Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4118-4130.doi: 10.3864/j.issn.0578-1752.2022.21.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes

DU JinXia(),LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing()   

  1. College of Agriculture, Guangxi University/State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources/ Guangxi Key Laboratory of Sugarcane Biology, Nanning 530005
  • Received:2022-07-18 Accepted:2022-08-11 Online:2022-11-01 Published:2022-11-09
  • Contact: MuQing ZHANG E-mail:2448603739@qq.com;zmuqing@163.com

Abstract:

【Objective】Sugarcane leaf scald disease is an important bacterial disease affecting sugarcane yield. Selection of disease-resistant genotypes can effectively reduce the incidence of this disease. This study aimed to explore the leaf-scald resistance of sugarcane genotypes, standardize resistance evaluation method, and provide a basis for the selection and utilization of germplasm resources of sugarcane. 【Method】Xanthomonas albilineans JG43 isolated from Guitang 46, was used as inoculum on 70 different sugarcane genotypes using the decapitation method by placing 500 mL of bacterial suspension on the surface previously cut above the apical meristem with scissors dipped in the inoculum suspension of 108 CFU/mL. The disease incidence (IC) was calculated at 14, 28, 42, 56, and 70 days post-inoculation (Dpi). The disease index (DI) and the area under the disease progress curve (AUDPC) were calculated according to the disease severity of leaf scald in sugarcane. Variance, principal component, and discriminant analysis were performed using SPSS 25.0 software. Among them, a general linear model procedure (PROC) and the square sum model of type III were used to analyze the variance, with IC, DI and AUDPC as dependent variables, genotype, block and days post-inoculation as fixed factors. After the original data were processed by standardization (Z-score), principal component analysis was carried out by KOM and Bartlett sphere test. The Euclidean metric was calculated for cluster analysis using the WPGMA method of DPS 9.50 software. The discriminant analysis was performed to evaluate the clustering results according to Fisher’s criterion. 【Result】Some genotypes displayed white pencil lines at 14 dpi, then gradually expanded to the edge at 28 dpi. The leaves began yellowing or albinism from the edge to the veins at 42 dpi, then curled inward and died at 56 dpi. The severely infected plant withered and eventually died at 70 dpi. Variance analysis exhibited highly significant effects for IC, DI, and AUDPC among genotype (Gen), days post-inoculation (Dpi), and their interactions effect (Gen × Dpi) (P<0.01). Approximately 42% of the total sum of square was attributed to Dpi effect, indicating significant differences among genotypes resistance across the days post-inoculation. At 56 dpi, the disease reached a steady plateau, and the data in this period could be better divided among sugarcane genotypes. The results of discriminant and cluster analysis showed that 70 genotypes were divided into five different groups, including 15 highly resistant, 14 resistant, 15 moderate, 11 susceptible, and 15 highly susceptible genotypes. 【Conclusion】The resistance of sugarcane genotypes to leaf scald was assessed using the decapitation method, the IC, DI and AUDPC at 56 dpi were used as the evaluation indicators. The combined method of clustering and discriminant analysis could improve the accuracy of clustering results. Fifteen genotypes of high resistance to leaf scald were assessed and used for the sugarcane breeding program in China, including Zhongzhe 9, Zhongzhe 4, Zhongzhe 2, GUC19, GUC8, Yunrui 03-103, Yunrui 05-649, Yunrui 05-182, Yunrui 05-367, Yunrui 89-159, Funong 11601, Funong 09-4059, Guitang 02-467, Guitang 08-297, ROC22.

Key words: sugarcane, leaf scald, disease resistance, cluster analysis, principal component analysis, discrimination analysis

Table 1

Disease severity of leaf scald in sugarcane"

分级Grade 症状Symptom
0级Score 0 无症状Asymptomatic
1级Score 1 1—2条白色铅笔线One or two white pencil lines
2级Score 2 超过2条白色铅笔线More than two white pencil lines
3级Score 3 叶片变白或黄化Chlorotic or yellowing leaf
4级Score 4 叶片坏死Leaf necrosis
5级Score 5 植株死亡Plant death

Fig. 1

Symptoms of leaf scald on sugarcane leaves at different days post- inoculation (dpi) a: Healthy leaves; b: Diseased leaves at 14th day post-inoculation (dpi); c: Diseased leaves at 28th day post-inoculation (dpi); d: Diseased leaves at 42nd day post-inoculation (dpi); e: Diseased leaves at 56th day post-inoculation (dpi); f: Diseased leaves at 70th day post-inoculation (dpi)"

Table 2

Variance analysis for disease index (DI), incidence (IC) and the area under the disease progress curve (AUDPC)"

变异来源
Source of variation
自由度
DF
均方
Mean square
F
F value
方差占比
SS (%)
发病率Incidence
基因型Genotype 69 3479.33 10.56*** 18.98
接种后时间Days post-inoculation 4 135402.62 410.83*** 42.82
区组Block 2 66.04 0.20ns 0.01
基因型×接种后时间Genotype×Days post-inoculation 276 916.66 2.78*** 20.00
误差Error 698 329.58 18.19
病情指数Disease index
基因型Genotype 69 2647.15 12.00*** 20.13
接种后时间 Days post-inoculation 4 96849.43 438.91*** 42.69
区组Block 2 176.95 0.80ns 0.04
基因型×接种后时间Genotype×Days post-inoculation 276 663.09 3.01*** 20.17
误差Error 698 220.66 16.97
病害进展曲线下面积Area under the disease progress curve
基因型Genotype 69 1825929.17 12.11*** 21.12
接种后时间 Days post-inoculation 4 62974060.05 417.56*** 42.22
区组Block 2 89025.78 0.59ns 0.03
基因型×接种后时间Genotype×Days post-inoculation 276 410381.89 2.72*** 18.99
误差Error 698 150813.87

Table 3

Eigenvectors, contribution rate, accumulative contribution rate, factor weight and loading matrix of principal components of incidence and disease index at different days post-inoculation (dpi)"

参数 Parameter 第1主成分 Component 1 第2主成分 Component 2 第3主成分 Component 3
IC-14 dpi 0.565 0.692 0.297
IC-28 dpi 0.777 0.465 -0.014
IC-42 dpi 0.807 -0.125 -0.468
IC-56 dpi 0.801 -0.421 -0.043
IC-70 dpi 0.540 -0.591 0.524
DI-14 dpi 0.577 0.670 0.291
DI-28 dpi 0.773 0.510 0.006
DI-42 dpi 0.817 -0.110 -0.483
DI-56 dpi 0.801 -0.442 -0.136
DI-70 dpi 0.602 -0.550 0.504
特征值Eigenvectors 5.11 2.46 1.17
贡献率Contribution rate (%) 51.10 24.56 11.74
累计贡献率Accumulative contribution rate (%) 51.10 75.66 87.40
因子权重Factor weight (%) 58.47 28.10 13.43

Fig. 2

Incidence (IC) and disease index (DI) of 70 sugarcane genotypes at different days post-inoculation (Dpi) Lowercase letters indicate the significant difference in IC and DI at different days post-inoculation (Dpi) (P<0.05)"

Fig. 3

Cluster analysis of resistance to leaf scald of 70 sugarcane genotypes"

Table 4

Cluster and discriminate analysis for the leaf scald resistance of sugarcane genotypes"

供试基因型
Tested genotypes
亲本组合
Parental combination
病害发展
曲线下面积
AUDPC
发病率
IC (%)
病情指数
DI
聚类分析
Cluster group
判别分类
Discriminate group
后验概率
Posterior probability
中蔗9号
ZZ9
新台糖25号×云瑞89-7
ROC25×YR 89-7
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
中蔗4号
ZZ4
新台糖25号×云瑞89-7
ROC25×YR 89-7
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
中蔗2号
ZZ2
新台糖25号×云瑞89-7
ROC25×YR 89-7
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
中蔗6号
ZZ6
新台糖25号×云瑞89-7
ROC25×YR 89-7
770.00±22.17 44.44±9.62 38.89±11.71 MR MR 0.954
中蔗5号
ZZ5
新台糖22号×云瑞03-103
ROC22×YR03-103
466.67±20.42 33.33±0.00 31.11±3.85 R R 0.975
GUC33 CP49-50×CP96-1252 1843.33±38.53 66.67±8.86 63.33±2.14 HS HS 1.000
GUC19 CP49-50×CP96-1252 0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
GUC3 CP88-1762×CP96-1252 980.00±16.81 33.33±8.86 33.33±2.86 MR MR 0.956
GUC37 CP88-1762×CP96-1252 692.22±9.75 50.00±0.00 50.00±0.00 MR MR 0.844
GUC2 CP88-1762×CP96-1252 1524.44±58.72 88.89±19.25 73.33±11.54 HS HS 1.000
GUC23 HoCP01-157×CP14-096 1329.97±50.26 66.67±8.87 56.67±20.81 HS HS 0.978
GUC1 HoCP01-157×CP14-096 295.56±17.44 61.11±4.69 42.22±6.78 S S 0.987
GUC16 HoCP01-157×CP14-096 420.00±14.00 66.67±28.87 33.33±11.55 S S 0.996
GUC8 HoCP01-157×CP14-096 0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
供试基因型
Tested genotypes
亲本组合
Parental combination
病害发展
曲线下面积
AUDPC
发病率
IC (%)
病情指数
DI
聚类分析
Cluster group
判别分类
Discriminate group
后验概率
Posterior probability
GUC34 CP00-1100×Q209 592.67±27.59 66.67±28.87 50.00±17.32 S S 0.995
GUC13 CP00-1100×Q209 323.56±25.03 17.78±6.77 10.67±2.24 R R 0.828
GUC9 CP00-1100×Q209 379.17±14.36 19.44±1.35 18.61±2.01 R R 0.969
GUC15 CP89-2143×CP72-1210 1617.78±61.23 50.00±0.00 46.67±5.77 MR HS 0.640
GUC35 CP89-2143×CP72-1210 626.89±6.45 33.33±0.00 31.11±3.85 R R 0.831
GUC25 CP89-2143×CP72-1210 601.11±2.00 31.67±0.00 26.67±6.46 R R 0.831
云瑞03-394
YR 03-394
德蔗93-88×云瑞99-634
Dezhe 93-88×YR 99-634
373.33±6.94 44.44±9.62 35.56±7.69 R R 0.885
云瑞07-4677
YR 07-4677
德蔗93-88×云斑F299-546
Dezhe 93-88×Yunban F299-546
560.00±5.06 50.00±5.00 40.00±3.00 MR MR 0.725
云瑞06-4674
YR 06-4674
德蔗93-88×云斑F299-546
Dezhe 93-88×Yunban F299-546
1680.00±24.29 66.67±8.86 60.00±4.64 HS HS 1.000
云瑞06-2416
YR 06-2416
德蔗93-94×云斑F303-917
Dezhe 93-94×Yunban F303-917
1353.33±7.05 66.67±8.86 60.00±6.45 HS HS 0.981
云瑞05-770
YR 05-770
德蔗93-88×云瑞03-409
Dezhe 93-88×YR 03-409
684.44± 8.58 66.67±8.86 53.33±3.09 S S 0.993
云瑞05-784
YR 05-784
新台糖10号×云瑞03-403
ROC10×YR 03-403
1765.56±46.79 72.22±5.45 70.00±21.86 HS HS 1.000
云瑞05-649
YR 05-649
新台糖10号×云瑞03-117
ROC10×YR 03-117
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
云瑞05-367
YR 05-367
新台糖10号×云瑞03-405
ROC10×YR 03-405
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
云瑞03-425
YR 03-425
新台糖10号×云瑞99-546
ROC10×YR 99-546
816.67±34.63 50.00±6.67 50.00±6.67 MR MR 0.925
云瑞03-417
YR 03-417
新台糖10号×云瑞99-546
ROC10×YR 99-546
1306.67±34.63 83.33±28.86 73.33±8.86 HS HS 0.993
云瑞05-49
YR 05-49
新台糖23号×崖城90-56
ROC23×Yacheng 90-56
1505.78±42.16 66.67±8.86 62.22±1.17 HS HS 0.999
云瑞03-103
YR 03-103
CP72-1210×湛蔗74-141
CP72-1210×Zhanzhe 74-141
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
云瑞05-182 YR 05-182 未知Unknown 0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
云瑞89-159 YR 89-159 未知Unknown 0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
云瑞05-179 YR 05-179 云瑞99-178×德蔗93-88
YR99-178×DZ93-88
618.31±5.78 50.00±0.00 39.44±5.85 MR MR 0.816
新台糖10号ROC10 新台糖5号×F152
ROC5×F152
230.22±5.46 44.44±9.62 22.22±2.23 R R 0.988
新台糖22号ROC22 新台糖5号×69-463
ROC5×69-463
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
新台糖23号ROC23 F166×74-575 318.89±4.53 27.78±5.46 27.78±5.46 R R 0.999
新台糖7号ROC7 F160×60-2321 626.67±6.05 68.33±5.17 45.00±3.47 S S 0.996
新台糖1号ROC1 F146×P58-19 85.56±4.30 27.78±5.46 12.22±3.47 R R 0.999
新台糖16号ROC16 F171×74-575 1610.00±28.49 83.33±8.87 76.67±5.17 HS HS 1.000
新台糖25号ROC25 79-6048×69-463 132.22±15.10 27.78±5.46 12.22±3.47 R R 0.999
福农94-0744
FN 94-0744
新台糖1号×崖城 73-512
ROC1×Yacheng 73-512
2061.13±96.83 66.67±7.74 63.33±5.08 HS HS 1.000
福农99-20169
FN 99-20169
新台糖10号×CP84-1198
ROC10×CP84-1198
836.11±43.28 44.44±9.62 39.44±5.85 MR MR 0.979
供试基因型
Tested genotypes
亲本组合
Parental combination
病害发展
曲线下面积
AUDPC
发病率
IC (%)
病情指数
DI
聚类分析
Cluster group
判别分类
Discriminate group
后验概率
Posterior probability
福农36号
FN 36
新台糖10号×桂糖91-116
ROC10×GT 91-116
1050.00±0.00 50.00±0.00 50.00±0.00 MR MR 0.982
福农41号
FN 41
新台糖20号×粤糖91-976
ROC20×Yuetang 91-976
1054.67±36.29 44.44±9.62 44.44±9.62 MR MR 0.998
福农11号
FN 11
新台糖20号×粤糖91-976
ROC20×Yuetang 91-976
863.33±44.56 66.67±8.87 56.67±2.81 S S 0.982
福农10-2819
FN 10-2819
新台糖22号×CP93-1634
ROC22×CP93-1634
963.67±31.74 34.44±15.03 29.22±13.33 MR MR 0.951
福农5号
FN 5
新台糖22号×崖城73-512
ROC22×Yacheng 73-512
124.44±17.43 27.78±5.45 17.78±6.77 R R 0.999
福农83-36
FN 83-36
CP49-50×福农 57-18
CP49-50×FN 57-18
1656.67±7.39 72.22±5.45 72.22±5.45 HS HS 1.000
福农95-1702
FN 95-1702
CP72-1210×粤糖73-204
CP72-1210×Yuetang 73-204
941.11±9.76 66.67±8.87 56.67±2.81 S S 0.963
福农10-14405
FN 10-14405
粤糖91-976×闽糖86-05
Yuetang 91-976×Mintang 86-05
886.67±23.46 50.00±6.67 40.00±3.33 MR MR 0.969
福农09-4059
FN 09-4059
粤糖93-159×云瑞91-790
Yuetang 93-159×YR 91-790
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
福农09-7111
FN 09-7111
桂糖96-44×新台糖11号
GT 96-44×ROC11
1376.67±29.23 66.67±8.86 50.00±6.05 HS HS 0.996
福农11-2907
FN 11-2907
桂糖96-211×云瑞 05-679
GT 96-211×YR 05-679
361.67±44.56 58.33±8.86 51.67±2.81 S S 0.969
福农07-3206 FN 07-3206 90-1211×77-797 343.00±9.11 50.00±0.00 38.33±2.88 R R 0.626
福农7409
FN 7409
福农95-1702×崖城84-153
FN 95-1702×Yacheng 84-153
886.67±11.16 44.44±9.62 28.89±2.09 MR MR 0.985
福农11-601 FN 11-601 未知Unknown 0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
桂糖08-297
GT 08-297
新台糖1号×粤糖91-976
ROC1×Yuetang 91-976
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
桂糖02-237
GT 02-237
新台糖1号×粤糖91-976
ROC1×Yuetang 91-976
1050.00±6.73 50.00±0.00 43.33±5.77 MR MR 0.987
桂糖00-245
GT 00-245
新台糖10号×CP72-1210
ROC10×CP72-1210
295.56±7.77 38.89±9.62 35.56±3.84 R R 0.988
桂糖04-1001
GT 04-1001
新台糖22号×桂糖92-66
ROC22×GT 92-66
622.22±9.23 44.44±8.86 35.56±6.05 MR MR 0.750
桂糖04-1045
GT 04-1045
新台糖23号×桂糖42号
ROC23×GT 42
1438.89±18.26 66.67±8.86 56.67±2.21 HS HS 0.998
桂糖02-467
GT 02-467
新台糖23号×CP84-1198
ROC23×CP84-1198
0.00±0.00 0.00±0.00 0.00±0.00 HR HR 1.000
桂糖46号
GT 46
新台糖25号×粤糖 85-177
ROC25×Yuetang 85-177
1378.86±5.31 90.00±8.49 45.66±3.47 HS HS 1.000
桂糖05-2605
GT 05-2605
粤糖85-177×CP57-614
Yuetang 85-177×CP57-614
222.23±5.31 50.00±0.00 23.89±3.47 R R 0.933
桂糖02-390
GT 02-390
粤糖85-177×桂糖92-66
Yuetang 85-177×GT 92-66
1057.78±13.47 72.22±0.00 53.33±5.77 S S 0.597
桂糖05-2743
GT 05-2743
新台糖23号×HoCP93-750
ROC23×HoCP93-750
1096.67±27.08 66.67±8.86 56.67±2.81 S S 0.699
桂糖03-91
GT 03-91
新台糖10×桂糖73-167
ROC10×GT73-167
1252.22±17.07 50.00±0.00 50.00±0.00 MR MR 0.990
桂糖07-713 GT 07-713 未知Unknown 435.56±15.54 77.78±8.49 62.22±3.79 S S 1.000

Table 5

Variation in the identification indexes of resistance to leaf scald among experimental varieties"

抗性等级
Grade of
resistance
供试基因型
Tested genotype
数量
Number
平均值多重比较 Mean multiple comparison
发病率
IC
病情指数
DI
病害进展曲线下面积
AUDPC
高抗HR ZZ9、ZZ4、ZZ2、GUC19、GUC8、YR03-103、YR05-649、YR05-182、YR05-367、YR89-159、ROC22、FN11601、FN09-4059、GT02-467、GT08-297 15 0.00±0.00A 0.00±0.00A 0.00±0.00A
抗R ZZ5、GUC13、GUC9、YR03-394、ROC10、ROC23、ROC25、ROC1、FN5、FN07-3206、GT05-2605、GT 00-245、GUC25、GUC35 14 34.98±11.52B 24.75±9.95B 300.13±44.99B
中抗/中感
MR/MS
ZZ6、GUC3、GUC37、YR07-4677、YR05-179、YR03-425、FN10-14405、FN10-2819、FN7409、FN99-20169、FN41、FN36、GT04-1001、GT02-237、GT03-91 15 48.17±6.06C 32.59±7.79C 670.49±83.57C
感病S GUC34、GUC1、GUC16、YR05-770、ROC7、FN95-1702、FN11、FN11-2907、GT02-390、GT05-2743、GT07-713 11 53.72±6.97D 43.76±9.30D 916.07±65.59D
高感HS GUC33、GUC23、GUC2、YR06-4674、YR06-2416、YR05-49、YR05-784、YR03-417、ROC16、FN09-7111、FN83-36、FN94-0744、GT04-1045、GT46、GUC15 15 68.05±13.81E 57.47±12.62E 1658.16±138.68E
[14] GARCES F F, GUTIERREZ A, HOY J W. Detection and quantification of Xanthomonas albilineans by qPCR and potential characterization of sugarcane resistance to leaf scald. Plant Disease, 2013, 98(1): 121-126.
[15] LOPES S A, DAMANN K E, HOY J W, GRISHAM M P. Infectivity titration for assessing resistance to leaf scald among sugarcane cultivars. Plant Disease, 2001, 85(6): 592-596.
[16] 吴广悦, 李奕莎, 李美霖, 张桂英, 陈保善, 张木清. 广西蔗区甘蔗白条病菌的鉴定与致病力分析. 植物病理学报, 2022, 52(1): 9-16.
WU G Y, LI Y S, LI M L, ZHANG G Y, CHEN B S, ZHANG M Q. Identification and pathogenicity analysis of Xanthomonas albilineans causing sugarcane leaf scald in Guangxi. Acta Phytopathologica Sinica, 2022, 52(1): 9-16. (in Chinese)
[17] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价. 作物学报, 2021, 47(8): 1531-1539.
FU H Y, ZHANG T, PENG W J, DUAN Y Y, XU Z X, LIN Y H, GAO S J. Identification of resistance to leaf scald in newly released sugarcane varieties at seeding stage by artificial inoculation. Acta Agronomica Sinica, 2021, 47(8): 1531-1539. (in Chinese)
[18] ROTT P, FLEITES L, MARLOW G, ROYER M, GABRIEL D W. Identification of new candidate pathogenicity factors in the xylem-invading pathogen Xanthomonas albilineans by transposon mutagenesis. Molecular Plant-Microbe Interactions, 2011, 24(5): 594-605.
[19] 肖春芳, 王甄, 张宏, 闫雷, 沈艳芬. 不同马铃薯品种对晚疫病的田间抗性评价. 中国植保导刊, 2022, 42(5): 44-48+19.
XIAO C F, WANG Z, ZHANG D H, YAN L, SHEN Y F. Field resistance evaluation of potato cultivars to late blight. China Plant Protection, 2022, 42(5): 44-48+19. (in Chinese)
[20] ZHU Y, ABDELRAHEEM A, WHEELER T A, DEVER J K, WEDEGAERTNER T, HAKE K D, ZHANG J F. Interactions between cotton genotypes and Fusarium wilt race 4 isolates from Texas and resistance evaluation in cotton. Crop Science, 2021, 61(3): 1809-1825.
[21] 赵丽红. 棉花黄萎病抗性评价关键技术及分子检测方法研究[D]. 北京: 中国农业科学院, 2016.
ZHAO L H. Study on key technology of cotton verticillium wilt resistance evaluation and molecular identification method[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[1] KHAN A, JIANG H T, BU J Y, ADNAN M, GILLANI S W, HUSSAIN M A, ZHANG M Q. Untangling the rhizosphere bacterial community composition and response of soil physiochemical properties to different nitrogen applications in sugarcane field. Frontiers in Microbiology, 2022, 13: 1-12.
[2] LUGTENBERG B. Principles of plant-microbe interactions. Microbes for Sustainable Agriculture. Springer Nature, 2015. 17-24.
[3] ZHANG R Y, SHAN H L, LI W F, CANG X Y, WANG X Y, YIN J, LUO Z M, HUANG Y K. First report of sugarcane leaf scald caused by Xanthomonas albilineans in the province of Guangxi, China. Plant Disease, 2017, 101(8): 1541.
[4] LING H L, NTAMBO M S, ROTT P C, WANG Q N, LIN Y H, FU H Y, GAO S J. Molecular detection and prevalence of Xanthomonas albilineans, the causal agent of sugarcane leaf scald, in China. Crop Protection, 2018, 109: 17-23.
[5] FLEITES L A, MENSI I, GARGANI D, ZHANG S, ROTT P, GABRIEL D W. Xanthomonas albilineans OmpA1 appears to be functionally modular, and both the OMC and C-like domains are necessary for leaf scald disease of sugarcane. Molecular Plant- Micorobe Interactions, 2013, 26(10): 1200-1210.
[6] DUAN Y Y, ZHANG Y Q, XU Z X, LIN Y, MAO L R, WANG W H, DENG Z H, HUANG M T, GAO S J. First report of Xanthomonas albilineans causing leaf scald on two chewing cane clones in Zhejiang province, China. Plant Disease, 2021, 105(2): 485.
[7] BIRCH R G. Xanthomonas albilineans and the antipathogenesis approach to disease control. Molecular Plant Pathology, 2001, 2(1): 1-11.
[8] CERVANTES-ROMERO B, PEREZ-RODRIGUEZ P, ROTT P, VALDEZ-BALERO A, OSNAYA-GONZALEA M, ROBLEDO-PAZ A, HERNANDEZ-JUAREZ C, CROSSA J, ROSAS-SAITO G H, SILVA-ROJAS H V. Distribution, phylogeny, and pathogenicity of Xanthomonas albilineans causing sugarcane leaf scald in Mexico. Crop Protection, 2021, 150(2): 105799.
[9] DAUGROIS J H, BOISNE-NOC B R, CHAMPOISEAU B P, BULLET P, ROTT P. The revisited infection cycle of xanthomonas albilineans, the causal agent of leaf scald of sugarcane. Functional Plant Science & Biotechnology, 2012, 6(2): 91-97.
[10] PATRO T S S K, RAO G V N. Reaction of sugarcane clones to leaf scald disease incited by Xanthomonas albilineans. Journal of Mycology and Plant Pathology, 2006, 36(2): 241-243.
[11] EGAN B T. Evaluation of the aluminum cap method for leaf scald disease resistance testing in Queensland. Proceedings of the International Society of Sugarcane Technologists, 1969, 13: 1153-1158.
[12] ROTT P, SOUPA D, BRUNET Y, FELDMANN P, LETOURMY P. Leaf scald (Xanthomonas albilineans) incidence and its effect on yield in seven sugarcane cultivars in Guadeloupe. Plant Pathology, 1995, 44(6): 1075-1084.
[13] GUTIERREZ A, GARCES F F, HOY J W. Evaluation of resistance to leaf scald by quantitative PCR of Xanthomonas albilineans in sugarcane. Plant Disease, 2016, 100(7): 1331-1338.
[22] REIS E M, ZANATTA M, CARREGA P, PEIS A C. Asian soybean rust control efficacy calculated with AUDPC and with final severity data. Summa Phytopathology, 2022, 48(1): 28-31.
[23] IRFAQ M, AJAB M, MA H X, KHATTAK G. Assessment of genes controlling area under disease progress curve (AUDPC) for stripe rust (P. Striiformis F. Sp. Tritici) in two wheat (Triticum Aestivum L.) crosses. Cytology Genetics, 2009, 4: 25-38.
[24] ZHANG R Y, WANG X Y, SHAN H L, LI J, LI W F, CANG X Y, LUO Z M, YIN J, HUANG Y K. Identification and phylogenetic analysis of Xanthomonas albilineans (Ashby) dowson based on multiple gene sequences in Yunnan Province, China. Sugar Tech, 2019, 21(5): 1-8.
[25] NTAMBO M S, MENG J Y, ROTT P C, ROYER M, LIN L H, ZHANG H L, GAO S J. Identification and characterization of Xanthomonas albilineans causing sugarcane leaf scald in China using multilocus sequence analysis. Plant Pathology, 2019, 68(2): 269-277.
[26] 李文凤, 单红丽, 张荣跃, 仓晓燕, 王晓燕, 尹炯, 罗志明, 黄应昆. 广西蔗区检测发现检疫性病害甘蔗白条病. 中国农学通报, 2018, 34(13): 144-149.
LI W F, SHAN H L, ZHANG R Y, CANG X Y, WANG X Y, YIN J, LUO Z M, HUANG Y K. Sugarcane leaf scald disease found in Guangxi sugarcane region. Chinese Agricultural Science Bulletin, 2018, 34(13): 144-149. (in Chinese)
[27] RICAUD C, RYAN C, RICAUD C, EGAN B T, GILLASPIE A G, HUGHES C G. Disease of Sugarcane Major Disease. Amsterdam: Elsevier Science Press, 1989: 39-58.
[28] COMSTOCK J C. Outbreak of leaf scald of sugarcane, caused by Xanthomonas albilineans, in Florida. Plant Disease, 1992, 76(4): 426.
[29] CERVANTES-ROMERO B, PEREZ-RODRIGUES P, ROTT P, VALDEZ-BALERO A, SILVA-ROJAS H V. Distribution, phylogeny, and pathogenicity of Xanthomonas albilineans causing sugarcane leaf scald in mexico. Crop Protection, 2021, 150(2): 105799.
[30] PAN Y B, GRISHAM M P, BURNER D M. A polymerase chain reaction protocol for the detection of Xanthomonas albilineans, the causal agent of sugarcane leaf scald disease. Plant Disease, 1997, 81(2): 189-194.
[31] LAKSHMANAN P, GEIJSKES R J, AITKEN K S, GROF C L P, BONNETT G D, SMITH G R. Sugarcane biotechnology: The challenges and opportunities. In Vitro Cellular Developmental Biology Plant, 2005, 41: 345-363.
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[3] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[4] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[7] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[8] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[9] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[10] LI Hao,WEI BenHui,HUANG JinLing,LI ZhiGang,WANG LingQiang,LIANG XiaoYing,LI SuLi. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane [J]. Scientia Agricultura Sinica, 2021, 54(3): 522-532.
[11] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[12] ZHUANG XinBo,CHEN YinJi,ZHOU GuangHong. The Mechanism of Myofibrillar Protein Gel Functionality Influenced by Modified Sugarcane Dietary Fiber [J]. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330.
[13] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,ZHU XiaoHui,ZENG Yan,PENG JiaYu,XIE RuLin,TAN HongWei,LI ZhongNing,SHEN XiaoWei,LIU XiHui. Research on Phosphorus Application Rate Based on Sugarcane Yield and Phosphorus Balance in Soil [J]. Scientia Agricultura Sinica, 2021, 54(13): 2818-2829.
[14] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[15] WANG XuanXuan,LIU ChunYu,XIE BeiYu,ZHANG ShuShu,WANG DanYang,ZHU ZhenYuan. Extraction Technology, Preliminary Structure and α-glucosidase Inhibition of Polysaccharide with Alkaline-Extracted from Sugarcane Peel [J]. Scientia Agricultura Sinica, 2021, 54(12): 2653-2665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!