Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (5): 904-916.doi: 10.3864/j.issn.0578-1752.2020.05.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands

WANG Jun1,2,LI Guang1(),YAN LiJuan3,LIU Qiang2,NIE ZhiGang2   

  1. 1 College of Forestry, Gansu Agricultural University, Lanzhou 730070
    2 College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070
    3 Agronomy College, Gansu Agriculture University, Lanzhou 730070
  • Received:2019-08-02 Accepted:2019-09-12 Online:2020-03-01 Published:2020-03-14
  • Contact: Guang LI E-mail:lig@gsau.edu.cn

Abstract:

【Objective】This research quantitatively analyzed the effects of temperature changes in different growth stages on the yield of spring wheat in the Loess Plateau Gully Region of Central Gansu, so as to provide theoretical guidance and decision- making basis for making reasonable cropping pattern in the Loess Plateau Gully Region of Central Gansu 【Method】Specifically, it investigated the relationship between temperature changes in different growth stages and the yield of spring wheat in dryland based on grey relational analysis, so as to identify the key growth stages of spring wheat. The yield of spring wheat was simulated using the APSIM (Agricultural Production System Simulator) model under different temperature conditions in different growth stages. The mechanism of yield response to temperature changes in different growth stages was studied through quadratic polynomial regression analysis and single factor marginal effect analysis. 【Result】(1) The results showed that the APSIM model had good applicability in simulating yield and growth stages of spring wheat in the Loess Plateau Gully Region of Central Gansu. The values of the average root mean square error (RMSE), normalized root mean square error (NRMSE), and model effectiveness index (ME) of the yield of the simulation model were 39.95 kg?hm -1, 1.55% and 0.73, respectively. The values of the RMSE, NRMSE, and ME of the simulated model phenology dates were 2.78 d, 1.87% and 0.83, respectively. (2)The average temperature increased steadily during all growth stages of spring wheat in the Loess Plateau Gully Region of Central Gansu, and the average temperatures of the different growth stages showed an increasing trend. The increase of average annual temperature were 0.44℃?(10a) -1, 0.34℃?(10a) -1, 0.17℃?(10a) -1, 0.41℃?(10a) -1, 0.49℃?(10a) -1, 0.52℃?(10a) -1 and 0.35℃?(10a) -1 in sowing-emergence, emergence-tillering, tillering-jointing, jointing-booting, booting-flowering, flowering-grain filling, grain filling-maturity, respectively. (3) The importance of temperature changes in different growth stages on the yield of spring wheat were ranked as follows: grain filling-maturity, flowering-grain filling, sowing-emergence, booting- flowering, jointing-booting, emergence- tillering, fallow, and the tillering-jointing stage. (4) Under constant temperatures at the other growth stages, a temperature increase of 0.5℃ during the sowing-emergence stage could increase the wheat yield by 0.45%; A temperature increase of 0.5℃ during the booting-flowering stage could reduce the wheat yield by 0.34%; a temperature increase of 0.5℃ during the flowering-filling stage could reduce the wheat yield by 0.65%; A temperature increase of 0.5℃ during the filling-maturity stage could reduce the wheat yield by 1.09%. When temperature changes during the sowing-emergence and booting-flowering stages were the same, the effects of the temperature changes on the yield of spring wheat were similar. 【Conclusion】APSIM model has achiedved good simulation results on the yield and growth stages of spring wheat of different sowing dates in the Loess Plateau Gully Region of Central Gansu. The trend of temperature increase obviously existed in the study area during the whole growth stages of spring wheat, but temperature increment was different in different growth stages.The effects of temperature changes in different growth stages on the yield of spring wheat were different. Warming was beneficial to increasing yield during sowing to emergence, but warming led to yield reduction during other growth stages.

Key words: spring wheat yield, different growth stages, temperature change, APSIM, grey relation analysis

Table 1

Growth parameters of wheat cultivar of “Dingxi 35”"

参数名称Parameters name 参数值 Value 单位Unit
春化敏感因子Vernalization sensitivity 1.0
光周期敏感因子 Photoperiod sensitivity 2.0
单位茎秆干物质的籽粒数 Grains per gram stem 25.0 kernel·g-1·stem-1
潜在的籽粒灌浆速度Potential grain filling rate 0.001 g·grain-1·d-1
灌浆期到成熟期的积温Thermal time start filling to mature 580 ℃·d
最大灌浆速率Maximum grain filling rate 2.30 mg·grain-1·d-1
分蘖重Weight of tiller 1.22 g·tiller-1
单株重Weight of single plant 4 g
株高Stem length 1000 mm
最大谷粒重 Max grain size 0.045 g

Table 2

Soil property parameters in the experiment site"

土层深度Soil depth (cm) 容重
Bulk density (g·cm-3)
风干含水量
Air dry (mm·mm-1)
萎蔫系数
Wilting coefficient (mm·mm-1)
田间最大持水量
Drained upper
limit (mm·mm-1)
饱和含水量
Saturated
moisture (mm·mm-1)
土壤导水率
Soil hydraulic conductivity (mm·h-1)
小麦有效水分下限
Wheat low limit (mm·mm-1)
0-5 1.290 0.013 0.090 0.274 0.463 0.600 0.090
5-10 1.226 0.013 0.090 0.274 0.487 0.600 0.090
10-30 1.325 0.046 0.090 0.270 0.450 0.600 0.090
30-50 1.200 0.071 0.090 0.269 0.497 0.600 0.090
50-80 1.140 0.087 0.090 0.261 0.520 0.600 0.100
80-110 1.140 0.103 0.110 0.269 0.520 0.600 0.115
110-140 1.250 0.107 0.110 0.260 0.480 0.600 0.125
140-170 1.120 0.115 0.120 0.257 0.529 0.600 0.180
170-200 1.100 0.127 0.130 0.261 0.531 0.600 0.220

Fig. 1

Relationship of simulated and observed values of four major phenology dates of spring wheat"

Table 3

Test results of simulation on four major phenology dates of spring wheat"

播期
Sowing date
出苗期 Emergence 孕穗期Booting 开花期 Flowering 灌浆期Grain filling
RMSE
(d)
NRMSE
(%)
ME
RMSE
(d)
NRMSE
(%)
ME
RMSE
(d)
NRMSE
(%)
ME
RMSE
(d)
NRMSE
(%)
ME
早播
Early sowing
3.46 3.71 0.68 2.52 1.55 0.90 2.83 1.62 0.80 2.00 1.09 0.92
正常播
Normal sowing
2.71 2.53 0.83 2.71 1.63 0.89 2.52 1.41 0.84 2.38 1.28 0.91
晚播
Late sowing
3.37 2.81 0.74 3.11 1.81 0.84 3.00 1.62 0.81 2.71 1.41 0.83

Table 4

Relationships of simulated and observed values of yield"

播期
Sowing dates
模拟产量平均值
(kg·hm-2)
实测产量平均值
(kg·hm-2)
RMSE
(kg·hm-2)
NRMSE
(%)
ME
早播Early sowing 2830.45 2846.29 45.08 1.59 0.71
正常播Normal sowing 2537.30 2498.45 39.15 1.54 0.73
晚播Late sowing 2319.81 2313.87 35.61 1.53 0.74

Fig. 2

Interannual variations of average temperatures at different growth stages from 1970-2018"

Table 5

Grey correlation coefficients between the average temperatures at different growth stages and spring wheat yield"

休闲期
Fallow
播种—出苗
Sowing -Emergence
出苗—分蘖
Emergence -Tillering
分蘖—拔节
Tillering
-Jointing
拔节—孕穗
Jointing- Booting
孕穗—开花
Booting- Flowering
开花—灌浆
Flowering- Grain filling
灌浆—成熟
Grain filling -Maturity
产量
Yield
休闲期
Fallow
1.000 0.711 0.719 0.702 0.709 0.716 0.708 0.726 0.641
播种—出苗
Sowing-Emergence
0.711 1.000 0.742 0.681 0.713 0.748 0.693 0.754 0.683
出苗—分蘖
Emergence-Tillering
0.718 0.742 1.000 0.720 0.741 0.739 0.691 0.708 0.652
分蘖—拔节
Tillering-Jointing
0.702 0.679 0.721 1.000 0.708 0.726 0.687 0.651 0.629
拔节—孕穗
Jointing- Booting
0.709 0.713 0.741 0.708 1.000 0.728 0.648 0.721 0.659
孕穗—开花
Booting- Flowering
0.718 0.745 0.739 0.725 0.728 1.000 0.713 0.748 0.667
开花-灌浆
Flowering-Grain filling
0.709 0.691 0.695 0.688 0.649 0.713 1.000 0.737 0.692
灌浆-成熟
Grain filling-Maturity
0.729 0.751 0.709 0.653 0.723 0.751 0.739 1.000 0.728
产量 Yield 0.637 0.688 0.659 0.631 0.669 0.671 0.698 0.731 1.000

Table 6

Influences of temperature changes during different growing stages on spring wheat yield"

不同处理
Different treatments (℃)
不同生育阶段小麦产量 Wheat yield of different growth stages (kg∙hm-2)
播种-出苗
Sowing-Emergence
孕穗-开花
Booting-Flowering
开花-灌浆
Flowering-Grain filling
灌浆-成熟
Grain filling-Maturity
-2.5 2457.2±121.82a 2546.1±178.32a 2560.7±145.63a 2615.8±182.67a
-2 2464.9±138.71a 2539.2±140.13a 2556.9±137.82a 2606.2±171.43a
-1.5 2481.7±125.18a 2532.5±114.67a 2551.9±151.07a 2590.7±163.84a
-1 2490.9±164.38a 2523.5±182.97a 2544.3±165.34a 2574.3±151.55a
-0.5 2508.0±134.13a 2518.4±161.82a 2530.7±110.86a 2550.4±140.93a
0 2515.5±149.31a 2511.3±111.83a 2518.7±103.97a 2527.1±153.89a
0.5 2526.3±159.44a 2499.3±98.57a 2497.5±99.58a 2495.7±187.91a
1 2540.2±182.15a 2492.1±137.96a 2479.3±124.73a 2465.6±175.68a
1.5 2530.8±133.84a 2481.1±95.68a 2446.4±130.81a 2424.6±162.44a
2 2553.1±158.76a 2472.2±138.85a 2421.2±127.25a 2378.3±141.82a
2.5 2569.7± 175.37a 2461.5±104.81a 2399.3±93.19a 2344.3±123.15b

Fig. 3

Single-factor effect of temperature change of different growth stages on spring wheat yield in dryland"

Fig. 4

The single-factor marginal effect of temperature change of different growth stages on spring wheat yield"

[1] ZHAO H Y, GONG L J, QU H H, ZHU H X, LI X F, ZHAO F . The climate change variations in the northern greater khingan mountains during the past centuries. Journal of Geographical Sciences, 2016,26(5):585-602.
[2] 秦大河, STOCKEER T. IPCC第五次评估报告第一工作组报告的亮点结论. 气候变化研究进展, 2014,10(1):1-6.
QIN D H, STOCKER T . Highlight of the IPCC working group I Fifth assessment report. Climate Change Research, 2014,10(1):1-6. (in Chinese)
[3] 张凯, 王润元, 冯起, 王鹤龄, 赵鸿, 赵福年, 阳伏林, 雷俊 . 模拟增温和降水变化对半干旱区春小麦生长及产量的影响. 农业工程学报, 2015,31(1):161-170.
ZHANG K, WANG R Y, FENG Q, WANG H L, ZHAO H, ZHAO F N, YANG F L, LEI J . Effect of simulated warming and precipitation change on growth characteristics and grain yield of spring wheat in semi-arid area. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(1):161-170. (in Chinese)
[4] KHEIRI M, SOUFIZADEH S, GHAFFARI A, AGHAALIKHANI M, ESKANDARI A . Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Climatic Change, 2017,141(4):703-717.
[5] 裴雪霞, 党建友, 张定一, 武雪萍, 赵娟 . 近54年来晋南气候变化及其对旱地小麦产量的影响. 麦类作物学报, 2016,36(11):1502-1509.
PEI X X, DANG J Y, ZHANG D Y, WU X P, ZHAO J . Climate change during nearly 54 years in south of shanxi and its effect on wheat yield in dry land. Journal of Triticeae Crops, 2016,36(11):1502-1509. (in Chinese)
[6] 孙正国 . 模拟增温对小麦生长及土壤的调控效应. 核农学报, 2016,30(10):2041-2048.
SUN Z G . Control response of temperature enhancement on growth and soil health of wheat. Journal of Nuclear Agricultural Sciences, 2016,30(10):2041-2048. (in Chinese)
[7] 房世波, 谭凯炎, 任三学 . 夜间增温对冬小麦生长和产量影响的实验研究. 中国农业科学, 2010,43(15):3251-3258.
FANG S B, TAN K Y, REN S X . Winter wheat yields decline with spring higher night temperature by controlled experiments. Scientia Agricultura Sinica, 2010,43(15):3251-3258. (in Chinese)
[8] 张凯, 王润元, 王鹤龄, 赵鸿, 赵福年, 阳伏林, 雷俊 . 田间增温对半干旱区春小麦生长发育和产量的影响. 应用生态学报, 2015,26(9):2681-2688.
ZHANG K, WANG R Y, WANG H L, ZHAO H, ZHAO F N, YANG F L, LEI J . Effects of increasing field temperature on growth, development and yield of spring wheat in semi-arid area. Chinese Journal of Applied Ecology, 2015,26(9):2681-2688. (in Chinese)
[9] 田云录, 陈金, 邓艾兴, 郑建初, 张卫建 . 开放式增温下非对称性增温对冬小麦生长特征及产量构成的影响. 应用生态学报, 2011,22(3):681-686. (in Chinese)
TIAN Y L, CHEN J, DENG A X, ZHENG J C, ZHANG W J . Effects of asymmetric warming on the growth characteristics and yield components of winter wheat under free air temperature increased. Chinese Journal of Applied Ecology, 2011,22(3):681-686. (in Chinese)
[10] DALLA M A, EITZINGER J, KERSEBAUM K C, TODOROVIC M, ALTOBELLI F . Assessment and monitoring of crop water use and productivity in response to climate change. The Journal of Agricultural Science, 2018,156:575-576.
[11] 尚艳, 赵鸿, 柴守玺 . 气候变化与品种更新对黄土高原半干旱雨养农业区冬小麦的影响. 干旱地区农业研究, 2017,35(5):66-72.
SHANG Y, ZHAO H, CHAI S X . Effects of climate change and cultivars change on winter wheat in Semi-arid region of Loess Plateau in northeast China. Agricultural Research in the Arid Areas, 2017,35(5):66-72. (in Chinese)
[12] 高美玲, 张旭博, 孙志刚, 孙楠, 李仕冀, 高永华, 张崇玉 . 中国不同气候区小麦产量及发育期持续时间对田间增温的响应. 中国农业科学, 2018,51(2):386-400.
GAO M L, ZHANG X B, SUN Z G, SUN N, LI S J, GAO Y H, ZHANG C Y . Wheat yield and growing period in response to field warming in different climatic zones in China. Scientia Agricultura Sinica, 2018,51(2):386-400. (in Chinese)
[13] 董莉霞, 李广, 刘强, 燕振刚, 罗珠珠 . 旱地春小麦产量对逐日最低温度和最高温度变化响应的模拟与分析. 中国生态农业学报, 2013 , 21(8):1016-1022.
DONG L X, LI G, LIU Q, YAN Z G, LUO Z Z . Simulation analysis of spring wheat grain yield response to mean daily minimum and maximum temperature in drylands. Chinese Journal of Eco-Agriculture, 2013,21(8):1016-1022. (in Chinese)
[14] 任新庄, 闫丽娟, 李广, 聂志刚, 王钧, 罗永忠 . 陇中旱地春小麦产量对降水与温度变化的响应模拟. 干旱地区农业研究, 2018,36(3):125-129.
REN X Z, YAN L J, LI G, NIE Z G, WANG J, LUO Y Z . Simulation of the effects of precipitation and temperature change on spring wheat yield in dryland of central Gansu. Agricultural Research in the Arid Areas, 2018,36(3):125-129. (in Chinese)
[15] 张凯, 王润元, 王鹤龄, 赵鸿, 齐月, 赵福年, 雷俊 . 模拟增温对半干旱雨养区春小麦物质生产与分配的影响. 农业工程学报, 2016,32(16):223-232.
ZHANG K, WANG R Y, WANG H L, ZHAO H, QI Y, ZHAO F N, LEI J . Effect of simulated warming on dry matter production and distribution of rainfed spring wheat in semi-arid area. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(16):223-232. (in Chinese)
[16] 张凯, 王润元, 王鹤龄, 赵鸿, 赵福年, 阳伏林, 陈斐, 齐月, 雷俊 . 温度升高和降水减少对半干旱区春小麦生长发育及产量的协同影响. 中国生态农业学报, 2019,27(3):413-421.
ZHANG K, WANG R Y, WANG H L, ZHAO H, ZHAO F N, YANG F L, CHEN F, QI Y, LEI J . Influence of climate warming and rainfall reduction on semi-arid wheat production. Chinese Journal of Eco-Agriculture, 2019,27(3):413-421. (in Chinese)
[17] PRADHAN G P, PRASAD P V V, FRITZ A K, KIRKHAM M B . Effects of drought and high temperature stress on synthetic hexaploidy wheat. Functional Plant Biology, 2012,39(3):190-198.
[18] WCISLO R, MILLER S S, DZWINEL W . Particle automata model in simulation of Fusarium graminearum pathogen expansion. Journal of Theoretical Biology, 2016,389:110-122.
[19] JIN Z N, RISHI P, JOHN S, ZHUANG Q L . Crop model and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US corn system. Precision Agriculture, 2017,18:779-800.
[20] FAN D L, YANG F Y, PAN Z H, SU X Y . Development of an improved model to evaluate vulnerability in spring wheat under climate change in Inner Mongolia. Sustainability, 2018,10(12):4581-4596.
[21] PALMER J, THORBURN P J, BIGGS J S, DOMINATI E J, PROBERT M E, MEIER E A, HUTH N I, DODD M, SNOW V, LARSEN J R, PARTON W J . Nitrogen cycling from increased soil organic carbon contributes both positively and negatively to ecosystem services in wheat agro-ecosystems. Frontiers In Plant Science, 2017,8:1-12.
[22] 李广, 黄高宝, WILLIAM B, 陈文. APSIM 模型在黄土丘陵沟壑区不同耕作措施中的适用性. 生态学报, 2009,29:2655-2663.
LI G, HUANG G B, WILLIAM B, CHEN W . Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region. Acta Ecology Sinica, 2009,29:2655-2663. (in Chinese)
[23] ZHENG B Y, CHENU K, DOHERTY A, CHAPMAN S . The APSIMWheat Module (7.5 R3008) Documentation. Toowoomba: APSRU, 2014: 20-25.
[24] 杨扬, 罗贤, 李荣平, 王莹, 温日红, 杨桂娟, 焦敏, 张琪, 张晓月 . 气象要素对植物物候影响及其驱动机制研究进展. 气象与环境学报, 2016,32(5):154-159.
YANG Y, LUO X, LI R P, WANG Y, WEN R H, YANG G J, JIAO M, ZHANG Q, ZHANG X Y . A review of the effect of meteorological factors on plant phenology and its driving mechanisms. Journal of Meteorology and Environment, 2016,32(5):154-159. (in Chinese)
[25] 霍治国, 尚莹, 邬定荣, 吴立, 范雨娴, 王培娟, 杨建莹, 王纯枝 . 中国小麦干热风灾害研究进展. 应用气象学报, 2019,30(2):129-138.
HUO Z G, SHANG Y, WU D R, WU L, FAN Y X, WANG P J, YANG J Y, WANG C Z . Review on disaster of hot dry wind for wheat in China. Journal of Applied Meteorological Science, 2019,30(2):129-138. (in Chinese)
[26] 李阔, 熊伟, 潘婕, 林而达, 李迎春, 韩雪 . 未来升温1.5 oC与2.0 oC背景下中国玉米产量变化趋势评估 . 中国农业气象, 2018,39(12):765-777.
LI K, XIONG W, PAN J, LIN E D, LI Y X, HAN X . Trend evaluation on changes of maize yield in China under global warming by 1.5℃ and 2.0℃. Chinese Journal of Agrometeorology, 2018,39(12):765-777. (in Chinese)
[27] 孟自力, 陈昆, 闫向泉, 朱倩, 倪雪峰, 朱伟 . 气象因子变化及其对小麦生产的影响. 安徽农业科学, 2018,46(7):27-29.
MENG Z L, CHEN K, YAN X Q, ZHU Q, NI X F, ZHU W . Research status of change of meteorological factors and its influence on wheat production. Journal of Anhui Agricultural Sciences, 2018,46(7):27-29. (in Chinese)
[28] 侯学会, 隋学艳, 姚慧敏, 梁守真, 王猛 . 中国北方麦区冬小麦物候期对气候变化的响应. 麦类作物学报, 2019,39(2):202-209.
HOU X H, SUI X Y, YAO H M, LIANG S Z, WANG M . Response of winter wheat phenology to climate change in northern China. Journal of Triticeae Crops, 2019,39(2):202-209. (in Chinese)
[29] 肖国举, 张强, 张峰举, 罗成科, 王润元 . 增温对宁夏引黄灌区春小麦生产的影响. 生态学报, 2011,31(21):6588-6592.
XIAO G J, ZHANG Q, ZHANG F J, LUO C K, WANG R Y . The impact of rising temperature on spring wheat production in the Yellow River irrigation region of Ningxia. Acta Ecologica Sinica, 2011,31(21):6588-6592. (in Chinese)
[30] 张秀云, 王鹤龄, 雷俊 . 气候暖干化对半干旱区春小麦产量形成的影响. 生态环境学报, 2015,24(4):569-574.
ZHANG X Y, WANG H L, LEI J . Impacts of climate warming and drying on spring wheat yield in a semi-arid region. Ecology and Environmental Sciences, 2015,24(4):569-574. (in Chinese)
[31] 赵鸿, 何春雨, 李凤民, 王润元, 杨启国, 邓振镛, 王鹤龄 . 气候变暖对高寒阴湿地区春小麦生长发育和产量的影响. 生态学杂志, 2008,27(12):2111-2117.
ZHAO H, HE Y C, LI F M, WANG R Y, YANG Q G, DENG Z Y, WANG H L . Effects of climate warming on spring wheat growth and yield in high-altitude cold and dankness region. Chinese Journal of Ecology, 2008,27(12):2111-2117. (in Chinese)
[32] HATFIELD J L, BOOTE K J, KIMBALL B A, ZISKA L H, IZAURRALDE R C, ORT D, THOMSON A M, WOLFE D . Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 2011,103(2):351-370.
[33] TACK J, BARKLEY A, NALLEY L L . Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences of the USA, 2015,112(22):6931-6936.
[34] 普宗朝, 张山清, 徐文修, 李景林, 王荣晓 . 气候变化对伊犁河谷冬小麦产量的影响. 中国农学通报, 2014,30(15):173-182.
PU Z C, ZHANG S Q, XU W X, LI J L, WANG R X . Impact of climate change to winter wheat yield in Yili river valley of Xinjiang. Chinese Agricultural Science Bulletin, 2014,30(15):173-182. (in Chinese)
[1] HUANG QiuWan,LIU ZhiJuan,YANG XiaoGuang,BAI Fan,LIU Tao,ZHANG ZhenTao,SUN Shuang,ZHAO Jin. Analysis of Suitable Irrigation Schemes with High-Production and High-Efficiency for Spring Maize to Adapt to Climate Change in the West of Northeast China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4470-4484.
[2] NIE ZhiGang,LI Guang,WANG Jun,MA WeiWei,LUO CuiPing,DONG LiXia,LU YuLan. Parameter Optimization for the Simulation of Leaf Area Index of Dryland Wheat with the APSIM Model [J]. Scientia Agricultura Sinica, 2019, 52(12): 2056-2068.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!