Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (7): 1260-1274.doi: 10.3864/j.issn.0578-1752.2023.07.005

• SPECIAL FOCUS: PANICLE DEVELOPMENT AND YIELD BREEDING IN RICE • Previous Articles     Next Articles

Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.)

ZHU HongHui(), LI YingZi(), GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng()   

  1. Rice Research Institute, Southwest University/Academy of Agricultural Sciences, Southwest University/Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400716
  • Received:2022-12-08 Accepted:2023-01-16 Online:2023-04-01 Published:2023-04-03

Abstract:

【Objective】 Rice yield is composed of effective panicle number per unit area, grains per panicle and grain weight, in which grain weight is mainly determined by grain morphology. Screening and identification of new grain type mutation materials and genes can lay a foundation for molecular design breeding of yield traits. 【Method】 A short and wide grain mutant short and widen grain1 (swg1) was identified in the mutant population of indica rice maintainer line Xida1B(XD1B) induced by ethyl methane sulfonate (EMS). The grain morphology and other agronomic characters were analyzed, and the glume was observed and analyzed by histocytology. Gene mapping was carried out by BSA method, and candidate genes were identified by genetic complementarity experiment. qRT-PCR was used to analyze the expression pattern of the gene and the expression level of other genes related to grain shape and cell development.【Result】 The analysis of agronomic characters showed that the grain length of swg1 mutant was significantly lower and the grain width was significantly higher than that of wild type, showing the phenotype of short and wide grains, and further histological and cytological analysis showed that the shortening of longitudinal cells of glume was the main reason for the shortening of grain length, while the increase of grain width was due to the increase of the number and size of transverse cells of glume at the same time. The results of genetic analysis showed that the mutation was controlled by a recessive single gene, and the candidate gene for SWG1 was determined to be LOC_Os07g42410 by map-based cloning and genetic complementary verification, which encoded a plant-specific transcription factor. qRT-PCR analysis showed that the expression of this gene had no obvious tissue specificity, and its expression is strong in stem, leaf and young panicle. According to the analysis of the expression of known genes related to grain shape, cell cycle and cell expansion, it was found that GS5 and GW8, which positively regulate the number and/or size of glume transverse cells to determine grain width, were significantly up-regulated in the mutants, while GW7/GL7 genes, which positively regulated the number and size of longitudinal cells and negatively regulated the number and size of transverse cells, were significantly down-regulated in the mutants. Some genes related to cell cycle and cell expansion also showed significant differences between mutants and wild types. 【Conclusion】 SWG1 encodes a plant-specific transcription factor, which affects glume cell proliferation and cell expansion by regulating grain shape genes GS5, GW8 and GW7/GL7, thus determining rice grain length and width.

Key words: rice (Oryza sativa L.), grain, development of glumes, gene mapping

Table 1

Primer sequences"

引物名称
Primer name
正向序列
Forward sequence (5′-3′)
反向序列
Reverse sequences (5′-3′)
用途
Purpose
RM234 TTCAGCCAAGAACAGAACAGTGG CTTCTCTTCATCCTCCTCCTTGG 定位
Mapping
RM21934 GCAGCAGTGTTGTACTGTTCTTCG GGGAGGGCTTACTCTGTATCAGG
RM21968 GTCATCGACATCCAGCTTCAAGG TCGACTCCATTATCGGATGTGC
RM21979 ACGCCGCGAGATAGTTATCAACC GAGCACGGTGTTGTAGGAGACG
ACTIN TGGCATCTCTCAGCACATTCC TGCACAATGGATGGGTCAGA qRT-PCR
qSWG1 TGCGTGATAGCCTAGAACGAAG CTGGAATCAGCACTCCTGGATG
qOsEXPB2 TCGTCTACACCAACGACTGG CATGAACGGGTACTGGTTGG
qOsEXPB3 TTCTCGTCGATGACCTCCTG AGGGTGGTTGACGCATCTTA
qOsEXPB4 GTCGGTCTGTGTTGCGATTTG CCTCCATTTCCCACACAGCTT
qOsEXPB5 AAGGCTGTGGCTTGATTGACA TTAGGCCCAATTTTGCTATTTTG
qOsEXPB7 ACGGTGATCATCACGGACAT TCGAAGTGGTACAGCGACACT
qOsEXPB10 TGACCAACTACAACGTGGTCCC GCCAGTGTATGTTTTGCCGAAG
qCycA1;1 CTTTCGGTTGACGAGACGATGT CGCTGCAAGGAACCTAGAACTG
qCycA2;1 AATATTGAGCGAAACAGGGACAG AGGAAGCACACATTTGAGGATTT
qCycA3;2 AGGTTGTCAAGATGGAGAGCGA CGCTTTTTGTCTTCCTGGCA
qCycB1;1 CACTCTCAAGCACCACACTGGA ACAACCCTCAGCTTGCTCTCAG
qCycB2;1 CGCTTGCAGCAACCGAGTA CATCCATCAGCTCAAACTTGTGAT
qCycB2;2 CTCAAGGCTGCACAATCTGACA GCATTGACGGCTGGAATTTG
qGS5 CATTCCATGCAAATGCCAGTGGAC CAGCCCTGCTTTGATGAGCTTG
qGW2 CAGCAGCGCATTCCCAGTTTTC GTGGTCAGCCGAGCACTCTC
qGL3.1 TCACAACTCCCAGGATAGG TTTGTCTCGCTCGCTCAT
qGW8 AGGAGTTTGATGAGGCCAAG GCGTGTAGTATGGGCTCTCC
qGL6 TCTGCTTGACATGTGACAGGA GAGGATGTTGGAGAGGTCGC
qGL7 CCCCTAGCATCGACACCAAG CGGGTTCCAGCACTCCTCT
qTGW2 CCCGGAAACTGTCTCATCAC GAACTGAGCCCTCATCTTGG
qTGW6 TTGAACTTGCAAAAGGCAGA CGGTTCCCCTAATGCAGAT
qGS2 ACCACTCTCTTTACCCTGCT CGGGTTCCAGCACTCCTCT
qGS3 CATCGGAGAAGCGAAGTCAT TTGAGGTTGAAGGAGGAGGA

Fig. 1

Phenotypic identification and agronomic traits statistics in the wild type and swg1 mutant A: Comparison of plant types between wild type and mutant at mature stage; B: Comparison of spike type between wild type and mutant at maturity; C: Grain of wild type and mutant; D: Rice of wild type and mutant; E: Panicle length; F: No. of primary branches; G: Grains per panicle; H: No. of secondary branches; I: 1000 grain weight; J: 1000 rice weight; K: Grain length; L: Grain width; M: Grain length-width ratio; N: Rice length; O: Rice width; P: Rice length-width ratio. *: Significant difference at P<0.05; **: Significant difference at P<0.01. The same as below"

Fig. 2

Histocytology analysis of wild-type and swg1 mutant glumes A: The epidermis of wild-type glume under scanning electron microscope, Bar=4 mm; B: The epidermis of lemma of wild type under scanning electron microscope, Bar=400 μm; C: Paraffin section of cross section of wild-type spikelets, Bar=2 mm; D: Partly paraffin section and cell type labeling on the cross section of wild-type spikelets; E: The epidermis of mutant glume under scanning electron microscope, Bar=4 mm; F: The epidermis of lemma of mutant under scanning electron microscope, Bar=400 μm; G: Paraffin section of cross section of mutant spikelets, Bar=2 mm; H: Partly paraffin section and cell type labeling on the cross section of mutant spikelets; I: Statistics of the number of outer epidermal cells in lemma longitudinal direction; J: Statistics of the length of outer epidermal cells in lemma longitudinal direction; K: Statistics of the number of outer epidermal cells in lemma transverse direction; L: Statistics of the width of outer epidermal cells in lemma transverse direction; M: Statistics of the number of inner epidermal cells in lemma transverse direction; N: Statistics of the number of inner epidermal cells in lemma transverse direction; O: Statistics of the number of sclerenchyma cells in lemma transverse direction; P: Statistics of the area of sclerenchyma cells in lemma transverse direction. LE: Lemma; OEP: Outer epidemics; SC: Sclerenchyma cells; PA: Parenchyma cells; IEP: Inner epidermal cells"

Table 2

Genetic analysis of short and widen grain characters in swg1 mutant"

杂交组合
Crossing combination
正常表型
Normal phenotype
突变表型
Mutant phenotype
总和
Summation
卡方值
χ20.05=3.84)
56S/swg1 308 95 403 0.438

Fig. 3

Linkage map of SWG1 gene on rice chromosome 7 A: Fine positioning of SWG1; B: 18 open reading frames within the mapping interval; C: Gene structure of SWG1. Ser: Serine; Pro: Proline; Arg: Arginine"

Table 3

Annotated genes in the mapping region"

序号Number 基因名称 Locus name 基因注释 Gene annotation
1 LOC_Os07g42390 含有DUF581结构域的蛋白,表达DUF581 domain containing protein, expressed
2 LOC_Os07g42395 DNA定向RNA聚合酶II亚基RPB9,推测,表达
DNA-directed RNA polymerase II subunit RPB9, putative, expressed
3 LOC_Os07g42400 转座子蛋白,推测,未分类,表达Transposon protein, putative, unclassified, expressed
4 LOC_Os07g42410 转录因子Transcription factor
5 LOC_Os07g42420 3-氧酰基合酶,推测,表达3-oxoacyl-synthase, putative, expressed
6 LOC_Os07g42430 表达蛋白质Expressed protein
7 LOC_Os07g42440 乙醇酸氧化酶Glycolate oxidase
8 LOC_Os07g42450 核糖体蛋白S2,推测,表达Ribosomal protein S2, putative, expressed
9 LOC_Os07g42460 转座子蛋白,推测,未分类,表达Transposon protein, putative, unclassified, expressed
10 LOC_Os07g42470 表达蛋白质Expressed protein
11 LOC_Os07g42490 水稻蔗糖合酶Sucrose synthase in rice
12 LOC_Os07g42500 FYVE锌指结构域蛋白,表达FYVE zinc finger domain containing protein, expressed
13 LOC_Os07g42510 含有AP2结构域的蛋白,表达AP2 domain containing protein, expressed
14 LOC_Os07g42520 客观的,推测,表达Dirigent, putative, expressed
15 LOC_Os07g42530 转座子蛋白,推测,未分类,表达Transposon protein, putative, unclassified, expressed
16 LOC_Os07g42540 转座子蛋白,推测,Pong亚类Transposon protein, putative, Pong sub-class
17 LOC_Os07g42550 表达蛋白质Expressed protein
18 LOC_Os07g42560 表达蛋白质Expressed protein

Fig. 4

Results of complementary vector construction and genetic transformation experiment A: Schematic representation of the vector pCAMBIA1300-SWG1; B: Electropherograms of positive results of seven transgenic plants; C: Sequencing peak of the F2-R2 fragment; D-F: Spike types of wild-type, mutant and complementary plants, Bar=1 cm; G: Ten grain length of wild-type, mutant and complementary plants; H: Ten grain width of wild-type, mutant and complementary plants"

Fig. 5

Expression of SWG1 gene by qRT-PCR in wild type"

Fig. 6

qRT-PCR expression of genes related to grain shape and cell development in wild-type and swg1 mutant A: Transcriptional levels in wild type and mutant of grain type-related genes; B: Transcriptional levels in wild type and mutant of cell cycle-related genes; C: Transcriptional levels in wild type and mutant of cell expansion-related genes"

[1]
HORVÁTH B M, MAGYAR Z, ZHANG Y X, HAMBURGER A W, BAKÓ L, VISSER R G F, BACHEM C W B, BÖGRE L. EBP1 regulates organ size through cell growth and proliferation in plants. The EMBO Journal, 2006, 25(20): 4909-4920.

doi: 10.1038/sj.emboj.7601362
[2]
HORIGUCHI G, FERJANI A, FUJIKURA U, TSUKAYA H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. Journal of Plant Research, 2006, 119(1): 37-42.

doi: 10.1007/s10265-005-0232-4
[3]
FAN C C, XING Y Z, MAO H L, LU T T, HAN B, XU C G, LI X H, ZHANG Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171.

doi: 10.1007/s00122-006-0218-1 pmid: 16453132
[4]
MAO H L, SUN S Y, YAO J L, WANG C R, YU S B, XU C G, LI X H, ZHANG Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584.
[5]
SUN S Y, WANG L, MAO H L, SHAO L, LI X H, XIAO J H, OUYANG Y D, ZHANG Q F. A G-protein pathway determines grain size in rice. Nature Communications, 2018, 9: 851.

doi: 10.1038/s41467-018-03141-y pmid: 29487318
[6]
SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623-630.

doi: 10.1038/ng2014
[7]
HAO J Q, WANG D K, WU Y B, HUANG K, DUAN P G, LI N, XU R, ZENG D L, DONG G J, ZHANG B L, ZHANG L M, INZÉ D, QIAN Q, LI Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Molecular Plant, 2021, 14(8): 1266-1280.

doi: 10.1016/j.molp.2021.04.011
[8]
SHI C L, REN Y L, LIU L L, WANG F, ZHANG H, TIAN P, PAN T, WANG Y F, JING R N, LIU T Z, WU F Q, LIN Q B, LEI C L, ZHANG X, ZHU S S, GUO X P, WANG J L, ZHAO Z C, WANG J, ZHAI H Q, CHENG Z J, WAN J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiology, 2019, 180(1): 381-391.

doi: 10.1104/pp.19.00065 pmid: 30796160
[9]
WENG J F, GU S H, WAN X Y, GAO H, GUO T, SU N, LEI C L, ZHANG X, CHENG Z J, GUO X P, WANG J L, JIANG L, ZHAI H Q, WAN J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 2008, 18(12): 1199-1209.

doi: 10.1038/cr.2008.307
[10]
LIU J F, CHEN J, ZHENG X M, WU F Q, LIN Q B, HENG Y Q, TIAN P, CHENG Z J, YU X W, ZHOU K N, ZHANG X, GUO X P, WANG J L, WANG H Y, WAN J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants, 2017, 3: 17043.

doi: 10.1038/nplants.2017.43
[11]
QI P, LIN Y S, SONG X J, SHEN J B, HUANG W, SHAN J X, ZHU M Z, JIANG L W, GAO J P, LIN H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research, 2012, 22(12): 1666-1680.

doi: 10.1038/cr.2012.151
[12]
GAO X Y, ZHANG J Q, ZHANG X J, ZHOU J, JIANG Z S, HUANG P, TANG Z B, BAO Y M, CHENG J P, TANG H J, ZHANG W H, ZHANG H S, HUANG J. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-Like kinase OsGSK3 to modulate brassinosteroid signaling. The Plant Cell, 2019, 31(5): 1077-1093.

doi: 10.1105/tpc.18.00836
[13]
WANG A H, HOU Q Q, SI L Z, HUANG X H, LUO J H, LU D F, ZHU J J, SHANGGUAN Y Y, MIAO J S, XIE Y F, WANG Y C, ZHAO Q, FENG Q, ZHOU C C, LI Y, FAN D L, LU Y Q, TIAN Q L, WANG Z X, HAN B. The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiology, 2019, 180(4): 2077-2090.

doi: 10.1104/pp.18.01574
[14]
HUANG K, WANG D K, DUAN P G, ZHANG B L, XU R, LI N, LI Y H. Wide and thick grain 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. The Plant Journal, 2017, 91(5): 849-860.

doi: 10.1111/tpj.13613 pmid: 28621888
[15]
FANG N, XU R, HUANG L J, ZHANG B L, DUAN P G, LI N, LUO Y H, LI Y H. SMALL GRAIN 11 controls grain size, grain number and grain yield in rice. Rice (New York, NY), 2016, 9(1): 64.
[16]
WU Y Z, FU Y C, ZHAO S S, GU P, ZHU Z F, SUN C Q, TAN L B. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnology Journal, 2016, 14(1): 377-386.

doi: 10.1111/pbi.12391
[17]
ZHOU Y, TAO Y J, ZHU J Y, MIAO J, LIU J, LIU Y H, YI C D, YANG Z F, GONG Z Y, LIANG G H. GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice (New York, NY), 2017, 10(1): 34.
[18]
TONG X H, WANG Y F, SUN A Q, BELLO B K, NI S, ZHANG J. Notched Belly Grain 4, a novel allele of dwarf 11, regulates grain shape and seed germination in rice (Oryza sativa L.). International Journal of Molecular Sciences, 2018, 19(12): 4069.

doi: 10.3390/ijms19124069
[19]
XIAO Y H, ZHANG G X, LIU D P, NIU M, TONG H N, CHU C C. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. The Plant Journal, 2020, 102(6): 1187-1201.

doi: 10.1111/tpj.v102.6
[20]
QIAO J Y, JIANG H Z, LIN Y Q, SHANG L G, WANG M, LI D M, FU X D, GEISLER M, QI Y H, GAO Z Y, QIAN Q. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Molecular Plant, 2021, 14(10): 1683-1698.

doi: 10.1016/j.molp.2021.06.023
[21]
LI Y B, FAN C C, XING Y Z, JIANG Y H, LUO L J, SUN L, SHAO D, XU C J, LI X H, XIAO J H, HE Y Q, ZHANG Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43(12): 1266-1269.

doi: 10.1038/ng.977
[22]
ZHAO D S, LI Q F, ZHANG C Q, ZHANG C, YANG Q Q, PAN L X, REN X Y, LU J, GU M H, LIU Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications, 2018, 9: 1240.

doi: 10.1038/s41467-018-03616-y
[23]
CHE R H, TONG H N, SHI B H, LIU Y Q, FANG S R, LIU D P, XIAO Y H, HU B, LIU L C, WANG H R, ZHAO M F, CHU C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants, 2016, 2: 15195.

doi: 10.1038/nplants.2015.195
[24]
DUAN P G, NI S, WANG J M, ZENG L J, XU J, YU H P, SHI Z Y, PAN J J, ZHANG D, KANG S J, ZHU L, DONG G J, GUO L B, ZENG D L, ZHANG G H, XIE L H, XIONG G S, LI J Y, QIAN Q. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants, 2016, 2: 15203.

doi: 10.1038/nplants.2015.203
[25]
HU J, WANG Y X, FANG Y X, ZENG L J, XU J, YU H P, SHI Z Y, PAN J J, ZHANG D, KANG S J, ZHU L, DONG G J, GUO L B, ZENG D L, ZHANG G H, XIE L H, XIONG G S, LI J Y, QIAN Q. A rare allele of GS2 enhances grain size and grain yield in rice. Molecular Plant, 2015, 8(10): 1455-1465.

doi: 10.1016/j.molp.2015.07.002
[26]
LI S C, GAO F Y, XIE K L, ZENG X H, CAO Y, ZENG J, HE Z S, REN Y, LI W B, DENG Q M, WANG S Q, ZHENG A P, ZHU J, LIU H N, WANG L X, LI P. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal, 2016, 14(11): 2134-2146.

doi: 10.1111/pbi.2016.14.issue-11
[27]
LIU L C, TONG H N, XIAO Y H, CHE R H, XU F, HU B, LIANG C Z, CHU J F, LI J Y, CHU C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): 11102-11107.
[28]
RUAN B P, SHANG L G, ZHANG B, HU J, WANG Y X, LIN H, ZHANG A P, LIU C L, PENG Y L, ZHU L, REN D Y, SHEN L, DONG G J, ZHANG G H, ZENG D L, GUO L B, QIAN Q, GAO Z Y. Natural variation in the promoter of TGW2 determines grain width and weight in rice. The New Phytologist, 2020, 227(2): 629-640.

doi: 10.1111/nph.v227.2
[29]
WANG Y X, XIONG G S, HU J, JIANG L, YU H, XU J, FANG Y X, ZENG L J, XU E B, XU J, YE W J, MENG X B, LIU R F, CHEN H Q, JING Y H, WANG Y H, ZHU X D, LI J Y, QIAN Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 2015, 47(8): 944-948.

doi: 10.1038/ng.3346
[30]
WANG S K, LI S, LIU Q, WU K, ZHANG J Q, WANG S S, WANG Y, CHEN X B, ZHANG Y, GAO C X, WANG F, HUANG H X, FU X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 2015, 47(8): 949-954.

doi: 10.1038/ng.3352
[31]
ZHU K M, TANG D, YAN C J, CHI Z C, YU H X, CHEN J M, LIANG J S, GU M H, CHENG Z K. Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics, 2010, 184(2): 343-350.

doi: 10.1534/genetics.109.112045
[32]
LI F, LIU W B, TANG J Y, CHEN J F, TONG H N, HU B, LI C L, FANG J, CHEN M S, CHU C C. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Research, 2010, 20(7): 838-849.

doi: 10.1038/cr.2010.69
[33]
ZHU C L, XING B, TENG S Z, DENG C, SHEN Z Y, AI P F, LU T G, ZHANG S W, ZHANG Z G. OsRELA regulates leaf inclination by repressing the transcriptional activity of OsLIC in rice. Frontiers in Plant Science, 2021, 12: 760041.

doi: 10.3389/fpls.2021.760041
[34]
ABE Y, MIEDA K, ANDO T, KONO I, YANO M, KITANO H, IWASAKI Y. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes & Genetic Systems, 2010, 85(5): 327-339.
[1] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[2] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[3] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[4] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[5] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[6] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[7] YANG Hong,CAO WenMing,CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong. Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products [J]. Scientia Agricultura Sinica, 2022, 55(6): 1213-1226.
[8] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[9] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[10] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[11] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[12] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[13] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[14] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[15] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!