Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2613-2628.doi: 10.3864/j.issn.0578-1752.2022.13.011

• HORTICULTURE • Previous Articles     Next Articles

Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut

CHEN Xu1(),HAO YaQiong1,NIE XingHua1,YANG HaiYing1,LIU Song1,WANG XueFeng2,CAO QingQin1,QIN Ling1(),XING Yu1()   

  1. 1College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206
    2Long Tan Forestry Station, Liyang 213300, Jiangsu
  • Received:2021-10-18 Accepted:2022-03-01 Online:2022-07-01 Published:2022-07-08
  • Contact: Ling QIN,Yu XING E-mail:13463609439@163.com;qinlingbac@126.com;xingyubua@163.com

Abstract:

【Objective】In the experiment, the quantitative, qualitative and pseudo-qualitative characteristics of 113 chestnut varieties (lines) were measured, their genetic variation were analyzed, characteristics differences among different groups were compared, SSR markers were associated with characteristics, more characteristics significantly associated with SSR markers were obtained, and the excellent allelic variation sites were excavated, so as to provide the references for the research on molecular assisted breeding of Chinese chestnut.【Method】Firstly, 38 quantitative, qualitative and pseudo-qualitative characteristics of bur and nut were determined and analyzed. Secondly, the significance and correlation analysis of quantitative characteristics were performed by SPSS and Graphpad software, and the genetic diversity of SSR markers was analyzed. Finally, the association analysis of characteristics and markers was carried out by general linear model (GLM) and mixed linear model (MLM) of TASSEL 2.1.【Result】In genetic diversity analysis, the average number of effective number of alleles (Ne), Shannon index (I), polymorphism information content (PIC>0.5), observed heterozygosity (Ho), and expected heterozygosity (He) of 21 pairs of SSR markers were 3.164, 1.269, 0.589, 0.593, and 0.635, respectively. They were divided into two main groups according to the analysis of population structure. On the other hand, the intermediate type of varieties was defined as one group in the cluster analysis, so that the characteristics differences could be compared precisely. In the analysis of qualitative and pseudo-qualitative characteristics, the diversity index varied from 0.139 to 1.567, and the characteristic with the highest genetic diversity was nut glossiness, while the lowest was the hilum margin. There were obvious differences in the frequency distribution of nut shape, glossiness, color and other characteristics in different groups. In the analysis of quantitative characteristics, the range of coefficient of variation was between 3.96% and 36.31%, the coefficient of variation in bur weight, total bur weight and single nut weight were all above 30% with a high degree of genetic variation; the coefficient of variation of nut shape index and water content were all below 10%, which had stable genetic characteristics. The correlation coefficients were all above 0.6, indicating the appearance characteristics of bur and nut were highly correlated. There were significant differences (P<0.05) in fruit shape and weight between Group 1 vs. Group 2 and Group 2 vs. Group 3. In the association analysis, 13 SSR markers were extremely significantly associated with 18 phenotypic characteristics in the GLM model and the interpretation rate of phenotypic variation ranged from 15.12% to 54.99%, while there were 6 SSR markers in the MLM model that were extremely significantly associated with 7 phenotypic characteristics and the interpretation rate of phenotypic variation ranged from 8.66% to 26.93%. 【Conclusion】In this study, SSR markers were associated with phenotypic characteristics, thirteen SSR markers were extremely significantly correlated with 20 phenotypic characteristics, such as nut single weight, which laid a foundation for molecular assisted breeding of Chinese chestnut.

Key words: Chinese chestnut, characteristic, SSR, genetic diversity, association analysis

Table 1

Polymorphism of SSR markers"

引物
Marker
观察等位基因数
Na
有效等位基因数
Ne
Shannon指数
I
观测杂合度
Ho
期望杂合度
He
多态性信息含量
PIC
CmSI0396 4 2.553 1.069 0.708 0.608 0.542
CmSI0509 5 2.217 1.040 0.504 0.549 0.503
CmSI0561 8 1.988 1.132 0.460 0.497 0.477
CmSI0617 8 4.414 1.637 0.814 0.773 0.738
CmSI0658 6 4.454 1.589 0.796 0.775 0.740
CmSI0702 5 2.887 1.177 0.637 0.654 0.589
CmSI0735 6 2.753 1.199 0.646 0.637 0.568
CmSI0742 6 3.149 1.280 0.558 0.682 0.624
CmSI0800 13 5.240 1.959 0.708 0.809 0.786
CmSI0809 4 3.015 1.193 0.625 0.668 0.604
CmSI0853 6 3.835 1.518 0.681 0.739 0.699
CmSI0871 5 1.895 0.768 0.531 0.472 0.384
CmSI0883 6 3.776 1.531 0.681 0.735 0.702
CmSI0933 3 1.822 0.799 0.469 0.451 0.408
CmSI0938 4 1.774 0.740 0.204 0.436 0.368
CmSI0922 8 4.884 1.766 0.664 0.795 0.769
CmSI0930 11 4.617 1.838 0.779 0.783 0.761
CmSI0881 6 3.278 1.442 0.478 0.695 0.658
CmSI0614 6 4.464 1.590 0.805 0.776 0.740
CmSI0404 3 1.399 0.510 0.212 0.285 0.253
CmSI0747 3 2.042 0.880 0.496 0.510 0.456
均值 Average 6 3.164 1.269 0.593 0.635 0.589

Fig. 1

Distribution of Delta K values for structure analysis (A) and population structure diagram (B) in chestnut cultivars (lines)"

Fig. 2

UPGMA clustering graph in chestnut cultivars (lines)"

Table 2

Frequency distribution qualitative characters in chestnut cultivars (lines)"

性状
Character
频率分布 Frequency distribution (%) 多样性指数H'
Diversity index
1 2 3 4 5
开裂方式Bur crack 32.74 63.72 3.54 0.771
刺束分支角Prickle angle 4.42 65.49 30.09 0.777
刺束密度Prickle density 5.31 29.20 65.49 0.793
刺束颜色Prickle color 11.50 88.50 0.357
坚果颜色均匀度Nut color evenness 71.68 22.12 6.19 0.745
坚果光泽Nut glossiness 21.24 30.09 13.27 20.35 15.04 1.567
果顶果肩Apex 26.55 35.40 35.40 2.65 1.184
茸毛分布Fuzz distribution 56.64 22.12 21.24 0.985
茸毛颜色Fuzz color 25.66 74.34 0.570
茸毛密度Fuzz density 30.97 25.66 28.32 15.04 1.354
筋线明显程度Obvious of stripes 76.11 20.35 3.54 0.650
底座大小Hilum size 9.73 50.44 39.82 0.939
底座光滑度Hilum smoothing 44.25 55.75 0.687
涩皮剥离难易程度Difficulty of peeling inner skin 12.39 87.61 0.375
刺苞形状Bur shape 24.78 74.34 0.88 0.608
坚果颜色Nut color 2.65 36.28 14.16 41.59 5.31 1.262
边果形状Nut shape 77.88 22.12 0.528
底座接线Hilum margin 97.35 0.88 1.77 0.139
种仁颜色Kernel color 5.31 87.61 7.08 0.459

Table 3

Frequency distribution and difference comparison of qualitative characters in chestnut cultivars (lines)"

性状
Character
组别
Groups
频率分布 Frequency distribution (%)
1 2 3 4 5
开裂方式
Bur crack
1 47.06 47.06 5.88
2 29.33 68.00 2.67
3 33.33 61.90 4.76
刺束分支角
Prickle angle
1 5.88 58.82 35.29
2 5.33 65.33 29.33
3 71.43 28.57
刺束密度
Prickle density
1 5.88 23.53 70.59
2 5.33 32.00 62.67
3 4.76 23.81 71.43
刺束颜色
Prickle color
1 11.76 88.24
2 10.67 89.33
3 14.29 85.71
坚果颜色均匀度
Nut color evenness
1 70.59 23.5 5.88
2 76.00 17.33 6.67
3 57.14 38.10 4.76
坚果光泽
Nut glossiness
1 29.41 41.18 11.76 11.76 5.88
2 20.00 26.67 10.67 22.67 20.00
3 19.05 33.33 23.81 19.05 4.76
果顶果肩
Apex
1 17.65 29.41 52.94
2 28.00 36.00 33.33 2.67
3 28.57 38.10 28.57 4.76
茸毛分布
Fuzz distribution
1 88.24 5.88 5.88
2 48.00 25.33 26.67
3 61.90 23.81 14.29
茸毛颜色
Fuzz color
1 23.53 76.47
2 26.67 73.33
3 23.81 76.19
茸毛密度
Fuzz density
1 35.29 41.18 11.76 11.76
2 29.33 18.67 32.00 20.00
3 33.33 38.10 28.57
筋线明显程度
Obvious of stripes
1 76.47 23.53
2 78.67 16.00 5.33
3 66.67 33.33
底座大小
Hilum size
1 23.53 58.82 17.65
2 6.67 41.33 52.00
3 9.52 76.19 14.29
性状
Character
组别
Groups
频率分布 Frequency distribution (%)
1 2 3 4 5
底座光滑度
Hilum smoothing
1 29.41 70.59
2 48.00 52.00
3 42.86 57.14
涩皮剥离难易程度
Difficulty of peeling inner skin
1 23.53 76.47
2 9.33 90.67
3 14.29 85.71
刺苞形状
Bur shape
1 17.65 82.35
2 24.00 74.67 1.33
3 33.33 66.67
坚果颜色
Nut color
1 17.65 70.59 11.76
2 2.67 42.67 18.67 33.33 2.67
3 4.76 28.57 9.52 47.62 9.52
边果形状
Nut shape
1 47.06 52.94
2 85.33 14.67
3 76.19 23.81
底座接线
Hilum margin
1 88.24 11.76
2 98.67 1.33
3 100.00
种仁颜色
Kernel color
1 17.65 82.35
2 4.00 92.00 4.00
3 76.19 23.81

Table 4

Variation analysis for main quantitative characters in chestnut cultivars (lines)"

指标 Character 极小值 Minimum 极大值 Maximum 平均值 Average 标准差 S 变异系数 CV (%)
总苞重 Total bur weight (g) 11.93 120.83 65.91 22.02 33.41
苞重 Bur weight (g) 7.76 79.95 38.66 14.04 36.31
刺苞宽Bur width (mm) 50.80 105.31 80.54 10.77 13.38
刺苞厚Bur thickness (mm) 42.58 88.06 66.45 8.14 12.25
刺苞高Bur height (mm) 39.55 80.09 61.99 7.87 12.69
苞肉厚Bur skin thickness (mm) 1.52 5.48 3.63 0.974 26.80
刺束长Prickle length (mm) 6.80 18.66 13.77 2.21 16.08
刺苞的坚果数Nuts No./Bur 1.38 3.10 2.50 0.305 12.21
单粒重Single nut weight (g) 2.67 20.68 10.99 3.81 34.69
坚果厚Nut thickness (mm) 13.86 32.05 20.60 3.25 15.76
坚果宽Nut width (mm) 19.42 39.53 31.08 3.67 11.79
坚果高Nut height (mm) 17.45 32.63 26.60 2.71 10.19
果形指数Nut shape index 0.788 0.953 0.858 0.034 3.96
出实率Kernel yield (%) 22.23 56.84 41.27 5.80 14.05
含水量Water content (%) 44.46 60.69 52.03 3.57 6.85
可溶性糖含量Soluble sugar (%, DW) 8.63 19.75 13.21 2.08 15.76
直链淀粉含量Amylose (%, DW) 4.44 18.53 11.86 3.20 26.94
支链淀粉含量Amylopectin (%, DW) 28.52 75.64 53.15 10.15 19.09
总淀粉含量Total starch (%, DW) 40.22 85.18 65.01 9.39 14.45

Fig. 3

Frequency distribution among phenotype and nutrient in chestnut cultivars (lines)"

Fig. 4

Correlation analysis among phenotype and nutrient in chestnut cultivars (lines)"

Table 5

Difference comparison of quantitative characters in chestnut cultivars (lines)"

指标 Character 组1 Group1 组2 Group2 组3 Group3
总苞重Total bur weight (g) 56.29±17.47a 72.26±21.37b 51.03±16.40a
苞重Bur weight (g) 32.80±10.55a 42.68±13.88b 29.05±9.71a
刺苞宽Bur width (mm) 75.29±10.62a 83.62±9.81b 73.78±9.07a
刺苞厚Bur thickness (mm) 62.15±7.98a 68.94±7.12b 61.05±7.40a
刺苞高Bur height (mm) 57.34±7.09a 64.58±6.58b 56.54±7.96a
苞肉厚Bur skin thickness (mm) 3.30±0.82a 3.84±0.96b 3.18±0.89a
刺束长Prickle length (mm) 12.97±2.02a 14.18±2.10a 12.95±2.31a
刺苞的坚果数Nuts No./Bur 2.53±0.28a 2.49±0.30a 2.52±0.32a
单粒重Single nut weight (g) 9.24±3.05a 12.03±3.74b 8.67±2.87a
坚果厚Nut thickness (mm) 19.22±2.52a 21.42±3.12b 18.75±2.99a
坚果宽Nut width (mm) 29.78±3.47a 32.06±3.34b 28.63±3.35a
坚果高Nut height (mm) 25.63±2.71a 27.32±2.38b 24.82±2.71a
果形指数Nut shape index 0.86±0.04a 0.85±0.04a 0.87±0.02a
出实率Kernel yield (%) 41.69±4.50a 40.71±6.31a 42.95±4.10a
含水量Water content (%) 51.58±3.17a 52.13±3.56a 52.04±3.77a
可溶性糖含量Soluble sugar (%, DW) 12.62±2.11a 13.19±1.98a 13.83±2.19a
直链淀粉含量Amylose (%, DW) 12.94±2.93a 11.77±3.26a 11.21±2.81a
支链淀粉含量Amylopectin (%, DW) 52.51±11.56a 52.82±9.68a 55.09±9.96a
总淀粉含量Total starch (%, DW) 65.45±10.82a 64.58±9.02a 66.29±8.96a

Table 6

Association analysis results of GLM and MLM models"

性状
Character
位点
Loci
GLM MLM
P<0.01 R2 (%) P<0.01 R2 (%)
总苞重Total bur weight CmSI0883 0.0017 36.84
CmSI0930 0.0021 46.90
苞重Bur weight CmSI0883 0.0023 36.43
CmSI0930 0.001 49.07 0.0095 16.31
刺苞宽Bur width CmSI0883 0.0072 33.37
刺苞厚Bur thickness CmSI0883 0.0045 33.90
刺苞高Bur height CmSI0883 7.96E-04 37.47
刺束长Prickle length CmSI0702 0.0018 28.87
CmSI0883 0.0084 34.38
刺苞的坚果数Nuts No./Bur CmSI0800 0.0074 53.33 0.0027 19.99
单粒重Single nut weight CmSI0853 0.0021 38.84
CmSI0930 0.0092 42.86
坚果宽Nut width CmSI0930 0.0065 45.21
坚果高Nut height CmSI0883 0.0035 36.59
含水量Water content CmSI0735 6.71E-04 36.42
可溶性糖含量Soluble sugar CmSI0800 0.0085 26.93
刺束密度Prickle density CmSI0735 0.0064 26.79 0.0065 8.66
CmSI0742 0.0053 29.04
坚果颜色均匀度Nut color evenness CmSI0871 8.14E-05 30.05
筋线明显程度Obvious of stripes CmSI0800 0.0037 20.21
涩皮剥离难易程度Difficulty of peeling inner skin CmSI0561 7.94E-05 42.52
刺苞形状Bur shape CmSI0404 0.0061 15.12
坚果颜色Nut color CmSI0881 0.0076 36.49
底座接线Hilum margin CmSI0509 1.73E-06 45.52 1.20E-03 14.41
CmSI0881 5.96E-07 54.99 3.60E-03 16.29
种仁颜色Kernel color CmSI0617 0.0037 47.72 0.0041 17.93
CmSI0881 0.0033 37.95 0.0013 15.01
[1] 武燕奇, 郭素娟. 5个板栗品种(系)对持续干旱胁迫和复水的生理响应. 中南林业科技大学学报, 2017, 37(10): 67-74. doi: 10.14067/j.cnki.1673-923x.2017.10.011.
doi: 10.14067/j.cnki.1673-923x.2017.10.011
WU Y Q, GUO S J. Physiological Response of five Chinese chestnut varieties (clone) after drought stress and rewatering. Journal of Central South University of Forestry & Technology, 2017, 37(10): 67-74. doi: 10.14067/j.cnki.1673-923x.2017.10.011. (in Chinese)
doi: 10.14067/j.cnki.1673-923x.2017.10.011
[2] FAO. 2019. Value of agricultural production. http://faostat3.fao.org/.
[3] 田寿乐, 明桂冬, 张美勇, 单公华, 徐颖, 许林. 中国板栗育种进展. 第五届全国干果生产、科研进展学术研讨会论文集. 北京: 中国农业科学技术出版社, 2007: 92-97.
TIAN S L, MING G D, ZHANG M Y, SHAN G H, XU Y, XU L. Advances in Chinese Chestnut breeding// Proceedings of the 5th National Conference on Dry Fruit Production and Scientific Research Progress. Beijing: China Agricultural Science and Technology Press, 2007: 92-97. (in Chinese)
[4] FONT I FORCADA C, ORAGUZIE N, IGARTUA E, MORENO M Á, GOGORCENA Y. Population structure and marker-trait associations for pomological traits in peach and nectarine cultivars. Tree Genetics & Genomes, 2013, 9(2): 331-349. doi: 10.1007/s11295-012-0553-0.
doi: 10.1007/s11295-012-0553-0
[5] 左力辉, 张文林, 邱彤, 张军, 杨敏生. 新疆野苹果叶形性状变异及其与SSR标记关联分析. 园艺学报, 2015, 42(4): 759-768. doi: 10.16420/j.issn.0513-353x.2014-1030.
doi: 10.16420/j.issn.0513-353x.2014-1030
ZUO L H, ZHANG W L, QIU T, ZHANG J, YANG M S. Malus sieversii leaf traits variation and correlation analysis with SSR markers. Acta Horticulturae Sinica, 2015, 42(4): 759-768. doi: 10.16420/j.issn.0513-353x.2014-1030. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2014-1030
[6] FRESNEDO-RAMIREZ J, BINK M C A M, VAN DE WEG W E, FAMULA T R, CRISOSTO C H, TRETT T, GASIC K, GRADZIEL T M. QTL mapping of pomological traits in peach and related species breeding germplasm. Molecular Breeding, 2015, 35: 166.
doi: 10.1007/s11032-015-0357-7
[7] 聂兴华, 郑瑞杰, 赵永廉, 曹庆芹, 秦岭, 邢宇. 利用荧光SSR分子标记评估中国栗属植物遗传多样性. 中国农业科学, 2021, 54(8): 1739-1753.
NIE X H, ZHENG R J, ZHAO Y L, CAO Q Q, QIN L, XING Y. Genetic diversity evaluation of Castanea in China based on fluorescently labeled SSR. Scientia Agricultura Sinica, 2021, 54(8): 1739-1753. (in Chinese)
[8] 张馨方, 张树航, 李颖, 郭燕, 王广鹏. 基于SSR标记的燕山板栗种质资源遗传多样性分析. 中国农业大学学报, 2020, 25(4): 61-71. doi: 10.11841/j.issn.1007-4333.2020.04.07.
doi: 10.11841/j.issn.1007-4333.2020.04.07
ZHANG X F, ZHANG S H, LI Y, GUO Y, WANG G P. Genetic diversity analysis of chestnut germplasm in Yanshan region based on SSR markers. Journal of China Agricultural University, 2020, 25(4): 61-71. doi: 10.11841/j.issn.1007-4333.2020.04.07. (in Chinese)
doi: 10.11841/j.issn.1007-4333.2020.04.07
[9] 江锡兵, 龚榜初, 刘庆忠, 陈新, 吴开云, 邓全恩, 汤丹. 中国板栗地方品种重要农艺性状的表型多样性. 园艺学报, 2014, 41(4): 641-652. doi: 10.16420/j.issn.0513-353x.2014.04.008.
doi: 10.16420/j.issn.0513-353x.2014.04.008
JIANG X B, GONG B C, LIU Q Z, CHEN X, WU K Y, DENG Q E, TANG D. Phenotypic diversity of important agronomic traits of local cultivars of Chinese chestnut. Acta Horticulturae Sinica, 2014, 41(4): 641-652. doi: 10.16420/j.issn.0513-353x.2014.04.008. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2014.04.008
[10] 李颖, 张树航, 郭燕, 张馨方, 王广鹏. 211份板栗种质资源花序表型多样性和聚类分析. 中国农业科学, 2020, 53(22): 4667-4682. doi: 10.3864/j.issn.0578-1752.2020.22.013.
doi: 10.3864/j.issn.0578-1752.2020.22.013
LI Y, ZHANG S H, GUO Y, ZHANG X F, WANG G P. Catkin phenotypic diversity and cluster analysis of 211 Chinese chestnut germplasms. Scientia Agricultura Sinica, 2020, 53(22): 4667-4682. doi: 10.3864/j.issn.0578-1752.2020.22.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.22.013
[11] ZHEBENTYAYEVA T N, SISCO P H, GEORGI L L, JEFFERS S N, PERKINS M T, JAMES J B, HEBARD F V, SASKI C, NELSON C D, ABBOTT A G. Dissecting resistance to Phytophthora cinnamomi in interspecific hybrid chestnut crosses using sequence-based genotyping and QTL mapping. Phytopathology, 2019, 109(9): 1594-1604.
doi: 10.1094/PHYTO-11-18-0425-R
[12] KUBISIAK T L, NELSON C D, STATON M E, ZHEBENTYAYEVA T, SMITH C, OLUKOLU B A, FANG G C, HEBARD F V, ANAGNOSTAKIS S, WHEELER N, SISCO P H, ABBOTT A G, SEDEROFF R R. A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes, 2013, 9(2): 557-571. doi: 10.1007/s11295-012-0579-3.
doi: 10.1007/s11295-012-0579-3
[13] JI F Y, WEI W, LIU Y, WANG G P, ZHANG Q, XING Y, ZHANG S H, LIU Z H, CAO Q Q, QIN L. Construction of a SNP-based high-density genetic map using genotyping by sequencing (GBS) and QTL analysis of nut traits in Chinese chestnut (Castanea mollissima Blume). Frontiers in Plant Science, 2018, 9: 816. doi: 10.3389/fpls.2018.00816.
doi: 10.3389/fpls.2018.00816
[14] NISHIO S, HAYASHI T, YAMAMOTO T, TERAKAMI S, IWATA H, IMAI A, TAKADA N, KATO H, SAITO T. Bayesian genome-wide association study of nut traits in Japanese chestnut. Molecular Breeding, 2018, 38(8): 1-16. doi: 10.1007/s11032-018-0857-3.
doi: 10.1007/s11032-018-0857-3
[15] JIANG X B, TANG D, GONG B C. Genetic diversity and association analysis of Chinese chestnut (Castanea mollissima Blume) cultivars based on SSR markers. Brazilian Journal of Botany, 2017, 40(1): 235-246. doi: 10.1007/s40415-016-0321-8.
doi: 10.1007/s40415-016-0321-8
[16] 周必成, 欧阳绍湘, 周建仁, 黄发吉, 史涛, 屠和平, 熊冬连, 徐育海, 刘小武, 杨玉林, 许红霞. LY/T 1851-2009, 植物新品种特异性、一致性、稳定性测试指南——板栗[S]. 北京: 中国标准出版社, 2009.
ZHOU B C, OUYANG S X, ZHOU J R, HUANG F J, SHI T, TU H P, XIONG D L, XU Y H, LIU X W, YANG Y L, XU H X. LY/T 1851-2009, Guidelines for the conduct of tests for distinctness, uniformity and stability-Chestnut (Castanea mollissima Bl.). Beijing: Standards Press of China, 2009. (in Chinese)
[17] 刘庆忠. 板栗种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
LIU Q Z. Descriptors and Data Standard for Chestnut (Castanea mollissima Blume). Beijing: Chinese Agriculture Press, 2006. (in Chinese)
[18] UPOV. Guidelines for the conduct of tests for distinctness, uniformity and stability: Chestnut (Castanea mollissima Bl.) 2017.TG/124/4.
[19] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 植物新品种特异性、一致性和稳定性测试指南总则:GB/T 19557.1—2004[S]. 北京: 中国标准出版社, 2004.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. General directives for the conduct of tests of distinctness, uniformity and stability for new varieties of plants:GB/T 19557.1—2004[S]. Beijing: Standards Press of China, 2004. (in Chinese)
[20] 纪飞杨, 张惠真, 王广鹏, 张树航, 张卿, 房克凤, 邢宇, 曹庆芹, 秦岭. 板栗正反交后代坚果性状遗传倾向研究. 北京农学院学报, 2018, 33(4): 14-18. doi: 10.13473/j.cnki.issn.1002-3186.2018.0403.
doi: 10.13473/j.cnki.issn.1002-3186.2018.0403
JI F Y, ZHANG H Z, WANG G P, ZHANG S H, ZHANG Q, FANG K F, XING Y, CAO Q Q, QIN L. Studies on genetic tendency of nut characters in the progenies of reciprocal crosses in Castanea mollissima. Journal of Beijing University of Agriculture, 2018, 33(4): 14-18. doi: 10.13473/j.cnki.issn.1002-3186.2018.0403. (in Chinese)
doi: 10.13473/j.cnki.issn.1002-3186.2018.0403
[21] 曹小艳, 李志, 张卿, 秦岭, 邢宇. 不同板栗品种(系)抗性淀粉综合评价. 中国粮油学报, 2019, 34(7): 39-46. doi: 10.3969/j.issn.1003-0174.2019.07.008.
doi: 10.3969/j.issn.1003-0174.2019.07.008
CAO X Y, LI Z, ZHANG Q, QIN L, XING Y. Comprehensive evaluation of resistant starch in different Chinese chestnut varieties (lines). Journal of the Chinese Cereals and Oils Association, 2019, 34(7): 39-46. doi: 10.3969/j.issn.1003-0174.2019.07.008. (in Chinese)
doi: 10.3969/j.issn.1003-0174.2019.07.008
[22] 曹庆芹, 徐月, 冯永庆, 张瑞娟, 韩子德, 秦岭. 板栗基因组DNA不同提取方法的比较. 中国农学通报, 2007, 23(6): 160-163. doi: 10.3969/j.issn.1000-6850.2007.06.036.
doi: 10.3969/j.issn.1000-6850.2007.06.036
CAO Q Q, XU Y, FENG Y Q, ZHANG R J, HAN Z D, QIN L. Comparison studies on extracting genomic DNA of chestnut(Castanea mollissima. BL) by different methods. Chinese Agricultural Science Bulletin, 2007, 23(6): 160-163. doi: 10.3969/j.issn.1000-6850.2007.06.036. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2007.06.036
[23] NIE X H, WANG Z H, LIU N W, SONG L, YAN B Q, XING Y, ZHANG Q, FANG K F, ZHAO Y L, CHEN X, WANG G P, QIN L, CAO Q Q. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers. Journal of Integrative Agriculture, 2021, 20(5): 1277-1286.
doi: 10.1016/S2095-3119(20)63400-1
[24] BRYMAN A, CRAMER D. Quantitative data analysis with IBM SPSS 17, 18 & 19: A guide for social scientists. Routledge, 2012.
[25] MITTEER D R, GREER B D, FISHER W W, COHRS V L. Teaching behavior technicians to create publication-quality, single-case design graphs in graphpad prism 7. Journal of Applied Behavior Analysis, 2018, 51(4): 998-1010. doi: 10.1002/jaba.483.
doi: 10.1002/jaba.483
[26] FALUSH D, STEPHENS M, PRITCHARD J K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164(4): 1567-1587. doi: 10.1093/genetics/164.4.1567.
doi: 10.1093/genetics/164.4.1567
[27] LIU K J, MUSE S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9): 2128-2129. doi: 10.1093/bioinformatics/bti282.
doi: 10.1093/bioinformatics/bti282
[28] PEAKALL R, SMOUSE P E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-An update. Bioinformatics, 2012, 28(19): 2537-2539. doi: 10.1093/bioinformatics/bts460.
doi: 10.1093/bioinformatics/bts460
[29] PEAKALL R, SMOUSE P E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006, 6(1): 288-295.
doi: 10.1111/j.1471-8286.2005.01155.x
[30] 张彦军, 苟作旺, 王兴荣, 李玥, 祁旭升. 西北地区和尚头小麦遗传多样性及农艺性状的关联分析. 草业学报, 2019, 28(2): 142-155. doi: 10.11686/cyxb2018124.
doi: 10.11686/cyxb2018124
ZHANG Y J, GOU Z W, WANG X R, LI Y, QI X S. An analysis of genetic diversity and linked agronomic traits of Heshangtou wheat in northwest China. Acta Prataculturae Sinica, 2019, 28(2): 142-155. doi: 10.11686/cyxb2018124. (in Chinese)
doi: 10.11686/cyxb2018124
[31] 刘亚斌, 郭素娟, 孙传昊. 基于巢式分组设计的板栗刺苞与坚果形态多样性分析. 中南林业科技大学学报, 2020, 40(10): 51-60. doi: 10.14067/j.cnki.1673-923x.2020.10.006.
doi: 10.14067/j.cnki.1673-923x.2020.10.006
LIU Y B, GUO S J, SUN C H. Morphological diversity analysis of chestnut thorns bract and nuts based on nested grouping design. Journal of Central South University of Forestry & Technology, 2020, 40(10): 51-60. doi: 10.14067/j.cnki.1673-923x.2020.10.006. (in Chinese)
doi: 10.14067/j.cnki.1673-923x.2020.10.006
[32] 苏淑钗, 林莉, 邓钰薪, 雷恒久. 华北品种群板栗品质的综合评价. 经济林研究, 2009, 27(2): 20-27. doi: 10.3969/j.issn.1003-8981.2009.02.006.
doi: 10.3969/j.issn.1003-8981.2009.02.006
SU S C, LIN L, DENG Y X, LEI H J. Synthetic evaluation of chestnut cultivar groups in North China. Nonwood Forest Research, 2009, 27(2): 20-27. doi: 10.3969/j.issn.1003-8981.2009.02.006. (in Chinese)
doi: 10.3969/j.issn.1003-8981.2009.02.006
[33] 赖俊声, 江锡兵, 龚榜初, 杨龙, 汤丹. 板栗地方品种质量性状多样性分析. 浙江农业科学, 2016, 57(8): 1196-1200. doi: 10.16178/j.issn.0528-9017.20160814.
doi: 10.16178/j.issn.0528-9017.20160814
LAI J S, JIANG X B, GONG B C, YANG L, TANG D. Diversity analysis of quality traits of local varieties of Castanea mollissima. Journal of Zhejiang Agricultural Sciences, 2016, 57(8): 1196-1200. doi: 10.16178/j.issn.0528-9017.20160814. (in Chinese)
doi: 10.16178/j.issn.0528-9017.20160814
[34] 刘国彬, 兰彦平, 兰卫宗, 曹均. 板栗农家品种资源坚果表型性状分析. 江西农业大学学报, 2013, 35(5): 977-981, 987. doi: 10.13836/j.jjau.2013171.
doi: 10.13836/j.jjau.2013171
LIU G B, LAN Y P, LAN W Z, CAO J. An analysis of phenotypic traits of native chestnut varieties. Acta Agriculturae Universitatis Jiangxiensis, 2013, 35(5): 977-981, 987. doi: 10.13836/j.jjau.2013171. (in Chinese)
doi: 10.13836/j.jjau.2013171
[35] 刘国彬, 曹均, 兰彦平, 王金宝, 刘建玲, 兰卫宗. 板栗总苞与坚果表型多样性及其相关关系研究. 经济林研究, 2014, 32(2): 28-33. doi: 10.14067/j.cnki.1003-8981.2014.02.009.
doi: 10.14067/j.cnki.1003-8981.2014.02.009
LIU G B, CAO J, LAN Y P, WANG J B, LIU J L, LAN W Z. Phenotypic diversity of involucres and nut in Castanea mollissima and their relationship. Nonwood Forest Research, 2014, 32(2): 28-33. doi: 10.14067/j.cnki.1003-8981.2014.02.009. (in Chinese)
doi: 10.14067/j.cnki.1003-8981.2014.02.009
[36] 江锡兵, 龚榜初, 汤丹, 刘庆忠, 陈新, 吴开云, 邓全恩. 中国部分板栗品种坚果表型及营养成分遗传变异分析. 西北植物学报, 2013, 33(11): 2216-2224.
JIANG X B, GONG B C, TANG D, LIU Q Z, CHEN X, WU K Y, DENG Q E. Genetic variation of nut phenotype and nutrient of some of Chinese chestnut cultivars. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(11): 2216-2224. (in Chinese)
[37] 马玉敏, 陈学森, 何天明, 吴传金, 王娜. 中国板栗3个野生居群部分表型性状的遗传多样性. 园艺学报, 2008, 35(12): 1717-1726. doi: 10.16420/j.issn.0513-353x.2008.12.001.
doi: 10.16420/j.issn.0513-353x.2008.12.001
MA Y M, CHEN X S, HE T M, WU C J, WANG N. Genetic diversity of morphological traits in wild populations of Castanea mollissima blume. Acta Horticulturae Sinica, 2008, 35(12): 1717-1726. doi: 10.16420/j.issn.0513-353x.2008.12.001. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2008.12.001
[38] 刘希强, 张涵, 王学敏, 仪登霞, 王赞. 紫花苜蓿秋眠性的SSR标记关联分析. 中国农业科学, 2018, 51(2): 226-232. doi: 10.3864/j.issn.0578-1752.2018.02.003.
doi: 10.3864/j.issn.0578-1752.2018.02.003
LIU X Q, ZHANG H, WANG X M, YI D X, WANG Z. Association mapping of fall dormancy with SSR markers in alfalfa (Medicago sativa L.). Scientia Agricultura Sinica, 2018, 51(2): 226-232. doi: 10.3864/j.issn.0578-1752.2018.02.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.02.003
[39] 侯丽媛, 董艳辉, 张春芬, 肖蓉, 邓舒, 聂园军, 赵菁, 曹秋芬. SSR分子标记技术在苹果种质资源及遗传育种研究中的应用. 山西农业科学, 2019, 47(6): 1107-1114. doi: 10.3969/j.issn.1002-2481.2019.06.41.
doi: 10.3969/j.issn.1002-2481.2019.06.41
HOU L Y, DONG Y H, ZHANG C F, XIAO R, DENG S, NIE Y J, ZHAO J, CAO Q F. Application of SSR molecular markers in germplasm resources and genetic breeding of apple. Journal of Shanxi Agricultural Sciences, 2019, 47(6): 1107-1114. doi: 10.3969/j.issn.1002-2481.2019.06.41. (in Chinese)
doi: 10.3969/j.issn.1002-2481.2019.06.41
[40] 江锡兵, 汤丹, 龚榜初, 赖俊声. 基于SSR标记的板栗地方品种遗传多样性与关联分析. 园艺学报, 2015, 42(12): 2478-2488. doi: 10.16420/j.issn.0513-353x.2015-0484.
doi: 10.16420/j.issn.0513-353x.2015-0484
JIANG X B, TANG D, GONG B C, LAI J S. Genetic diversity and association analysis of local cultivars of Chinese chestnut based on SSR markers. Acta Horticulturae Sinica, 2015, 42(12): 2478-2488. doi: 10.16420/j.issn.0513-353x.2015-0484. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2015-0484
[41] 袁欣捷, 方荣, 周坤华, 雷刚, 黄月琴, 陈学军. 辣椒重要农艺性状关联分析与优异等位变异发掘. 核农学报, 2020, 34(12): 2658-2672. doi: 10.11869/j.issn.100-8551.2020.12.2658.
doi: 10.11869/j.issn.100-8551.2020.12.2658
YUAN X J, FANG R, ZHOU K H, LEI G, HUANG Y Q, CHEN X J. Association analysis of important agronomic traits in pepper (Capsicum annuum L.) and mining of elite alleles. Journal of Nuclear Agricultural Sciences, 2020, 34(12): 2658-2672. doi: 10.11869/j.issn.100-8551.2020.12.2658. (in Chinese)
doi: 10.11869/j.issn.100-8551.2020.12.2658
[42] ZHANG Z W, ERSOZ E, LAI C Q, TODHUNTER R J, TIWARI H K, GORE M A, BRADBURY P J, YU J M, ARNETT D K, ORDOVAS J M, BUCKLER E S. Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 2010, 42(4): 355-360. doi: 10.1038/ng.546.
doi: 10.1038/ng.546
[43] PRICE A L, ZAITLEN N A, REICH D, PATTERSON N. New approaches to population stratification in genome-wide association studies. Nature Reviews Genetics, 2010, 11(7): 459-463. doi: 10.1038/nrg2813.
doi: 10.1038/nrg2813
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[3] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[4] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[5] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
[6] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[7] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[8] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[9] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[10] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[11] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[12] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[13] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[14] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[15] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!