Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (13): 2497-2508.doi: 10.3864/j.issn.0578-1752.2024.13.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of Heterosis and Combining Ability of Lodging Resistance Traits of Spring Wheat Varieties (Lines) in the Ningxia Yellow River Irrigation Area

SUN WeiHao1,2(), LIU Ting3, SANG YiNan2, YANG ZhengWei4, ZHANG GaiSheng2, SONG YuLong2(), ZHANG ShuangXi1()   

  1. 1 Institute of Crop Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002
    2 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
    3 College of Agronomy, Ningxia University, Yinchuan 750021
    4 Ordos Agriculture and Animal Husbandry Technology Extension Center, Ordos 017200, Inner Mongolia
  • Received:2023-12-23 Accepted:2024-02-29 Online:2024-07-09 Published:2024-07-09
  • Contact: SONG YuLong, ZHANG ShuangXi

Abstract:

【Objective】 The essence of conventional wheat breeding involves the continuous multi-generation selection and maintenance of hybrid F1 trait heterosis. Exploring the heterosis and combining ability of lodging-related traits among spring wheat varieties (lines) in the Yellow River irrigation area of Ningxia, and clarifying significantly agronomic indexes related to anti-lodging traits in wheat that can provide a certain theoretical basis for utilizing heterosis in lodging traits of spring wheat, and for the screening and maintenance of its descendants in Ningxia.【Method】 This study utilized 14 spring wheat varieties (lines) from Ningxia Yellow River Irrigation Area as parent materials. According to NCⅡ incomplete diallel crossbreeding design, forty-five combinations were produced. Meanwhile, heterosis, combining ability, and correlation analyses were performed on 13 traits related to lodging resistance, such as plant height and culm type index, in their parents and their F1 generation.【Result】 Significant differences in lodging resistance trait were observed among different spring wheat varieties (lines). Meanwhile, there is a certain level of heterosis in lodging resistance traits was evident in the F1 generation. The main stem thrust resistance of NZ42, M6445, and M8887 showed high general combining ability (GCA) values of 11.68, 8.00, and 10.67 respectively. Significant combinations for main stem thrust resistance included M6445×M8887, M6445×MJ48, NZ42×N2038, NZ42×M7723, NZ42×NZ39, and H3015×Ningchun50. Correlation analysis revealed that plant height was significantly positively correlated with the first internode length and second internode weight, and highly significantly positively correlated with the second and fourth internode lengths. Besides, the main stem thrust resistance was highly significantly positively correlated with fresh weight of the main stem, stem diameter, bending moment and culm type index, but significantly negatively correlated with the fourth internode length. However, it was not significantly correlated with the second internode weight and fullness.【Conclusion】 The excellent parent varieties identified were NZ42, M6445, and M8887. Meanwhile, the excellent combinations of NZ42 × NZ39, M6445 × MJ48, and M6445 × M8887 were also observed in this study. In addition, Heterosis was present among most lodging resistance traits in different combinations, but the heterobeltiosis was less pronounced. The resistance to lodging was influenced by both additive and non-additive effects of parental genes, with a greater influence from the maternal genetic background. Furthermore, the plant height and main stem thrust resistance are significantly correlated with the fourth internode length, bending moment, and culm type index, serving as important references for selection of lodging-resistant generations.

Key words: spring wheat, lodging resistance, heterosis, combining ability, correlation

Table 1

Characteristics of descriptive statistics for lodging resistance traits of tested combinations F1"

性状 Characters 均值 Mean 变异系数 CV (%)
株高PH (cm) 73.00 6.43
穗长SL (cm) 11.52 12.87
第一节间长 FIL (cm) 3.52 48.81
第二节间长 SIL (cm) 8.54 19.56
第三节间长 TIL (cm) 20.52 187.77
第四节间长 FOIL (cm) 30.29 10.97
主茎抗推力 MSTR (kPa/stem) 8.84 29.13
第二节重 SIW (g) 0.25 23.99
第二节间充实度 SIF (mg·cm-1) 30.75 37.30
主茎鲜重 FWMS (g) 9.87 17.57
茎粗 SD (mm) 4.05 9.28
弯曲力矩 BM (g·cm) 749.35 18.36
秆型指数 CTI (%) 63.62 14.01

Table 2

Variance analysis of lodging resistance traits of tested combinations F1"

性状 Characters 组合均方 Mean square cross 误差均方 Mean square error FF value
株高PH (cm) 45.49 16.02 2.84**
穗长SL (cm) 3.25 2.09 1.56*
第一节间长FIL (cm) 4.84 2.73 1.77**
第二节间长SIL (cm) 9.64 2.01 4.79**
第三节间长TIL (cm) 1470.00 1486.37 0.99
第四节间长FOIL (cm) 37.26 8.07 4.62**
主茎抗推力MSTR (kPa/stem) 14.57 4.70 3.10**
第二节重SIW (g) 0.01 0.002 4.44**
第二节间充实度SIF (mg·cm-1) 594.63 79.18 7.51**
主茎鲜重FWMS (g) 7.40 1.94 3.82**
茎粗SD (mm) 0.33 0.09 3.50**
弯曲力矩BM (g·cm) 39897.53 13791.62 2.89**
秆型指数CTI (%) 0.02 0.01 3.80**

Table 3

Analysis of heterosis of lodging resistance traits of tested combinations F1"

性状
Characters
中亲优势 Mid-parent heterosis 超亲优势 Heterobeltiosis
均值
Mean
变化范围
Range
正向组合率
Positive rate (%)
均值
Mean
变化范围
Range
正向组合率
Positive rate (%)
株高PH -0.79 -5.63-4.81 33.33 -4.13 -17.36-2.53 8.89
穗长SL 0.04 -9.69-8.98 62.22 -2.76 -12.77-7.85 28.89
第一节间长FIL -7.76 -46.71-32.02 33.33 -16.54 -50.00-20.51 13.33
第二节间长SIL -1.63 -21.24-2.04 33.33 -7.86 -54.28-16.58 13.33
第四节间长FOIL -0.67 -9.73-7.05 48.89 -4.23 -14.17-6.73 13.33
主茎抗推力MSTR -4.93 -46.59-29.16 31.11 -16.14 -58.21-14.32 13.33
第二节重SIW -3.02 -30.34-28.73 37.78 -9.21 -39.35-26.3 28.89
第二节间充实度SIF 0.24 -25.50-23.93 51.11 -6.69 -31.96-18.11 31.11
主茎鲜重FWMS -2.66 -25.90-16.58 40.00 -12.79 -36.19-7.25 8.89
茎粗SD -3.38 -12.60-5.13 24.44 -7.39 -15.26-3.39 8.89
弯曲力矩BM -3.54 -23.59-17.54 35.56 -14.53 -35.99-3.10 11.11
秆型指数CTI -3.29 -20.35-11.40 26.67 -9.23 -32.38-8.23 15.56

Table 4

Combining ability variance analysis of lodging resistance traits of tested combinations"

性状
Characters
一般配合力(父本)
GCA (male)
一般配合力(母本)
GCA (femal)
特殊配合力(母本×父本)
SCA (femal×male)
MS F MS F MS F
株高PH (cm) 477.62 44.94** 196.77 18.51** 30.47 2.87**
穗长SL (cm) 5.08 2.44* 12.37 5.93** 1.65 0.79
第一节间长FIL (cm) 6.16 2.26* 11.50 4.22** 3.68 1.35
第二节间长SIL (cm) 23.24 11.56** 8.07 4.01** 6.44 3.20**
第四节间长FOIL (cm) 96.27 11.93** 151.39 18.76** 8.24 1.02
主茎抗推力MSTR (kPa/stem) 9.58 2.04* 70.72 15.05** 8.79 1.87**
第二节重SIW (g) 0.01 3.54** 0.04 15.30** 0.01 3.31**
第二节间充实度SIF (mg·cm-1) 534.45 6.75** 982.76 12.41** 561.16 7.09**
主茎鲜重FWMS (g) 13.42 6.93** 33.40 17.26** 2.65 1.37
茎粗SD (mm) 0.26 2.74** 2.01 21.21** 0.14 1.48
弯曲力矩BM (g·cm) 65344.53 4.74** 183373.08 13.30** 15601.34 1.13
秆型指数CTI (%) 0.03 6.00** 0.09 16.92** 0.01 1.61*

Table 5

General combining ability effects of wheat cultivars"

亲本
Parent
株高
PH
(cm)
穗长
SL
(cm)
第一节
间长
FIL
(cm)
第二节
间长
SIL
(cm)
第四节
间长
FOIL
(cm)
主茎
抗推力
MSTR
(kPa/stem)
第二节重
SIW
(g)
第二节间充实度
SIF
(mg·cm-1)
主茎
鲜重
FWMS
(g)
茎粗
SD
(mm)
弯曲
力矩
BM
(g·cm)
秆型
指数
CTI
(%)
M6445 1.25 1.18 8.08 -0.77 -4.62 8.00 6.06 -5.28 12.17 6.26 13.28 4.85
NZ42 -1.19 2.91 1.58 -1.61 0.04 11.68 -2.49 -8.78 -0.02 2.06 -1.41 3.76
H3015 1.81 2.86 6.20 -0.27 5.71 0.96 9.05 2.95 -6.54 -3.37 -4.63 -7.85
宁春55号
Ningchun55
-2.19 -3.89 -18.05 -3.19 -4.01 3.63 8.14 11.36 4.21 1.98 2.05 4.56
ZM604 0.30 -2.87 2.84 5.87 2.80 -24.27 -8.64 -0.25 -9.78 -7.02 -9.29 -8.35
N2038 4.40 0.52 -9.09 1.10 6.71 -0.51 -6.17 0.23 -1.86 -1.38 2.57 -6.94
永3602
Yong3602
1.00 -0.52 2.27 6.27 1.29 -14.42 1.27 -8.53 -11.14 -3.90 -10.26 -5.08
PJ627 2.45 -3.73 25.38 3.93 2.63 -2.12 1.12 -0.26 -3.12 -0.89 -0.74 -4.63
宁春50号
Ningchun50
2.42 -1.82 -5.58 3.96 5.18 5.61 -8.07 -4.73 -2.13 1.33 0.43 -1.94
M8887 -0.55 0.78 -4.37 2.11 -1.47 10.67 6.17 10.60 6.46 2.32 5.86 3.31
M7723 0.45 2.69 2.81 5.62 0.27 -4.83 -6.46 -4.40 -8.39 -3.16 -8.11 -4.73
永08选-1
Yong 08 xuan-1
-1.61 1.65 -2.92 -2.13 -4.93 1.51 39.76 2.63 10.60 3.26 8.93 1.02
MJ48 -1.34 -3.65 -6.29 -0.84 -2.00 2.38 15.01 2.57 8.49 2.42 6.94 3.78
NZ39 -7.27 4.43 -1.03 -19.98 -7.79 1.70 -20.82 1.88 1.16 -0.20 -5.63 9.77

Table 6

The specific combining ability of 45 wheat crosses in main stem resistance to mechanical stress"

父本
Male parent
母本 Female parent
M6445 NZ42 H3015 宁春55号 Ningchun55 ZM604
N2038 -23.69 15.66 10.75 -6.90 4.17
永3602 Yong3602 -12.31 1.96 10.35 2.05 -2.05
PJ627 5.17 -4.78 -2.27 0.38 1.50
宁春50号 Ningchun50 -16.19 -27.11 16.87 9.12 17.32
M8887 19.29 -12.72 -10.15 2.79 0.78
M7723 -3.16 13.45 -1.16 -9.91 0.78
永08选-1 Yong 08 xuan-1 8.96 -20.41 -7.41 4.55 14.32
MJ48 20.25 7.80 -2.79 6.33 -31.58
NZ39 1.69 26.14 -14.18 -8.41 -5.25

Table 7

The SCA and main stem thrust resistance of 8 higher and 8 lower heterosis combinations"

强优势组合 Strong heterosis combinations 弱优势组合 Weak heterosis combinations
组合
Combinations
主茎抗推力
MSTR
(kPa/stem)
特殊
配合力SCA
一般
配合力GCA
父母本一般
配合力之和
Sum of GCA
组合
Combinations
主茎抗推力MSTR
(kPa/stem)
特殊
配合力
SCA
一般
配合力
GCA
父母本一般
配合力之和
Sum of GCA
M6445×M8887 12.20 19.29 8.00
10.67
18.67 ZM604×MJ48 4.12 -31.58 -24.27
2.38
-21.89
ZM604×宁春50号
ZM604×Ningchun50
8.73 17.32 -24.27
5.61
-18.66 NZ42×永08选-1
NZ42×Yong 08 xuan-1
8.21 -20.41 11.68
1.51
13.19
H3015×宁春50号
H3015×Ningchun50
10.92 16.87 0.96
5.61
6.57 NZ42×宁春50号
NZ42×Ningchun50
7.98 -27.11 11.68
5.61
17.29
NZ42×NZ39 12.34 26.14 11.68
1.70
13.38 M6445×N2038 7.41 -23.69 8.00
-0.51
7.49
M6445×MJ48 11.55 20.25 8.00
2.38
10.38 M6445×永3602
M6445×Yong3602
7.19 -12.31 8.00
-14.42
-6.42
宁春55号×M8887
Ningchun50×M8887
10.36 2.79 3.63
10.67
14.30 ZM604×永3602
ZM604×Yong3602
5.24 -2.05 -24.27
-14.42
-38.69
ZM604×M8887 7.71 0.78 -24.27
10.67
-13.60 宁春55号×M7723
Ningchun55×M7723
7.86 -9.91 3.63
-4.83
-1.20
宁春55号×宁春50号
Ningchun55×Ningchun50
10.47 9.12 3.63
5.61
9.24 NZ42×PJ627 9.27 -4.78 11.68
-2.12
9.56

Table 8

Correlation analysis of various traits with PH and MSTR"

性状
Characters
株高
PH (cm)
主茎抗推力
MSTR (kPa/stem)
穗长SL (cm) -0.2242 0.1882
第一节间长FIL (cm) 0.3241* -0.0027
第二节间长SIL (cm) 0.6445** -0.0204
第三节间长TIL (cm) 0.0193 0.2291
第四节间长FIL (cm) 0.6372** -0.2812*
第二节重SIW (g) 0.3138* -0.0105
第二节间充实度SIF (mg·cm-1) -0.2182 -0.0270
主茎鲜重FWMS (g) -0.1729 0.6978**
茎粗SD (mm) -0.2067 0.6851**
弯曲力矩BM (g·cm) 0.1065** 0.6655**
秆型指数CTI (%) -0.6506** 0.4740**
[1]
张志伟, 魏秀华, 于海涛, 宋顺, 张桂珍, 刘亚男, 邢利庆. 小麦抗倒伏研究进展. 安徽农业科学, 2021, 49(19): 21-23.
ZHANG Z W, WEI X H, YU H T, SONG S, ZHANG G Z, LIU Y N, XING L Q. Research progress on lodging resistance of wheat. Journal of Anhui Agricultural Sciences, 2021, 49(19): 21-23. (in Chinese)
[2]
赵富林, 黄玉芳, 叶优良, 汪洋. 氮肥用量对黄淮海主栽小麦品种倒伏和产量的影响. 种业导刊, 2023(4): 11-16.
ZHAO F L, HUANG Y F, YE Y L, WANG Y. Effect of nitrogen rate on lodging and grain yield of main wheat cultivars in Huang-Huai-Hai region. Journal of Seed Industry Guide, 2023(4): 11-16. (in Chinese)
[3]
郑东生, 牛建军, 陈文. 大风对宁夏原州区设施农业的影响分析. 农业灾害研究, 2016, 6(3): 27-28.
ZHENG D S, NIU J J, CHEN W. Impact analysis of wind on facility agriculture in Yuanzhou district. Journal of Agricultural Catastrophology, 2016, 6(3): 27-28. (in Chinese)
[4]
何进尚, 张维军, 时项锋, 王小亮, 亢玲, 陈东升, 袁汉民. 2004—2016年宁夏小麦播种面积及产量变化趋势分析. 甘肃农业科技, 2020(S1): 38-45.
HE J S, ZHANG W J, SHI X F, WANG X L, KANG L, CHEN D S, YUAN H M. Analysis on variation trend of wheat planting area and yield in Ningxia from 2004 to 2016. Gansu Agricultural Science and Technology, 2020(S1): 38-45. (in Chinese)
[5]
吴立国, 陶媛, 潘静, 赵清, 李前荣, 陈小龙. 宁夏春小麦品种(品系)农艺性状遗传多样性分析. 现代农业科技, 2023(18): 1-4.
WU L G, TAO Y, PAN J, ZHAO Q, LI Q R, CHEN X L. Genetic diversity analysis on agronomic traits of spring wheat varieties (strains) in Ningxia. Modern Agricultural Science and Technology, 2023(18): 1-4. (in Chinese)
[6]
李宏, 陈卫国, 杨进文, 李友莲. 不同施肥方式对小麦倒伏性状的影响. 山西农业大学学报(自然科学版), 2021, 41(5): 35-42.
LI H, CHEN W G, YANG J W, LI Y L. Effects of different fertilization methods on lodging characters of wheat. Journal of Shanxi Agricultural University (Natural Science Edition), 2021, 41(5): 35-42. (in Chinese)
[7]
喇永昌, 李丽平, 张磊. 宁夏灌区春小麦干热风灾害的时空特征. 麦类作物学报, 2016, 36(4): 516-522.
LA Y C, LI L P, ZHANG L. Spatial and temporal characteristics of dry-hot wind disaster for spring wheat in the irrigated areas of Ningxia. Journal of Triticeae Crops, 2016, 36(4): 516-522. (in Chinese)
[8]
李鑫龙, 谭军利, 董立霞, 王西娜. 宁夏春小麦干热风变化特征与影响因素分析及预测. 干旱地区农业研究, 2023, 41(5): 283-292.
LI X L, TAN J L, DONG L X, WANG X N. Analysis and prediction of influencing factors of spring wheat dry-hot wind disaster in Ningxia Hui Autonomous Region. Agricultural Research in the Arid Areas, 2023, 41(5): 283-292. (in Chinese)
[9]
卢杰, 董连生, 常成, 司红起, 马传喜. 种植密度对不同小麦品种产量构成及抗倒伏性的影响. 麦类作物学报, 2021, 41(1): 81-87.
LU J, DONG L S, CHANG C, SI H Q, MA C X. Effect of planting density on yield composition and lodging resistance of different wheat varieties. Journal of Triticeae Crops, 2021, 41(1): 81-87. (in Chinese)
[10]
邵庆勤, 周琴, 王笑, 蔡剑, 黄梅, 戴廷波, 姜东. 种植密度对不同小麦品种茎秆形态特征、化学成分及抗倒性能的影响. 南京农业大学学报, 2018, 41(5): 808-816.
SHAO Q Q, ZHOU Q, WANG X, CAI J, HUANG M, DAI T B, JIANG D. Effects of planting density on stem morphological characteristics, chemical composition and lodging resistance of different wheat varieties. Journal of Nanjing Agricultural University, 2018, 41(5): 808-816. (in Chinese)
[11]
李前荣, 张东海, 崔凤娟, 陶媛, 徐建伟, 陈小龙, 曹彦龙, 李召锋. 宁夏引黄灌区春小麦抗倒性研究. 麦类作物学报, 2022, 42(12): 1457-1463.
LI Q R, ZHANG D H, CUI F J, TAO Y, XU J W, CHEN X L, CAO Y L, LI Z F. Research on lodging resistance of spring wheat in Yellow River irrigation area of Ningxia. Journal of Triticeae Crops, 2022, 42(12): 1457-1463. (in Chinese)
[12]
PINTHUS M J. Lodging in wheat, barley, and oats: The phenomenon, its causes, and preventive measures. Advances in Agronomy, 1974, 25: 209-263.
[13]
孟令志, 郭宪瑞, 刘宏伟, 杨丽, 买春艳, 于立强, 周阳, 张宏军. 小麦抗倒性研究进展. 麦类作物学报, 2014, 34(12): 1720-1727.
MENG L Z, GUO X R, LIU H W, YANG L, MAI C Y, YU L Q, ZHOU Y, ZHANG H J. Research progress on lodging resistance of wheat. Journal of Triticeae Crops, 2014, 34(12): 1720-1727. (in Chinese)
[14]
PENG D L, CHEN X G, YIN Y P, LU K L, YANG W B, TANG Y H, WANG Z L. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Research, 2014, 157: 1-7.
[15]
孙盈盈, 王超, 王瑞霞, 牟秋焕, 米勇, 吕广德, 亓晓蕾, 孙宪印, 陈永军, 钱兆国, 吴科. 小麦倒伏原因、机理及其对产量和品质影响研究进展. 农学学报, 2022, 12(3): 1-5.

doi: 10.11923/j.issn.2095-4050.cjas2020-0043
SUN Y Y, WANG C, WANG R X, MU Q H, MI Y, G D, QI X L, SUN X Y, CHEN Y J, QIAN Z G, WU K. Wheat lodging: Cause and mechanism and its effect on wheat yield and quality. Journal of Agriculture, 2022, 12(3): 1-5. (in Chinese)

doi: 10.11923/j.issn.2095-4050.cjas2020-0043
[16]
刘庆芳, 苏玉环, 马永安, 陈冬梅, 刘保华, 李小康, 王雪香, 张清华. 不同小麦品种的茎秆特性与抗倒性. 贵州农业科学, 2022, 50(5): 48-54.
LIU Q F, SU Y H, MA Y A, CHEN D M, LIU B H, LI X K, WANG X X, ZHANG Q H. Study on the stem characteristics and lodging resistance of different wheat varieties. Guizhou Agricultural Sciences, 2022, 50(5): 48-54. (in Chinese)
[17]
苏玉环, 陈冬梅, 刘保华, 马永安, 王雪香. 黄淮北部麦区主推小麦品种茎秆抗倒性能分析. 河北农业科学, 2018, 22(2): 23-26, 31.
SU Y H, CHEN D M, LIU B H, MA Y A, WANG X X. Analysis of stalk lodging resistance of mainly promoted wheat varieties in North Huanghuai region. Journal of Hebei Agricultural Sciences, 2018, 22(2): 23-26, 31. (in Chinese)
[18]
胡昊, 李莎莎, 华慧, 孙蒙蒙, 康娟, 夏国军, 王晨阳. 不同小麦品种主茎茎秆形态结构特征及其与倒伏的关系. 麦类作物学报, 2017, 37(10): 1343-1348.
HU H, LI S S, HUA H, SUN M M, KANG J, XIA G J, WANG C Y. Research on stalk morphological structure characteristics and its relationship between with the lodging of different wheat varieties. Journal of Triticeae Crops, 2017, 37(10): 1343-1348. (in Chinese)
[19]
贺洁, 孙少光, 葛昌斌, 宋丹阳, 乔冀良, 李锁平, 苏亚蕊, 廖平安. 不同小麦品种(系)茎秆显微结构、生化组分与茎秆强度的关系. 华北农学报, 2022, 37(1): 68-76.

doi: 10.7668/hbnxb.20192493
HE J, SUN S G, GE C B, SONG D Y, QIAO J L, LI S P, SU Y R, LIAO P A. Relationship between stem microstructure, biochemical composition and stem strength of different wheat varieties (lines). Acta Agriculturae Boreali-Sinica, 2022, 37(1): 68-76. (in Chinese)
[20]
袁雅妮, 闫素辉, 刘良柏, 王平信, 邵庆勤, 张从宇, 李文阳. 播期和种植密度对小麦基部节间性状与抗倒指数的影响. 聊城大学学报(自然科学版), 2021, 34(4): 88-94, 110.
YUAN Y N, YAN S H, LIU L B, WANG P X, SHAO Q Q, ZHANG C Y, LI W Y. Effect of planting density and sowing date on characteristics of basal internode and lodging resistance in wheat. Journal of Liaocheng University (Natural Science Edition), 2021, 34(4): 88-94, 110. (in Chinese)
[21]
牟海萌, 孙丽芳, 王壮壮, 王宇, 宋一凡, 张荣, 段剑钊, 谢迎新, 康国章, 王永华, 郭天财. 施氮量和种植密度对两冬小麦品种抗倒性能和籽粒产量的影响. 中国农业科学, 2023, 56(15): 2863-2879. doi: 10.3864/j.issn.0578-1752.2023.15.003.
MU H M, SUN L F, WANG Z Z, WANG Y, SONG Y F, ZHANG R, DUAN J Z, XIE Y X, KANG G Z, WANG Y H, GUO T C. Effect of nitrogen application rate and planting density on the lodging resistance and grain yield of two winter wheat varieties. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879. doi: 10.3864/j.issn.0578-1752.2023.15.003. (in Chinese)
[22]
张凡, 周其军, 薛鑫, 韩勇, 宋志均, 牛昱红, 贠超, 杨春玲. 种植密度对小麦干物质累积分配与抗倒性能的影响及其与产量形成的关系. 江苏农业科学, 2023, 51(11): 60-67.
ZHANG F, ZHOU Q J, XUE X, HAN Y, SONG Z J, NIU Y H, YUN C, YANG C L. Effects of planting density on dry matter accumulation and distribution and lodging resistance of wheat and its relationship with yield formation. Jiangsu Agricultural Sciences, 2023, 51(11): 60-67. (in Chinese)
[23]
陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37(9): 1616-1622.
CHEN X G, SHI C Y, YIN Y P, WANG Z L, SHI Y H, PENG D L, NI Y L, CAI T. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agronomica Sinica, 2011, 37(9): 1616-1622. (in Chinese)
[24]
冯素伟, 姜小苓, 胡铁柱, 牛立元, 茹振钢, 李笑慧, 尹坤. 不同小麦品种茎秆显微结构与抗倒强度关系研究. 中国农学通报, 2012, 28(36): 57-62.
FENG S W, JIANG X L, HU T Z, NIU L Y, RU Z G, LI X H, YIN K. Study on relationship between the stem microstructure and lodging resistance with different wheat varieties. Chinese Agricultural Science Bulletin, 2012, 28(36): 57-62. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2012-0759
[25]
陈桂华, 邓化冰, 张桂莲, 唐文帮, 黄璜. 水稻茎秆性状与抗倒性的关系及配合力分析. 中国农业科学, 2016, 49(3): 407-417. doi: 10.3864/j.issn.0578-1752.2016.03.001.
CHEN G H, DENG H B, ZHANG G L, TANG W B, HUANG H. The correlation of stem characters and lodging resistance and combining ability analysis in rice. Scientia Agricultura Sinica, 2016, 49(3): 407-417. doi: 10.3864/j.issn.0578-1752.2016.03.001. (in Chinese)
[26]
刘佳欣, 吴周周, 周婵婵, 阿娜, 李漪濛, 王术. 水稻倒伏性状与抗倒途径研究进展. 中国稻米, 2023, 29(6): 44-48, 55.

doi: 10.3969/j.issn.1006-8082.2023.06.009
LIU J X, WU Z Z, ZHOU C C, E N, LI Y M, WANG S. Research progress of lodging characters and lodging resistance pathways in rice. China Rice, 2023, 29(6): 44-48, 55. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2023.06.009
[27]
GRIFFING B. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 1956, 9(4): 463.
[28]
史秀秀, 毕晓静, 马守才, 亓佳佳, 韩芳, 张改生, 牛娜. 黄淮麦区杂交小麦亲本的杂种优势和配合力分析. 麦类作物学报, 2013, 33(6): 1111-1118.
SHI X X, BI X J, MA S C, QI J J, HAN F, ZHANG G S, NIU N. Combining ability and heterosis in hybrid wheat of parents from Huang-Huai wheat production area. Journal of Triticeae Crops, 2013, 33(6): 1111-1118. (in Chinese)
[29]
逯腊虎, 张婷, 张伟, 袁凯, 史晓芳, 杨斌, 张建诚. 黄淮南部和黄淮北部麦区小麦品种间的杂种优势、配合力及遗传特性分析. 麦类作物学报, 2023, 43(3): 288-295.
LU L H, ZHANG T, ZHANG W, YUAN K, SHI X F, YANG B, ZHANG J C. Analysis of heterosis, combining ability, and hereditary characteristics between wheat varieties in north and south of Huang-Huai region. Journal of Triticeae Crops, 2023, 43(3): 288-295. (in Chinese)
[30]
陈向东, 吴晓军, 方方, 宋林通, 董娜, 胡铁柱, 茹振钢. 基于SNP遗传距离和配合力的小麦杂种优势预测. 科学通报, 2022, 67(26): 3221-3232.
CHEN X D, WU X J, FANG F, SONG L T, DONG N, HU T Z, RU Z G. Heterosis prediction of wheat based on SNP genetic distance and combining ability. Chinese Science Bulletin, 2022, 67(26): 3221-3232. (in Chinese).
[31]
邬相宏, 张杰, 江青山, 廖宗永, 包灵丰, 陈家彬, 姜方洪, 韩冬, 李恒进, 赵德明. 几个新选水稻不育系主要农艺性状的配合力及通径分析. 福建农业学报, 2023, 38(4): 401-409.
WU X H, ZHANG J, JIANG Q S, LIAO Z Y, BAO L F, CHEN J B, JIANG F H, HAN D, LI H J, ZHAO D M. Agronomic trait combining abilities and correlation with yield of new male sterile rice lines. Fujian Journal of Agricultural Sciences, 2023, 38(4): 401-409. (in Chinese)
[32]
MOHAN S, SHEEBA A. Heterosis and combining ability analysis for yield and yield related traits in greengram (Vigna radiata L.). Electronic Journal of Plant Breeding, 2019, 10(3): 1255.
[33]
刘增兵, 姜景彬, 杨欢欢, 姜秀明, 李景富. 植物杂种优势的研究进展. 分子植物育种, 2019, 17(12): 4127-4134.
LIU Z B, JIANG J B, YANG H H, JIANG X M, LI J F. Research advance of plant heterosis. Molecular Plant Breeding, 2019, 17(12): 4127-4134. (in Chinese)
[34]
王汉霞, 马巧云, 单福华, 田立平, 张风廷. 北部冬麦区杂交小麦亲本配合力及杂种优势分析. 麦类作物学报, 2021, 41(9): 1055-1062.
WANG H X, MA Q Y, SHAN F H, TIAN L P, ZHANG F T. Analysis of combining ability and heterosis of hybrid wheat parents in northern winter wheat region. Journal of Triticeae Crops, 2021, 41(9): 1055-1062. (in Chinese)
[35]
苏亚蕊, 孙少光, 刘浩婷, 郭春强, 曹燕燕, 黄杰, 王君, 张振永, 齐双丽, 廖平安. 不同小麦品种(系)抗倒伏性状多样性分析. 麦类作物学报, 2021, 41(10): 1238-1246.
SU Y R, SUN S G, LIU H T, GUO C Q, CAO Y Y, HUANG J, WANG J, ZHANG Z Y, QI S L, LIAO P A. Diversity of lodging resistance traits of different wheat varieties (lines). Journal of Triticeae Crops, 2021, 41(10): 1238-1246. (in Chinese)
[36]
胡卫国, 张玉娥, 赵虹, 王西成, 曹廷杰, 曹颖妮, 陈渝, 杨剑. 小麦抗倒性评价方法的比较分析. 西北农业学报, 2018, 27(12): 1780-1788.
HU W G, ZHANG Y E, ZHAO H, WANG X C, CAO T J, CAO Y N, CHEN Y, YANG J. Comparison and analysis of the methods for evaluating wheat lodging resistance. Acta Agriculturae Boreali- occidentalis Sinica, 2018, 27(12): 1780-1788. (in Chinese)
[37]
ZHOU C Y, XIONG H C, LI Y T, GUO H J, XIE Y D, ZHAO L S, GU J Y, ZHAO S R, DING Y P, SONG X Y, LIU L X. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 2020, 19(7): 1721-1730.
[38]
BERRY P M, KENDALL S, RUTTERFORD Z, ORFORD S, GRIFFITHS S. Historical analysis of the effects of breeding on the height of winter wheat (Triticum aestivum) and consequences for lodging. Euphytica, 2015, 203(2): 375-383.
[39]
ZHANG H J, LI T, LIU H W, MAI C Y, YU G J, LI H L, YU L Q, MENG L Z, JIAN D W, YANG L, LI H J, ZHOU Y. Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River Valleys Winter Wheat Zone in China since 1964. Journal of Integrative Agriculture, 2020, 19(2): 438-448.
[1] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[2] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[3] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
[4] GUO Jun, QU Liang, SHAO Dan, MA Meng, DOU TaoCun, LU Jian, HU YuPing, WANG XingGuo, WANG Qiang, LI YongFeng, GUO Wei, TONG HaiBing. Dissecting the Genetic Architecture of Yolk Ratio with Single-Step Genome-Wide Association Study [J]. Scientia Agricultura Sinica, 2024, 57(21): 4356-4366.
[5] LEI XinHui, WU YiXin, WANG JiaLe, TAO JinCai, WAN ChenXi, WANG Meng, GAO XiaoLi, FENG BaiLi, GAO JinFeng. Effects of Planting Density and Fertilization Level on Photosynthesis, Yield and Lodging Resistance of Common Buckwheat [J]. Scientia Agricultura Sinica, 2024, 57(2): 264-277.
[6] LI Hong, WANG XiNa, WEI GuangYuan, MA YongXin, TIAN HaiMei, WANG YueMei, QIAN ZhiJin, TAN JunLi. Effects of Water Saving and Nitrogen Reduction on Lodging Resistance and Grain Yield of Spring Wheat in the Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(17): 3424-3439.
[7] ZHU ChunTao, REN DanDan, LIU ZhengCen, LIU ChangChuang, LIU RuiQi, ZHENG HongJian, HU ErLiang, LIN HaiJian, LI JingWei, LU YanLi, WANG QingJun. Combining Ability Analysis on Quality Traits and Breeding Potential Evaluation of 23 Waxy Maize Lines from Laos [J]. Scientia Agricultura Sinica, 2024, 57(15): 2931-2945.
[8] ZHANG WuJun, DUAN XiuJian, LI MaoYu, LUO Xia, LIU QiangMing, TANG YongQun, LI JingYong, YAO Xiong. Effects of Foliar Application Uniconazole on Culm Morphological Characters, Anatomical Traits and Stem Lodging Resistance of Hybrid Indica Rice Under Low Light Stress [J]. Scientia Agricultura Sinica, 2024, 57(15): 2946-2963.
[9] ZHANG DianKai, LI Pan, FAN Hong, HE Wei, FAN ZhiLong, HU FaLong, SUN YaLi, TAN XiangNian, YIN Wen, CHEN GuiPing. Soil Water Use Characteristics of Spring Wheat with Multiple- Cropping Green Manure and Nitrogen Reduction in Northwest Irrigated Areas [J]. Scientia Agricultura Sinica, 2024, 57(11): 2189-2201.
[10] WANG RongRong, CHEN TianPeng, YIN HaoJie, JIANG GuiYing. Response and Drip Irrigation Re-Watering Compensation Effect of Spring Wheat Roots to Drought Stress with Different Drought Tolerance Varieties [J]. Scientia Agricultura Sinica, 2023, 56(24): 4826-4841.
[11] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[12] ZHANG KeNan, YIN HaiNing, WANG JiaKui, CAO JianHong, XI ZhuMei. Differences and Genesis of Grape Phenolic Compounds Among Different Altitudes in Yunnan Shangri-la [J]. Scientia Agricultura Sinica, 2023, 56(19): 3879-3893.
[13] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[14] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[15] CHEN GuiPing, CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen. Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions [J]. Scientia Agricultura Sinica, 2023, 56(13): 2461-2473.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!