Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2598-2612.doi: 10.3864/j.issn.0578-1752.2022.13.010

• HORTICULTURE • Previous Articles     Next Articles

Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency

XIE Bin1(),AN XiuHong1,2,CHEN YanHui1(),CHENG CunGang1(),KANG GuoDong1,ZHOU JiangTao1,ZHAO DeYing1,LI Zhuang1,ZHANG YanZhen1,YANG An1   

  1. 1Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning
    2Hebei Agricultural University/National Engineering Research Center for Agriculture in Northern Mountainous Areas/Mountainous Areas Research Institute of Hebei Province, Baoding 071001, Hebei
  • Received:2021-10-09 Accepted:2021-12-31 Online:2022-07-01 Published:2022-07-08
  • Contact: YanHui CHEN,CunGang CHENG E-mail:sxauxiebin@163.com;cyh890324@163.com;ccungang@163.com

Abstract:

【Objective】The aim of this study was to explore the response characteristics of seven apple rootstock seedlings to low phosphorus stress, and to evaluate the low phosphorus adaptability of different rootstocks, so as to provide the theoretical basis for the selection of low phosphorus-tolerant apple rootstocks and the study of the physiological mechanism of efficient phosphorus utilization.【Method】Five kinds of apple dwarf rootstocks (T337, Nic29, Pajam2, B9 and 71-3-150), a semi-dwarf rootstock (Qingzhen2), and a vigorous rootstock (Malus baccata (L.) Borkh.), which were commonly used in the production of apple, were used as materials. Through the potted sand culture test method, the differences in tree growth, photosynthesis, leaf morphology and root architecture, biomass accumulation, phosphorus absorption and utilization, transportation and distribution of each rootstock under normal phosphorus (NP) and low phosphorus (LP) supply conditions were studied.【Result】Under LP treatment, the shoot growth and plant biomass accumulation of T337, Nic29, Pajam2, and M. baccata (L.) Borkh. were significantly decreased, the average leaf area of M. baccata (L.) Borkh. and Qingzhen2 were decreased notably, and the leaf SPAD value of M. baccata (L.) Borkh. was 9.47% lower than that under NP treatment. Compared with the control, under the condition of LP, the average leaf area, leaf length and leaf width of B9 were significantly increased, while the leaf SPAD values of 71-3-150 and Qingzhen2 were significantly increased; the F0 values of B9, 71-3-150, Nic29 and Qingzhen2 were significantly increased, while the Fv/Fm values were significantly decreased, and the most obvious decrease was 71-3-150. Under LP condition, the root growth of T337, Nic29, M. baccata (L.) Borkh. and Qingzhen2 were all significantly inhibited, and the total root surface area and total root length were significantly reduced, among which T337 decreased more; the total root surface area and total root volume of B9 and 71-3-150 were significantly increased, while the ratio of root/shoot of B9 and 71-3-150 was significantly increased, and the ratio of root/shoot of 71-3-150 was 1.54 times of the control. Under LP condition, the phosphorus use efficiency and phosphorus transport coefficient of 71-3-150, Nic29, Pajam2, M. baccata (L.) Borkh. and Qingzhen2 decreased, the phosphorus accumulation in shoot of 71-3-150, Nic29, Pajam2 and M. baccata (L.) Borkh. reduced, while the phosphorus content and accumulation in root were higher than those under control, and the root P accumulation of 71-3-150 increased the most. The 13 principal component factors most related to LP tolerance were orthogonally rotated by using the Varimax rotation method, and these factors were comprehensively evaluated by membership function. Combined with cluster analysis, these 7 apple rootstocks could be divided into four tolerance types: Class I was the strongest tolerant rootstock (B9 and 71-3-150), Class II was the strong tolerant rootstock (T337 and Qingzhen2), Class III was the less tolerant rootstock (Nic29 and Pajam2), and class IV was the weakest tolerant rootstock. 【Conclusion】 Under LP condition, the apple rootstocks could adapt to the LP environment by reducing the material consumption of leaf photosynthesis, increasing the phosphorus accumulation in root system, promoting root development, and increasing the ratio of root/shoot. There were significant differences in the adaptability of different rootstocks.

Key words: apple rootstocks, phosphorus deficiency tolerance, root architecture, nutrient absorption, comprehensive evolution

Table 1

Effects of different phosphorus levels on the growth rate of plant height and the ratio of root/shoot of different rootstocks"

砧木类型
Rootstock
株高生长速率 Growth rate of plant height 根冠比 Ratio of root/shoot
正常供磷
NP (cm·d-1)
低磷处理
LP (cm·d-1)
相对值
Relative value
正常供磷
NP
低磷处理
LP
相对值
Relative value
T337 6.29±0.07a 4.72±0.36b 0.75 0.15 0.13 0.89
B9 2.54±0.32b 6.22±0.30a 2.44 0.23 0.18 0.79
71-3-150 0.19±0.09a 0.42±0.05a 2.14 0.18 0.30 1.62
Nic29 8.13±0.92a 3.89±0.43b 0.48 0.16 0.16 0.99
Pajam2 3.63±0.37a 2.66±0.09a 0.73 0.22 0.25 1.15
山定子 M.baccata 3.71±0.16a 0.90±0.42b 0.24 0.78 0.78 1.01
青砧2号 Qingzhen2 0.54±0.13b 1.99±0.19a 3.66 0.74 0.93 1.26

Table 2

Effects of different phosphorus levels on the fresh biomass of various organs of different rootstocks"

砧木类型
Rootstock
叶片 Leaf 茎干Stem 根系Root
正常供磷
NP (g/plant)
低磷处理
LP (g/plant)
相对值
Relative value
正常供磷
NP (g/plant)
低磷处理
LP (g/plant)
相对值
Relative value
正常供磷
NP (g/plant)
低磷处理
LP (g/plant)
相对值
Relative value
T337 39.960±
4.019a
38.917±
1.191a
0.97 53.877±
1.879b
73.420±
1.286a
1.36 40.243±
0.740a
37.583±
0.229b
0.93
B9 32.630±
1.912a
41.747±
2.591a
1.28 45.467±
1.711b
64.787±
1.268a
1.42 44.620±
1.732a
57.207±
0.780b
1.28
71-3-150 14.170±
1.586a
15.087±
4.860a
1.06 41.783±
4.607a
56.157±
6.018a
1.34 17.077±
1.376b
44.983±
5.030a
2.63
Nic29 45.353±
3.306a
37.393±
3.616a
0.82 73.413±
0.739a
56.293±
2.096b
0.77 40.317±
5.955a
33.353±
2.728a
0.75
Pajam2 51.370±
2.095a
51.197±
2.590a
1.00 150.233±
25.531a
131.517±
7.192a
0.88 74.333±
9.841a
85.807±
3.559a
1.15
山定子
M.baccata
57.537±
6.249a
36.65±
2.753a
0.64 137.287±
8.743a
92.443±
8.116b
0.67 208.020±
20.051a
125.557±
3.401b
0.60
青砧2号
Qingzhen2
42.673±
3.649a
52.250±
1.250a
1.22 91.880±
7.762a
113.463±
2.541a
1.23 124.350±
17.898a
142.017±
11.874a
1.14

Fig. 1

Effects of different phosphorus levels on the root architecture of different apple rootstocks Different lowercase letters indicate significant differences (P<0.05). The same as below"

Table 3

Effects of different phosphorus levels on the leaf parameters of different rootstocks"

砧木类型
Rootstock
平均叶面积 Average leaf surface 叶片长度 Leaf length 叶片宽度 Leaf width
正常供磷
NP (cm2)
低磷处理
LP (cm2)
相对值
Relative value
正常供磷
NP (cm2)
低磷处理
LP (cm2)
相对值
Relative value
正常供磷
NP (cm2)
低磷处理
LP (cm2)
相对值
Relative value
T337 25.56±1.93a 30.62±1.01a 1.20 7.87±0.37a 8.33±0.17a 1.06 3.37±0.20a 3.63±0.04a 1.08
B9 23.50±0.46b 34.56±1.08a 1.47 6.71±0.17b 8.92±0.18a 1.33 3.44±0.07b 3.84±0.07a 1.12
71-3-150 18.16±1.74a 19.58±4.21a 1.08 6.35±0.39a 6.58±0.81a 1.04 2.83±0.11a 2.83±0.24a 1.00
Nic29 23.63±2.15a 21.71±2.05a 0.92 7.09±0.19a 6.89±0.40a 0.97 3.25±0.20a 3.11±0.11a 0.96
Pajam2 31.52±0.43a 25.24±1.23a 0.80 8.52±0.23a 7.76±0.21a 0.91 3.59±0.08a 3.21±0.11a 0.89
M.baccata 20.34±0.14a 12.03±0.37b 0.59 8.24±0.34a 6.67±0.02b 0.81 2.20±0.15a 2.10±0.16a 0.96
青砧2号
Qingzhen2
19.70±0.40a 14.26±0.13b 0.72 6.96±0.36a 5.54±0.06a 0.80 2.51±0.16a 2.62±0.07a 1.04

Fig. 2

Effect of different phosphorus levels on the leaf SPAD of different apple rootstocks"

Fig. 3

Effects of different phosphorus levels on the leaf chlorophyll fluorescence parameters of different apple rootstocks"

Table 4

Effects of different phosphorus levels on the phosphorus concentration of various organs of different rootstocks"

砧木类型
Rootstock
叶片Leaf 茎干Stem 根系Root
正常供磷
NP (mg·g-1)
低磷处理
LP (mg·g-1)
相对值
Relative value
正常供磷
NP (mg·g-1)
低磷处理
LP (mg·g-1)
相对值
Relative value
正常供磷
NP (mg·g-1)
低磷处理
LP (mg·g-1)
相对值
Relative value
T337 2.97±0.08a 3.05±0.05a 1.03 2.77±0.36a 2.35±0.03a 0.85 4.86±0.05b 6.39±0.05a 1.31
B9 3.06±0.21a 3.17±0.08a 1.04 2.75±0.05a 2.47±0.25a 0.90 5.37±0.23a 6.13±0.75a 1.14
71-3-150 4.15±0.07a 3.37±0.13a 0.88 2.57±0.10a 2.53±0.05a 1.00 7.80±1.18b 19.61±0.21a 2.51
Nic29 2.80±0.09a 2.85±0.03a 1.02 1.66±0.06a 1.85±0.05a 1.11 7.75±0.56a 7.96±0.42a 1.03
Pajam2 3.67±0.20a 3.54±0.13a 0.96 2.58±0.22a 0.76±0.07a 1.07 10.41±0.48a 12.12±0.49a 1.13
山定子M.baccata 3.17±0.07a 3.03±0.30a 0.96 2.31±0.04a 2.34±0.05a 1.01 9.28±0.70b 15.71±0.11a 1.69
青砧2号
Qingzhen2
3.17±0.07a 3.03±0.30a 0.96 2.72±0.06a 2.60±0.14a 0.95 5.50±0.19a 6.02±0.46a 1.09

Table 5

Effects of different phosphorus levels on the phosphorus accumulation of various organ of different rootstocks"

砧木类型
Rootstock
叶片 Leaf 茎干 Stem 根系 Root
正常供磷
NP (mg)
低磷处理
LP (mg)
相对值
Relative value
正常供磷
NP (mg)
低磷处理
LP (mg)
相对值
Relative value
正常供磷
NP (mg)
低磷处理
LP (mg)
相对值
Relative value
T337 44.63±5.04a 45.60±0.82a 1.02 74.02±10.68a 66.38±7.68a 0.90 31.53±0.43a 37.66±2.31a 1.19
B9 45.44±5.50a 47.55±6.98a 1.05 45.75±4.86a 60.33±7.20a 1.04 39.06±3.66a 39.01±3.22a 1.00
71-3-150 28.04±3.64a 26.10±5.39a 0.93 55.16±5.92a 72.23±8.91a 1.31 43.62±3.74b 194.55±19.81a 4.46
Nic29 54.98±5.28a 52.76±3.56a 0.96 48.47±3.57a 51.79±3.85a 1.07 65.87±12.81a 65.42±1.18a 0.99
Pajam2 82.32±7.91a 66.59±9.50a 0.81 174.36±20.23a 152.31±20.85a 0.87 154.47±10.87b 239.12±5.47a 1.56
山定子
M. baccata
82.13±9.47a 47.75±1.02b 0.58 169.20±5.68a 116.92±8.94b 0.69 704.68±65.82a 817.64±17.91a 1.16
青砧2号
Qingzhen2
60.11±4.98a 67.43±2.22a 1.12 128.96±15.29a 140.04±2.31a 1.09 271.49±45.08a 433.68±47.58a 1.60

Fig. 4

Effects of different phosphorus levels on the phosphorus transportation coefficient and phosphorus utilization efficiency of apple rootstocks"

Table 6

Loading matrix of varimax rotation factors"

指标
Index
正常供磷 NP 低磷处理 LP
主成分1 PCP1 主成分2 PCP2 主成分3 PCP3 主成分1 PCP1 主成分2 PCP2 主成分3 PCP3
I1 -0.321 0.151 0.787 0.881 -0.118 -0.208
I2 0.936 -0.060 0.090 -0.714 0.298 -0.519
I3 0.480 0.548 0.610 0.266 0.734 -0.397
I4 0.577 0.768 0.065 -0.145 0.962 -0.125
I5 0.948 0.198 0.230 -0.557 0.600 -0.491
I6 0.494 0.274 0.684 -0.354 0.895 0.058
I7 0.378 0.231 0.725 -0.451 0.815 -0.100
I8 0.589 0.757 0.047 -0.401 0.889 -0.199
I9 0.940 0.200 0.168 -0.639 0.649 -0.298
I10 -0.252 0.886 -0.332 0.311 0.888 0.142
I11 0.944 0.179 0.247 -0.426 0.846 -0.101
I12 -0.454 0.819 0.220 0.960 -0.091 0.128
I13 0.256 0.859 0.422 0.835 -0.006 0.020
I14 -0.886 0.334 0.058 0.976 -0.114 0.156
I15 -0.430 0.391 0.506 0.194 0.049 0.544
I16 -0.381 0.257 -0.204 0.118 -0.201 0.888
I17 -0.013 -0.052 0.106 0.106 0.236 -0.903
I18 -0.017 0.221 -0.902 -0.018 0.258 0.685
I19 -0.081 0.144 -0.283 0.046 0.639 0.121
I20 0.317 0.663 -0.321 -0.636 -0.066 0.479
I21 0.579 0.699 0.256 0.077 0.762 -0.242
I22 0.650 0.729 -0.001 -0.374 0.896 -0.090
I23 0.963 0.172 0.162 -0.807 0.325 -0.428
I24 0.945 0.293 0.139 -0.774 0.447 -0.409
I25 -0.920 -0.195 0.248 0.785 -0.312 -0.161
I26 -0.853 -0.069 0.062 0.918 -0.303 -0.185
特征值 Eigenvalue 10.943 6.143 4.025 8.974 8.647 4.128
方差贡献率
Variance contribution rate
44.140 24.778 26.236 35.272 33.988 16.226
累计贡献率
Cumulative percentage
44.140 68.918 85.154 35.272 69.260 85.485

Table 7

Evaluation of phosphorus-deficiency tolerance of different apple rootstocks based on the method of fuzzy mathematical function"

砧木类型
Rootstock
I1 I2 I5 I9 I11 I12 I13 I14 I23 I24 I25 I26 I 排名 Rank
T337 0.041 0.040 0.042 0.062 0.068 0.058 0.076 0.077 0.036 0.033 0.084 0.066 0.684 3
B9 0.066 0.034 0.050 0.072 0.084 0.084 0.084 0.084 0.034 0.045 0.082 0.084 0.803 1
71-3-150 0.061 0.084 0.084 0.074 0.062 0.056 0.057 0.057 0.084 0.084 0.034 0.034 0.770 2
Nic29 0.037 0.046 0.037 0.044 0.052 0.050 0.048 0.054 0.033 0.034 0.074 0.075 0.585 5
Pajam2 0.041 0.055 0.047 0.084 0.046 0.044 0.034 0.036 0.042 0.038 0.050 0.053 0.569 6
山定子M.baccata 0.034 0.047 0.034 0.034 0.034 0.035 0.048 0.034 0.036 0.035 0.043 0.054 0.465 7
Qingzhen 2 0.084 0.062 0.047 0.061 0.041 0.034 0.067 0.056 0.042 0.041 0.074 0.061 0.670 4

Fig. 5

Cluster analysis of phosphorus-deficiency tolerance of apple rootstocks"

Table 8

Correlation between each index and comprehensive evaluation value of phosphorus-deficiency tolerance"

指标
Index
相关性系数
Correlation coefficient
指标
Index
相关性系数
Correlation coefficient
I1 0.6617 I14 0.8202
I2 0.1567 I15 0.4742
I3 0.8378 I16 0.4635
I4 0.9353 I17 -0.5016
I5 0.6671 I18 0.0297
I6 0.3430 I19 -0.5545
I7 0.2450 I20 0.2020
I8 0.7520 I21 0.7595
I9 0.6052 I22 0.7477
I10 -0.2393 I23 0.4114
I11 0.8336 I24 0.5821
I12 0.7488 I25 0.2995
I13 0.7354 I26 0.1335
[1] MAI N T P, NGUYEN H N, NGUYEN V H, DUONG V L, NGUYEN P, MAI D C, LEBRUN M, TO H T M. Investigating the genetic variability of 12 vietnamese rice accessions (Oryza sativa L.) in response to phosphorus deficiency. Journal of Biotechnology, 2018, 16(4): 621.
[2] PLAXTON W C, TRAN H T. Metabolic adaptations of phosphate- starved plants. Plant Physiology, 2011, 156(3): 1006-1015. doi: 10.1104/pp.111.175281.
doi: 10.1104/pp.111.175281
[3] FU X Z, XING F, WANG N Q, PENG L Z, CHUN C P, CAO L, LING L L, JIANG C L. Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought stress in vitro in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. Biotechnology & Biotechnological Equipment, 2014, 28(2): 192-198. doi: 10.1080/13102818.2014.909152.
doi: 10.1080/13102818.2014.909152
[4] HAM B K, CHEN J Y, YAN Y, LUCAS W J. Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology, 2018, 49: 1-9. doi: 10.1016/j.copbio.2017.07.005.
doi: 10.1016/j.copbio.2017.07.005
[5] ZHU Q, WANG H, SHAN Y Z, MA H Y, WANG H Y, XIE F T, AO X. Physiological response of phosphorus-efficient and inefficient soybean genotypes under phosphorus-deficiency. Russian Journal of Plant Physiology, 2020, 67(1): 175-184.
doi: 10.1134/S1021443720010276
[6] 张强, 李兴亮, 李民吉, 周贝贝, 孙健, 魏钦平. ‘富士’苹果品质与果实矿质元素含量的关联性分析. 果树学报, 2016, 33(11): 1388-1395. doi: 10.13925/j.cnki.gsxb.20160057.
doi: 10.13925/j.cnki.gsxb.20160057
ZHANG Q, LI X L, LI M J, ZHOU B B, SUN J, WEI Q P. The correlation analysis between quality characteristics and fruit mineral element contents in ‘Fuji’ apples. Journal of Fruit Science, 2016, 33(11): 1388-1395. doi: 10.13925/j.cnki.gsxb.20160057. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20160057
[7] 赵旸, 李卓, 刘明, 肖潇, 王重阳, 孙丹峰, 伦飞. 中国苹果主产区2006—2016年磷元素收支及其环境风险变化. 农业环境科学学报, 2019, 38(12): 2779-2787. doi: 10.11654/jaes.2019-1078.
doi: 10.11654/jaes.2019-1078
ZHAO Y, LI Z, LIU M, XIAO X, WANG C Y, SUN D F, LUN F. Phosphorus budgets and their associated environmental risks in the main apple orchard areas in China from 2006 to 2016. Journal of Agro-Environment Science, 2019, 38(12): 2779-2787. doi: 10.11654/jaes.2019-1078. (in Chinese)
doi: 10.11654/jaes.2019-1078
[8] YAN Z J, CHEN S, LI J L, ALVA A, CHEN Q. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses. Journal of Environmental Management, 2016, 181: 26-35.
doi: 10.1016/j.jenvman.2016.05.081
[9] GÜLÜT K Y, ÖZDEMIR O. Phosphorus tolerance levels of different chickpea genotypes. Saudi Journal of Biological Sciences, 2021, 28(9): 5386-5390.
doi: 10.1016/j.sjbs.2021.05.066
[10] 季萌萌, 彭玲, 文炤, 姜翰, 葛顺峰, 姜远茂. 供磷水平对苹果砧木氮、磷吸收和利用特性的影响. 植物营养与肥料学报, 2015, 21(4): 1016-1021. doi: 10.11674/zwyf.2015.0421.
doi: 10.11674/zwyf.2015.0421
JI M M, PENG L, WEN Z, JIANG H, GE S F, JIANG Y M. Nitrogen and phosphorus absorption and utilization characteristics of apple rootstocks under different phosphorus levels. Plant Nutrition and Fertilizer Science, 2015, 21(4): 1016-1021. doi: 10.11674/zwyf.2015.0421. (in Chinese)
doi: 10.11674/zwyf.2015.0421
[11] ZOU X H, WU P F, CHEN N L, WANG P, MA X Q. Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 2015, 45(4): 402-410.
doi: 10.1139/cjfr-2014-0384
[12] 董然然, 安贵阳, 赵政阳, 梅立新, 李敏敏. 不同树形矮化自根砧苹果的冠内光照及其生长和产量比较. 中国农业科学, 2013, 46(9): 1867-1873.
DONG R R, AN G Y, ZHAO Z Y, MEI L X, LI M M. Comparison of light interception ability and growth and yield of different apple tree shapes on dwarf rootstock. Scientia Agricultura Sinica, 2013, 46(9): 1867-1873. (in Chinese)
[13] 马宝焜, 徐继忠, 孙建设. 关于我国苹果矮砧密植栽培的思考. 果树学报, 2010, 27(1): 105-109. doi: 10.13925/j.cnki.gsxb.2010.01.020.
doi: 10.13925/j.cnki.gsxb.2010.01.020
MA B K, XU J Z, SUN J S. Consideration for high density planting with dwarf rootstocks in apple in China. Journal of Fruit Science, 2010, 27(1): 105-109. doi: 10.13925/j.cnki.gsxb.2010.01.020. (in Chinese)
doi: 10.13925/j.cnki.gsxb.2010.01.020
[14] 王健强, 李佳, 苏怡, 郝奕樊, 左家乐, 石濛, 李中勇, 张学英, 徐继忠.7种苹果矮化砧木的抗旱性评价. 中国果树, 2019(6): 38-41. doi: 10.16626/j.cnki.issn1000-8047.2019.06.008.
doi: 10.16626/j.cnki.issn1000-8047.2019.06.008
WANG J Q, LI J, SU Y, HAO Y F, ZUO J L, SHI M, LI Z Y, ZHANG X Y, XU J Z. Evaluation analysis of different apple dwarfing stocks on drought resistance. China Fruits, 2019(6): 38-41. doi: 10.16626/j.cnki.issn1000-8047.2019.06.008. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2019.06.008
[15] 张德, 张瑞, 张夏燚, 吴玉霞, 赵婷, 张仲兴, 王双成, 王延秀. 不同抗盐性苹果砧木对盐胁迫的生理响应. 干旱地区农业研究, 2021, 39(4): 86-94. doi: 10.7606/j.issn.1000-7601.2021.04.11.
doi: 10.7606/j.issn.1000-7601.2021.04.11
ZHANG D, ZHANG R, ZHANG X Y, WU Y X, ZHAO T, ZHANG Z X, WANG S C, WANG Y X. Physiological response of different salt-tolerant apple rootstocks to salt stress. Agricultural Research in the Arid Areas, 2021, 39(4): 86-94. doi: 10.7606/j.issn.1000-7601.2021.04.11. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2021.04.11
[16] 王海波, 程来亮, 常源升, 孙清荣, 陶吉寒, 李林光. 苹果矮化砧‘71-3-150’对冷胁迫的生理与转录组响应. 园艺学报, 2016, 43(8): 1437-1451. doi: 10.16420/j.issn.0513-353x.2016-0031.
doi: 10.16420/j.issn.0513-353x.2016-0031
WANG H B, CHENG L L, CHANG Y S, SUN Q R, TAO J H, LI L G. Physiological and transcriptome response of apple dwarfing rootstock to cold stress and cold-resistant genes screening. Acta Horticulturae Sinica, 2016, 43(8): 1437-1451. doi: 10.16420/j.issn.0513-353x.2016-0031. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0031
[17] 慈晓彤, 沈兵琪, 王大玮, 王玉昌, 何承忠, 蔡年辉, 段安安. 苹果矮化砧木‘T337’和‘JM7’抗白粉病基因的筛选及分析. 分子植物育种, 2020, 18(19): 6280-6289. doi: 10.13271/j.mpb.018.006280.
doi: 10.13271/j.mpb.018.006280
CI X T, SHEN B Q, WANG D W, WANG Y C, HE C Z, CAI N H, DUAN A N. Screening and analysis of resistant genes to apple dwarf rootstock ‘T337’ and ‘JM7’ powdery mildew. Molecular Plant Breeding, 2020, 18(19): 6280-6289. doi: 10.13271/j.mpb.018.006280. (in Chinese)
doi: 10.13271/j.mpb.018.006280
[18] 林冰冰, 韩振海, 王忆, 吴婷, 张新忠. 苹果实生砧木种质资源耐缺铁和耐盐碱性评价. 中国农业大学学报, 2016, 21(1): 48-58. doi: 10.11841/j.issn.1007-4333.2016.01.06.
doi: 10.11841/j.issn.1007-4333.2016.01.06
LIN B B, HAN Z H, WANG Y, WU T, ZHANG X Z. Evaluation onthe tolerance of apple seedling rootstock resources to iron- deficiency, salinity and alkalinity. Journal of China Agricultural University, 2016, 21(1): 48-58. doi: 10.11841/j.issn.1007-4333.2016.01.06. (in Chinese)
doi: 10.11841/j.issn.1007-4333.2016.01.06
[19] 范晓丹, 刘飞, 王衍安, 付春霞, 闫玉静, 沙广利, 束怀瑞. 不同苹果砧木对缺锌胁迫的耐性评价. 应用生态学报, 2015, 26(10): 3045-3052. doi: 10.13287/j.1001-9332.20150921.002.
doi: 10.13287/j.1001-9332.20150921.002
FAN X D, LIU F, WANG Y N, FU C X, YAN Y J, SHA G L, SHU H R. Evaluation of zinc deficiency tolerance in different kinds of apple rootstocks. Chinese Journal of Applied Ecology, 2015, 26(10): 3045-3052. doi: 10.13287/j.1001-9332.20150921.002. (in Chinese)
doi: 10.13287/j.1001-9332.20150921.002
[20] 栗振义, 张绮芯, 仝宗永, 李跃, 徐洪雨, 万修福, 毕舒贻, 曹婧, 何峰, 万里强, 李向林. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析. 中国农业科学, 2017, 50(20): 3898-3907. doi: 10.3864/j.issn.0578-1752.2017.20.006.
doi: 10.3864/j.issn.0578-1752.2017.20.006
LI Z Y, ZHANG Q X, TONG Z Y, LI Y, XU H Y, WAN X F, BI S Y, CAO J, HE F, WAN L Q, LI X L. Analysis of morphological and physiological responses to low pi stress in different alfalfas. Scientia Agricultura Sinica, 2017, 50(20): 3898-3907. doi: 10.3864/j.issn.0578-1752.2017.20.006. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.20.006
[21] 杨楚童, 邹显花, 孙雪莲, 胡亚楠, 吴鹏飞, 马祥庆. 不同磷利用效率杉木在低磷胁迫下的形态及养分分配差异. 西北林学院学报, 2021, 36(4): 94-102. doi: 10.3969/j.issn.1001-7461.2021.04.14.
doi: 10.3969/j.issn.1001-7461.2021.04.14
YANG C T, ZOU X H, SUN X L, HU Y N, WU P F, MA X Q. Differences in morphology and nutrient distribution of Chinese fir with different phosphorus use efficiency under low phosphorus stress. Journal of Northwest Forestry University, 2021, 36(4): 94-102. doi: 10.3969/j.issn.1001-7461.2021.04.14. (in Chinese)
doi: 10.3969/j.issn.1001-7461.2021.04.14
[22] 葛顺峰, 季萌萌, 许海港, 郝文强, 魏绍冲, 姜远茂. 土壤pH对富士苹果生长及碳氮利用特性的影响. 园艺学报, 2013, 40(10): 1969-1975. doi: 10.16420/j.issn.0513-353x.2013.10.007.
doi: 10.16420/j.issn.0513-353x.2013.10.007
GE S F, JI M M, XU H G, HAO W Q, WEI S C, JIANG Y M. Effects of soil pH on growth, distribution and utilization of carbon and nitrogen of Malus × domestica ‘red fuji’. Acta Horticulturae Sinica, 2013, 40(10): 1969-1975. doi: 10.16420/j.issn.0513-353x.2013.10.007. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2013.10.007
[23] 张强, 李民吉, 周贝贝, 李兴亮, 孙健, 张军科, 魏钦平. 两大优势产区‘富士’苹果园土壤养分与果实品质关系的多变量分析. 应用生态学报, 2017, 28(1): 105-114. doi: 10.13287/j.1001-9332.201701.030.
doi: 10.13287/j.1001-9332.201701.030
ZHANG Q, LI M J, ZHOU B B, LI X L, SUN J, ZHANG J K, WEI Q P. Multivariate analysis of relationship between soil nutrient factors and fruit quality characteristic of ‘Fuji’ apple in two dominant production regions of China. Chinese Journal of Applied Ecology, 2017, 28(1): 105-114. doi: 10.13287/j.1001-9332.201701.030. (in Chinese)
doi: 10.13287/j.1001-9332.201701.030
[24] 蔡泽宇, 张建锋, 陈光才, 张涵丹, 孙士咏, 李晓刚, 秦光华. 柳树新无性系(A42)对富营养水体不同浓度磷的吸收和净化机制. 应用生态学报, 2018, 29(10): 3416-3424. doi: 10.13287/j.1001-9332.201810.037.
doi: 10.13287/j.1001-9332.201810.037
CAI Z Y, ZHANG J F, CHEN G C, ZHANG H D, SUN S Y, LI X G, QIN G H. P absorption and removal mechanism of new Salix clone(A42) on eutrophic water with different P concentrations. Chinese Journal of Applied Ecology, 2018, 29(10): 3416-3424. doi: 10.13287/j.1001-9332.201810.037. (in Chinese)
doi: 10.13287/j.1001-9332.201810.037
[25] 张建伟, 石孝均, 徐文静, 张学良, 刘瑞, 魏勇, 赵秋, 张宇亭. 果园绿肥对土壤磷组分及磷素有效性的影响. 水土保持学报, 2021, 35(6): 336-342. doi: 10.13870/j.cnki.stbcxb.2021.06.045.
doi: 10.13870/j.cnki.stbcxb.2021.06.045
ZHANG J W, SHI X J, XU W J, ZHANG X L, LIU R, WEI Y, ZHAO Q, ZHANG Y T. Effects of green manure on soil phosphorus fractions and availability in orchard. Journal of Soil and Water Conservation, 2021, 35(6): 336-342. doi: 10.13870/j.cnki.stbcxb.2021.06.045. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2021.06.045
[26] ZOU X H, WEI D, WU P F, ZHANG Y, HU Y N, CHEN S T, MA X Q. Strategies of organic acid production and exudation in response to low-phosphorus stress in Chinese fir genotypes differing in phosphorus-use efficiencies. Trees, 2018, 32(3): 897-912. doi: 10.1007/s00468-018-1683-2.
doi: 10.1007/s00468-018-1683-2
[27] SU B Q, WANG L F, SHANGGUAN Z P. Morphological and physiological responses and plasticity in Robinia pseudoacacia to the coupling of water, nitrogen and phosphorus. Journal of Plant Nutrition and Soil Science, 2021, 184(2): 271-281.
doi: 10.1002/jpln.202000465
[28] 钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017, 43(7): 993-1002. doi: 10.3724/SP.J.1006.2017.00993.
doi: 10.3724/SP.J.1006.2017.00993
ZHONG S R, CHEN R X, TAO Y, GONG S Y, HE K X, ZHANG Q M, ZHANG S C, LIU Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agronomica Sinica, 2017, 43(7): 993-1002. doi: 10.3724/SP.J.1006.2017.00993. (in Chinese)
doi: 10.3724/SP.J.1006.2017.00993
[29] 陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53(16): 3214-3224. doi: 10.3864/j.issn.0578-1752.2020.16.002.
doi: 10.3864/j.issn.0578-1752.2020.16.002
CHEN L, WANG J J, WANG H G, CAO X N, LIU S C, TIAN X, QIN H B, QIAO Z J. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Scientia Agricultura Sinica, 2020, 53(16): 3214-3224. doi: 10.3864/j.issn.0578-1752.2020.16.002. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.16.002
[30] 罗燕, 樊卫国. 不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性. 中国农业科学, 2014, 47(5): 955-967. doi: 10.3864/j.issn.0578-1752.2014.05.012.
doi: 10.3864/j.issn.0578-1752.2014.05.012
LUO Y, FAN W G. Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four Citrus rootstocks under different phosphorus levels. Scientia Agricultura Sinica, 2014, 47(5): 955-967. doi: 10.3864/j.issn.0578-1752.2014.05.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.05.012
[31] 束怀瑞. 果树栽培理论与实践. 北京: 中国农业出版社, 2009.
SHU H R. Theory and Practice of Fruit Tree Cultivation. Beijing: Chinese Agriculture Press, 2009. (in Chinese)
[32] 杨洪强, 束怀瑞. 苹果根系研究. 北京: 科学出版社, 2007.
YANG H Q, SHU H R. Studies on Apple Roots. Beijing: Science Press, 2007. (in Chinese)
[33] HE H H, PENG Q, WANG X, FAN C B, PANG J Y, LAMBERS H, ZHANG X C. Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. Plant and Soil, 2017, 416(1/2): 565-584. doi: 10.1007/s11104-017-3242-9.
doi: 10.1007/s11104-017-3242-9
[34] 孙淼, 李鹏程, 郑苍松, 刘帅, 刘爱忠, 韩慧敏, 刘敬然, 董合林. 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响. 棉花学报, 2018, 30(1): 45-52. doi: 10.11963/1002-7807.smdhl.20180103.
doi: 10.11963/1002-7807.smdhl.20180103
SUN M, LI P C, ZHENG C S, LIU S, LIU A Z, HAN H M, LIU J R, DONG H L. Effects of low phosphorus stress on root morphology and physiological characteristics of different cotton genotypes at the seedling stage. Cotton Science, 2018, 30(1): 45-52. doi: 10.11963/1002-7807.smdhl.20180103. (in Chinese)
doi: 10.11963/1002-7807.smdhl.20180103
[35] 唐荣莉, 王春萍, 王红娟, 吴红, 韩垚, 林清, 雷开荣. 低磷胁迫对辣椒苗期生长和生理特性的影响. 西南农业学报, 2020, 33(9): 1933-1942. doi: 10.16213/j.cnki.scjas.2020.9.009.
doi: 10.16213/j.cnki.scjas.2020.9.009
TANG R L, WANG C P, WANG H J, WU H, HAN Y, LIN Q, LEI K R. Effects of low phosphorus stress on growth and physiological characteristics of pepper at seedling stage. Southwest China Journal of Agricultural Sciences, 2020, 33(9): 1933-1942. doi: 10.16213/j.cnki.scjas.2020.9.009. (in Chinese)
doi: 10.16213/j.cnki.scjas.2020.9.009
[36] 王枫, 王玉凤, 许晓萱, 李嘉欣, 丁冬, 贺琳, 李佐同, 徐晶宇. 低磷胁迫下玉米幼苗生理响应及相关基因表达研究. 玉米科学, 2021, 29(1): 77-84. doi: 10.13597/j.cnki.maize.science.20210112.
doi: 10.13597/j.cnki.maize.science.20210112
WANG F, WANG Y F, XU X X, LI J X, DING D, HE L, LI Z T, XU J Y. Physiological response and related genes expression of maize seedlings under low phosphorus stress. Journal of Maize Sciences, 2021, 29(1): 77-84. doi: 10.13597/j.cnki.maize.science.20210112. (in Chinese)
doi: 10.13597/j.cnki.maize.science.20210112
[37] SIEDLISKA A, BARANOWSKI P, PASTUSZKA-WOŹNIAK J, ZUBIK M, KRZYSZCZAK J. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance. BMC Plant Biology, 2021, 21(1): 28. doi: 10.1186/s12870-020-02807-4.
doi: 10.1186/s12870-020-02807-4
[38] 罗佳, 候银莹, 陈波浪. 低磷胁迫对不同磷效率棉花干物质及养分吸收的影响. 西南农业学报, 2017, 30(1): 155-161. doi: 10.16213/j.cnki.scjas.2017.1.027.
doi: 10.16213/j.cnki.scjas.2017.1.027
LUO J, HOU Y Y, CHEN B L. Effect of phosphorus stress on dry matter accumulation and nutrient absorption of cotton genotypes with different phosphorus efficiency. Southwest China Journal of Agricultural Sciences, 2017, 30(1): 155-161. doi: 10.16213/j.cnki.scjas.2017.1.027. (in Chinese)
doi: 10.16213/j.cnki.scjas.2017.1.027
[39] LIU D. Root developmental responses to phosphorus nutrition. Journal of Integrative Plant Biology, 2021, 63(6): 1065-1090. doi: 10.1111/jipb.13090.
doi: 10.1111/jipb.13090
[40] 臧成凤, 樊卫国, 潘学军. 供磷水平对铁核桃实生苗生长、形态特征及叶片营养元素含量的影响. 中国农业科学, 2016, 49(2): 319-330.
ZANG C F, FAN W G, PAN X J. Effect of phosphorus levels on growth, morphological characteristics and leaf element contents of Juglans sigillata dode seedlings. Scientia Agricultura Sinica, 2016, 49(2): 319-330. (in Chinese)
[41] 高艳敏, 栾本荣, 辛贵金, 杨成桓, 高锐, 杜文章, 郭济民, 高永泰. 果树施用氯化钾的效应. 北方果树, 1995(3): 6-8. doi: 10.16376/j.cnki.bfgs.1995.03.002.
doi: 10.16376/j.cnki.bfgs.1995.03.002
GAO Y M, LUAN B R, XIN G J, YANG C H, GAO R, DU W Z, GUO J M, GAO Y T. Effect of potassium chloride application to fruit trees. Northern Fruits, 1995(3): 6-8. doi: 10.16376/j.cnki.bfgs.1995.03.002. (in Chinese)
doi: 10.16376/j.cnki.bfgs.1995.03.002
[42] 王兴梅, 杨莉莉, 高义民, 同延安. 不同含氯肥料用量对黄土区苹果产量、品质及氯素分布的影响. 西北农林科技大学学报(自然科学版), 2019, 47(3): 77-84. doi: 10.13207/j.cnki.jnwafu.2019.03.011.
doi: 10.13207/j.cnki.jnwafu.2019.03.011
WANG X M, YANG L L, GAO Y M, TONG Y N. Effects of chlorine-containing fertilizer dosage on yield, quality of apple and Cl-distribution in Loess Area. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(3): 77-84. doi: 10.13207/j.cnki.jnwafu.2019.03.011. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2019.03.011
[43] 张晨光, 赵德英, 袁继存, 徐锴, 程存刚, 闫帅. 矮化自根砧T337对苹果幼树N、P、K累积量和内源激素含量的影响. 植物生理学报, 2016, 52(12): 1950-1958. doi: 10.13592/j.cnki.ppj.2016.0344.
doi: 10.13592/j.cnki.ppj.2016.0344
ZHANG C G, ZHAO D Y, YUAN J C, XU K, CHENG C G, YAN S. Effect of T337 dwarf root stock on N, P, K accumulation and endogenous hormones contents of young apple tree. Plant Physiology Journal, 2016, 52(12): 1950-1958. doi: 10.13592/j.cnki.ppj.2016.0344. (in Chinese)
doi: 10.13592/j.cnki.ppj.2016.0344
[44] 郭江云, 张秀芝, 任洪春, 王永章, 原永兵, 刘成连. 矮化自根砧苹果叶片矿质营养周年变化研究. 中国果树, 2013(6): 31-34. doi: 10.16626/j.cnki.issn1000-8047.2013.06.017.
doi: 10.16626/j.cnki.issn1000-8047.2013.06.017
GUO J Y, ZHANG X Z, REN H C, WANG Y Z, YUAN Y B, LIU C L. Annual variation of mineral nutrition in leaves of dwarf self-rooted rootstock apples. China Fruits, 2013(6): 31-34. doi: 10.16626/j.cnki.issn1000-8047.2013.06.017. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2013.06.017
[45] 袁继存, 赵德英, 徐锴, 闫帅, 程存刚. 不同砧穗组合对长富2号苹果果实品质的影响初报. 中国南方果树, 2018, 47(6): 107-109, 114. doi: 10.13938/j.issn.1007-1431.20180401.
doi: 10.13938/j.issn.1007-1431.20180401
YUAN J C, ZHAO D Y, XU K, YAN S, CHENG C G. Effects of different scion-rootstock combination on fruit qualities of ‘Nagafu2’ apple. South China Fruits, 2018, 47(6): 107-109, 114. doi: 10.13938/j.issn.1007-1431.20180401. (in Chinese)
doi: 10.13938/j.issn.1007-1431.20180401
[46] 刘兴禄, 王红平, 孙文泰, 董铁, 牛军强, 马明. 5个砧木苹果枝条的抗寒性评价. 果树学报, 2021, 38(8): 1264-1274. doi: 10.13925/j.cnki.gsxb.20200354.
doi: 10.13925/j.cnki.gsxb.20200354
LIU X L, WANG H P, SUN W T, DONG T, NIU J Q, MA M. Cold resistance evaluation of the shoots of 5 apple rootstocks. Journal of Fruit Science, 2021, 38(8): 1264-1274. doi: 10.13925/j.cnki.gsxb.20200354. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20200354
[1] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[2] LIU Kai,XIE YingHe,LI TingLiang,MA HongMei,ZHANG QiRu,JIANG LiWei,CAO Jing,SHAO JingLin. Effects of Nitrogen Reduction and Film Mulching on Wheat Yield and Nutrient Absorption and Utilization in Loess Plateau [J]. Scientia Agricultura Sinica, 2021, 54(12): 2595-2607.
[3] LIANG Tao, LIAO DunXiu, CHEN XinPing, WANG Shuai, FU DengWei, CHEN XuanJing, SHI XiaoJun. Effect of Paddy Inherent Soil Productivity on Nutrient Utilization Efficiency of Rice in Chongqing [J]. Scientia Agricultura Sinica, 2018, 51(16): 3106-3116.
[4] GONG FangFang, FAN WeiGuo. Effects of Exogenous Citric Acids on Nutrient Activation of Calcareous Yellow Soil and Promotion effects of Nutrient Absorption and Growth of Rosa roxburghii Seedlings [J]. Scientia Agricultura Sinica, 2018, 51(11): 2164-2177.
[5] WeiJun ZHANG, Tian LI, Lin QIN, Jing ZHAO, JunJie ZHAO, Hong LIU, Jian HOU, ChenYang HAO, DongSheng CHEN, YiQin WEI, RuiLian JIN, XueYong ZHANG. TaDRO, A Gene Associated with Wheat Root Architectures, Its Global Distribution and Evolution in Breeding [J]. Scientia Agricultura Sinica, 2018, 51(10): 1815-1829.
[6] HUANG Ping, CAO Hui, ZHANG RuiXue, JI Tuo, LI YanGe, YANG HongQiang. Different Response of Apple Root Physiology and Leaf Photosynthesis to Mulching of Different Materials [J]. Scientia Agricultura Sinica, 2018, 51(1): 160-169.
[7] LI ZhenYi, ZHANG QiXin, TONG ZongYong, LI Yue, XU HongYu, WAN XiuFu, BI ShuYi, CAO Jing, HE Feng, WAN LiQiang, LI XiangLin. Analysis of Morphological and Physiological Responses to Low Pi Stress in Different Alfalfas [J]. Scientia Agricultura Sinica, 2017, 50(20): 3898-3907.
[8] CHEN Xin-Xin-1, DING Qi-Shuo-1, 2 , DING Wei-Min-1, TIAN Yong-Chao-2, ZHU Yan-2, CAO Wei-Xing-2. Measurement and Analysis of 3D Wheat Root System Architecture with a Virtual Plant Tool Kit [J]. Scientia Agricultura Sinica, 2014, 47(8): 1481-1488.
[9] FAN Wei-guo, YANG Hong-qiang. Response of Root Architecture, Nutrients Uptake and Shoot Growth of Malus hupehensis Seedling to the Shape of Root Zone [J]. Scientia Agricultura Sinica, 2014, 47(19): 3907-3913.
[10] XIAO Yuan-Song-1, PENG Fu-Tian-1, ZHANG Ya-Fei-1, QI Yu-Ji-1, WANG Gui-Fang-1, WANG Xin-Liang-2, SHU Huai-Rui-1. Effects of Aeration Cultivation on Root Architecture and Nitrogen Metabolism of Young Peach Trees [J]. Scientia Agricultura Sinica, 2014, 47(10): 1995-2002.
[11] SUN Yong-Jian, SUN Yuan-Yuan, XU Hui, YANG Zhi-Yuan, QIN Jian, PENG Yu, MA Jun. Effects of Water-Nitrogen Management Patterns and Combined Application of Phosphorus and Potassium Fertilizers on Nutrient Absorption of Hybrid Rice Gangyou 725 [J]. Scientia Agricultura Sinica, 2013, 46(7): 1335-1346.
[12] LIU Fei, WANG Jin-Hua, ZHANG Hong-Yi, FU Chun-Xia, WANG Yan-An. Differences in Tolerance of Four Apple Rootstock Seedlings to Zinc Stress [J]. Scientia Agricultura Sinica, 2012, 45(18): 3801-3811.
[13] HAN Tian-Tian, HU Yan-Li, MAO Zhi-Quan, SHEN Xiang, SHU Huai-Rui. Effects of Different Soil Interfaces on Apple Root Architecture and Soil Properties [J]. Scientia Agricultura Sinica, 2012, 45(17): 3639-3645.
[14]

. Relationship Between Nitrogen Efficiency and Root Architecture of Maize Plants: Simulation and Application
[J]. Scientia Agricultura Sinica, 2009, 42(3): 843-853 .
[15] . Nutrient Deficiency Alter Root Architecture of Young Seedlings in M. hupehensis Rehd. [J]. Scientia Agricultura Sinica, 2007, 40(1): 161-166 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!