 农学学报, 2022, 12(3): 1-5.

doi: 10.11923/j.issn.2095-4050.cjas2020-0043
SUN Y Y, WANG C, WANG R X, MU Q H, MI Y, G D, QI X L, SUN X Y, CHEN Y J, QIAN Z G, WU K. Wheat lodging: Cause and mechanism and its effect on wheat yield and quality. Journal of Agriculture, 2022, 12(3): 1-5. (in Chinese)

doi: 10.11923/j.issn.2095-4050.cjas2020-0043
[7]
PIÑERA-CHAVEZ F, BERRY P, FOULKES M, JESSON M, REYNOLDS M. Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements. Field Crops Research, 2016, 196: 325-336.
[8]
邵庆勤, 周琴, 王笑, 蔡剑, 黄梅, 戴廷波, 姜东. 种植密度对不同小麦品种茎秆形态特征、化学成分及抗倒性能的影响. 南京农业大学学报, 2018, 41(5): 808-816.
SHAO Q Q, ZHOU Q, WANG X, CAI J, HUANG M, DAI T B, JIANG D. Effects of planting density on stem morphological characteristics, chemical composition and lodging resistance of different wheat varieties. Journal of Nanjing Agricultural University, 2018, 41(5): 808-816. (in Chinese)
[9]
王旭, 周洁, 朱玉磊, 李金鹏, 孙建强, 李金才, 宋有洪. 氮肥运筹对冬小麦第三节间抗倒性能的影响. 安徽农业大学学报, 2021, 48(2): 173-178.
WANG X, ZHOU J, ZHU Y L, LI J P, SUN J Q, LI J C, SONG Y H. Effects of nitrogen application on lodging of the third internode of winter wheat. Journal of Anhui Agricultural University, 2021, 48(2): 173-178. (in Chinese)
[10]
周洁, 王旭, 朱玉磊, 刘惠惠, 陈翔, 魏凤珍, 孙建强, 宋有洪, 李金才. 氮肥运筹模式对小麦茎秆抗倒性能与产量的影响. 麦类作物学报, 2019, 39(8): 979-987.
ZHOU J, WANG X, ZHU Y L, LIU H H, CHEN X, WEI F Z, SUN J Q, SONG Y H, LI J C. Effects of nitrogen fertilizer management on stem lodging resistance and yield of wheat. Journal of Triticeae Crops, 2019, 39(8): 979-987. (in Chinese)
[11]
刘仲秋, 卞城月, 刘馨惠, 刘泉汝, 马长健, 李全起. 种植模式及灌水频次对冬小麦抗倒性的影响. 排灌机械工程学报, 2015, 33(4): 338-345.
LIU Z Q, BIAN C Y, LIU X H, LIU Q R, MA C J, LI Q Q. Effect of different planting patterns and irrigation frequency on stalk lodging resistance of winter wheat. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(4): 338-345. (in Chinese)
[12]
MUHAMMAD A, HAO H H, XUE Y L, ALAM A, BAI S M, HU W C, SAJID M, HU Z, SAMAD R A, LI Z H, LIU, GONG Z Q, WANG L Q. Survey of wheat straw stem characteristics for enhanced resistance to lodging. Cellulose, 2020, 27(5): 2469-2484.
[13]
OOKAWA T, HOBO T, YANO M, MURATA K, ANDO T, MIURA H, ASANO K, OCHIAI Y, IKEDA M, NISHITANI R, EBITANI T, OZAKI H, ANGELES E R, HIRASAWA T, MATSUOKA M. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nature Communications, 2010, 1(7052): 132.
[14]
朱新开, 郭文善, 周君良, 胡宏, 张影, 李春燕, 封超年, 彭永欣. 氮素对不同类型专用小麦营养和加工品质调控效应. 中国农业科学, 2003, 36(6): 640-645.
ZHU X K, GUO W S, ZHOU J L, HU H, ZHANG Y, LI C Y, FENG C N, PENG Y X. Effects of nitrogen on grain yield, nutritional quality and processing quality of wheat for different end uses. Scientia Agricultura Sinica, 2003, 36(6): 640-645. (in Chinese)
[15]
徐恒永, 赵振东, 张存良, 刘爱锋, 刘建军, 毕德锋, 杭新杰, 晁岳华, 张怀友, 耿金茹. 氮肥对优质专用小麦产量和品质的影响Ⅰ. 氮肥对产量及产量形成的影响. 山东农业科学, 2000(5): 27-30.
XU H Y, ZHAO Z D, ZHANG C L, LIU A F, LIU J J, BI D F, HANG X J, CHAO Y H, ZHANG H Y, GENG J R. Effect of nitrogen fertilizer on yield and quality of high quality speciality wheat Ⅰ. Effect of nitrogen fertilizer on yield and yield formation. Shandong Agricultural Sciences, 2000(5): 27-30. (in Chinese)
[16]
师筝, 高斯曼, 李彤, 李雨泽, 李红霞, 廖允成. 施氮量对不同叶绿素含量小麦生长、产量和品质的影响. 麦类作物学报, 2021, 41(9): 1134-1142.
SHI Z, GAO S M, LI T, LI Y Z, LI H X, LIAO Y C. Effect of nitrogen application rate on growth, yield and quality of wheat with different chlorophyll content. Journal of Triticeae Crops, 2021, 41(9): 1134-1142. (in Chinese)
[17]
姚素梅, 康跃虎, 茹振钢, 刘明久, 杨文平, 李淦. 喷灌对冬小麦植株氮素积累运转及籽粒蛋白质含量的影响. 应用生态学报, 2013, 24(8): 2205-2210.
YAO S M, KANG Y H, RU Z G, LIU M J, YANG W P, LI G. Effects of sprinkler irrigation on the plant nitrogen accumulation and translocation and kernel protein content of winter wheat. Chinese Journal of Applied Ecology, 2013, 24(8): 2205-2210. (in Chinese)
[18]
马永鑫, 王西娜, 韦广源, 薛旭, 郝雯悦, 王朝辉, 谭军利. 减氮节水对宁夏引黄灌区春小麦光合特性与产量的影响. 农业工程学报, 2022, 38(10): 75-84.
MA Y X, WANG X N, WEI G Y, XUE X, HAO W Y, WANG Z H, TAN J L. Effects of nitrogen reduction and water saving on the photosynthetic characteristics and yield of spring wheat in the Yellow River Irrigation Areas of Ningxia. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 75-84. (in Chinese)
[19]
董建力, 张学军, 李红霞, 陈晓群, 裘敏. 不同水肥处理对春小麦产量、品质和土壤硝态氮含量的影响. 西北农林科技大学学报(自然科学版), 2007, 35(1): 77-80.
DONG J L, ZHANG X J, LI H X, CHEN X Q, QIU M. Effect of different water and fertilizer treatments on the quality, yield of spring wheat and NO3--N content in soil. Journal of Northwest A&F University (Natural Science Edition), 2007, 35(1): 77-80. (in Chinese)
[20]
吴强, 张永平, 董玉新, 高飞雁, 谢岷. 施氮量和灌水模式对小麦产量、品质和氮肥利用的影响. 麦类作物学报, 2020, 40(3): 334-342.
WU Q, ZHANG Y P, DONG Y X, GAO F Y, XIE M. Effect of nitrogen application rates and irrigation modes on yield, nitrogen use efficiency and quality in wheat. Journal of Triticeae Crops, 2020, 40(3): 334-342. (in Chinese)
[21]
李武超, 李磊, 王炜, 李晶晶, 尹钧. 小麦水氮耦合效应与水肥高效利用研究. 华北农学报, 2018, 33(5): 232-238.

doi: 10.7668/hbnxb.2018.05.032
LI W C, LI L, WANG W, LI J J, YIN J. Studies on the efficient utilization and coupling effect of nitrogen-water in wheat. Acta Agriculturae Boreali-Sinica, 2018, 33(5): 232-238. (in Chinese)

doi: 10.7668/hbnxb.2018.05.032
[22]
唐锐, 韩宜秀, 易树生, 郑伟, 南小红, 罗鸿, 温晓荣, 翟丙年. 不同水氮组合对冬小麦产量及水氮利用效率的调控效应. 植物营养与肥料学报, 2023, 29(10): 1944-1955.
TANG R, HAN Y X, YI S S, ZHENG W, NAN X H, LUO H, WEN X R, ZHAI B N. Optimal water and nitrogen rate combination for winter wheat yield and water-nitrogen efficiency in Guanzhong area of Shaanxi. Journal of Plant Nutrition and Fertilizers, 2023, 29(10): 1944-1955. (in Chinese)
[23]
赵广才, 常旭虹, 刘利华, 杨玉双, 池忠志, 杨丽珍, 李振华. 施氮量对不同强筋小麦产量和加工品质的影响. 作物学报, 2006, 32(5): 723-727.
ZHAO G C, CHANG X H, LIU L H, YANG Y S, CHI Z Z, YANG L Z, LI Z H. Effect of nitrogen application on grain yield and processing quality in different strong gluten wheats. Acta Agronomica Sinica, 2006, 32(5): 723-727. (in Chinese)
[24]
王海泽, 刘志萍, 巴图, 马宇, 吕二锁, 郭呈宇, 李建波, 王文迪, 王金波, 齐海祥, 徐寿军. 不同施氮水平下大麦可溶性糖与淀粉积累的关系. 西南农业学报, 2022, 35(2): 319-328.
WANG H Z, LIU Z P, BA T, MA Y, E S, GUO C Y, LI J B, WANG W D, WANG J B, QI H X, XU S J. Relationship between soluble sugar and starch accumulation in barley at different nitrogen application levels. Southwest China Journal of Agricultural Sciences, 2022, 35(2): 319-328. (in Chinese)
[25]
邓丽娟, 焦小强. 氮管理对冬小麦产量和品质影响的整合分析. 中国农业科学, 2021, 54(11): 2355-2365. doi: 10.3864/j.issn.0578-1752.2021.11.009.
DENG L J, JIAO X Q. A meta-analysis of effects of nitrogen management on winter wheat yield and quality. Scientia Agricultura Sinica, 2021, 54(11): 2355-2365. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.11.009
[26]
姜东燕, 于振文. 土壤水分对小麦产量和品质的影响. 核农学报, 2007, 21(6): 641-645.
JIANG D Y, YU Z W. Effects of soil water on yield and grain quality of wheat. Journal of Nuclear Agricultural Sciences, 2007, 21(6): 641-645. (in Chinese)
[27]
蔡文璐, 李可, 简超群, 郑路敏, 唐树鹏, 徐云姬. 施氮量对小麦籽粒淀粉粒的效应. 麦类作物学报, 2022, 42(7): 815-825.
CAI W L, LI K, JIAN C Q, ZHENG L M, TANG S P, XU Y J. Effect of nitrogen rates on the starch granule size distribution in wheat kernels. Journal of Triticeae Crops, 2022, 42(7): 815-825. (in Chinese)
[28]
周栋, 于琦, 李敖, 李军. 施氮量对渭北旱地冬小麦产量和籽粒品质的影响. 麦类作物学报, 2020, 40(7): 818-825.
ZHOU D, YU Q, LI A, LI J. Effect of nitrogen application rate on winter wheat yield and grain quality in Weibei dryland. Journal of Triticeae Crops, 2020, 40(7): 818-825. (in Chinese)
[29]
张丽霞, 尹钧, 武继承, 杨永辉, 潘晓莹. 滴灌水肥一体化对小麦产量和品质及水肥利用的影响. 河南农业大学学报, 2021, 55(2): 206-213.
ZHANG L X, YIN J, WU J C, YANG Y H, PAN X Y. Effects of drip fertigation on wheat yield, grain quality and water-fertilizer use efficiency. Journal of Henan Agricultural University, 2021, 55(2): 206-213. (in Chinese)
[30]
李前荣, 张东海, 崔凤娟, 陶媛, 徐建伟, 陈小龙, 曹彦龙, 李召锋. 宁夏引黄灌区春小麦抗倒性研究. 麦类作物学报, 2022, 42(12): 1457-1463.
LI Q R, ZHANG D H, CUI F J, TAO Y, XU J W, CHEN X L, CAO Y L, LI Z F. Research on lodging resistance of spring wheat in Yellow River irrigation area of Ningxia. Journal of Triticeae Crops, 2022, 42(12): 1457-1463. (in Chinese)
[31]
陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011, 44(17): 3529-3536.

doi: 10.3864/j.issn.0578-1752.2011.17.005
CHEN X G, SHI Y H, WANG C Y, YIN Y P, NING T Y, SHI C Y, LI Y, WANG Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Scientia Agricultura Sinica, 2011, 44(17): 3529-3536. (in Chinese)
[32]
王振昌, 程鑫鑫, 谢毅, 洪成, 胡萌, 高云, 游佳明, 何雅婷, 刘金晶, 肖冰琦, 郭相平. 不同水肥模式对籼稻和粳稻抗倒伏性能的影响. 农业工程学报, 2022, 38(9): 108-118.
WANG Z C, CHENG X X, XIE Y, HONG C, HU M, GAO Y, YOU J M, HE Y T, LIU J J, XIAO B Q, GUO X P. Effects of different water and fertilizer use patterns on the lodging resistances of indica and japonica rice. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 108-118. (in Chinese)
[33]
彭世彰, 张正良, 庞桂斌. 控制灌溉条件下寒区水稻茎秆抗倒伏力学评价及成因分析. 农业工程学报, 2009, 25(1): 6-10.
PENG S Z, ZHANG Z L, PANG G B. Mechanical evaluation and cause analysis of rice-stem lodging resistance under controlled irrigation in cold region. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1): 6-10. (in Chinese)
[34]
樊高琼, 李金刚, 王秀芳, 郑亭, 郭翔, 陈溢, 吴中伟, 杨文钰. 氮肥和种植密度对带状种植小麦抗倒能力的影响及边际效应. 作物学报, 2012, 38(7): 1307-1317.
FAN G Q, LI J G, WANG X F, ZHENG T, GUO X, CHEN Y, WU Z W, YANG W Y. Lodging resistance of winter wheat in response to nitrogen and planting density and border effect under relay intercropping condition. Acta Agronomica Sinica, 2012, 38(7): 1307-1317. (in Chinese)
[35]
梁玉超, 张永强, 石书兵, 陈兴武, 赛力汗·赛, 薛丽华, 雷钧杰. 施氮量对滴灌冬小麦茎部特征及其抗倒伏性的影响. 麦类作物学报, 2017, 37(11): 1467-1472.
LIANG Y C, ZHANG Y Q, SHI S B, CHEN X W, SAI LIHAN, XUE L H, LEI J J. Effect of nitrogen fertilizer rate on stem morphology characteristics and lodging resistance in winter wheat with drip irrigation. Journal of Triticeae Crops, 2017, 37(11): 1467-1472. (in Chinese)
[36]
潘俊峰, 李国辉, 崔克辉. 水稻茎鞘非结构性碳水化合物再分配及其在稳产和抗逆中的作用. 中国水稻科学, 2014, 28(4): 335-342.
PAN J F, LI G H, CUI K H. Re-partitioning of non-structural carbohydrates in rice stems and their roles in yield stability and stress tolerance. Chinese Journal of Rice Science, 2014, 28(4): 335-342. (in Chinese)
[37]
MURTHYÂ B N, RAOÂ M V. Evolving suitable index for lodging resistance in barley. Indian Journal of Genetics and Plant Breeding, 1980, 40(1): 253-261.
[38]
WIERSMA D W, OPLINGER E S, GUY S O. Environment and cultivar effects on winter wheat response to ethephon plant growth regulator. Agronomy Journal, 1986, 78(5): 761-764.
[39]
肖世和, 张秀英, 闫长生, 张文祥, 海林, 郭会君. 小麦茎秆强度的鉴定方法研究. 中国农业科学, 2002, 35(1): 7-11.
XIAO S H, ZHANG X Y, YAN C S, ZHANG W X, HAI L, GUO H J. Determination of resistance to lodging by stem strength in wheat. Scientia Agricultura Sinica, 2002, 35(1): 7-11. (in Chinese)
[40]
刘佳敏, 汪洋, 牛金璨, 张志如, 刘志彬, 朱秋会, 叶优良, 黄玉芳. 不同施氮水平下增密对玉米产量及抗倒伏性状的影响. 农学学报, 2021, 11(2): 23-29.

doi: 10.11923/j.issn.2095-4050.cjas20191200296
LIU J M, WANG Y, NIU J C, ZHANG Z R, LIU Z B, ZHU Q H, YE Y L, HUANG Y F. Effects of densification on corn yield and lodging resistance under different nitrogen levels. Journal of Agriculture, 2021, 11(2): 23-29. (in Chinese)

doi: 10.11923/j.issn.2095-4050.cjas20191200296
[41]
高如嵩, 孙鹏举, 李文瑞. 高产大麦品种抗倒伏性的研究. 陕西农业科学, 1990, 36(1): 5-7, 49.
GAO R S, SUN P J, LI W R. Study on lodging resistance of high yield barley varieties. Shaanxi Journal of Agricultural Sciences, 1990, 36(1): 5-7, 49. (in Chinese)
[42]
张经廷, 陈青云, 吕丽华, 李谦, 梁双波, 贾秀领. 夏玉米产量及茎秆抗倒伏性状对不同肥料滴灌配施的响应. 华北农学报, 2015, 30(6): 209-215.
ZHANG J T, CHEN Q Y, L H, LI Q, LIANG S B, JIA X L. Yield and stem lodging resistance characteristics response of summer maize to combined application of different fertilizers through drip irrigation. Acta Agriculturae Boreali-Sinica, 2015, 30(6): 209-215. (in Chinese)

doi: 10.7668/hbnxb.2015.06.032
[43]
郭相平, 黄双双, 王振昌, 王甫, 陈斌. 不同灌溉模式对水稻抗倒伏能力影响的试验研究. 灌溉排水学报, 2017, 36(5): 1-5.
GUO X P, HUANG S S, WANG Z C, WANG F, CHEN B. Impact of different irrigation methods on resistance of rice against bending and breaking. Journal of Irrigation and Drainage, 2017, 36(5): 1-5. (in Chinese)
[44]
佟桐, 李彩凤, 顾万荣, 王明泉, 张立国, 刘笑鸣, 王彬, 赵猛. 氮肥和密度对黑龙江春玉米物质积累、抗倒伏及产量的影响. 西北农业学报, 2019, 28(3): 377-387.
TONG T, LI C F, GU W R, WANG M Q, ZHANG L G, LIU X M, WANG B, ZHAO M. Effects of nitrogen fertilizer and planting density on dry matter accumulation, lodging resistance and yield of spring maize in Heilongjiang Province. Acta Agriculturae Boreali- Occidentalis Sinica, 2019, 28(3): 377-387. (in Chinese)
[45]
魏鹏, 邵庆勤, 闫素辉. 不同抗倒类型小麦植株节间性状与抗倒能力的氮肥调控效应. 湖南农业大学学报(自然科学版), 2021, 47(6): 622-629.
WEI P, SHAO Q Q, YAN S H. Effects of nitrogen on basal internode traits and lodging resistance of different wheat plant. Journal of Hunan Agricultural University (Natural Sciences), 2021, 47(6): 622-629. (in Chinese)
[1] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[2] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[3] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[4] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[5] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[6] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[7] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[8] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[9] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[10] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[11] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[12] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[13] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[14] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[15] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!