Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (3): 525-538.doi: 10.3864/j.issn.0578-1752.2024.03.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristics of Acidity and Nutrient Changes in Red Soil After Conversion of Paddy Field to Dry Land and Vegetable Field

QIU HaiHua1,2(), KUAI LeiXin1,2, ZHANG Lu1,2, LIU LiSheng1,2, WEN ShiLin1,2, CAI ZeJiang1,2()   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing 100081
    2 Hengyang Red Soil Experimental Station of Chinese Academy of Agricultural Sciences/Qiyang Farmland Ecosystem National Observation and Research Station, Qiyang 426182, Hunan
  • Received:2023-03-09 Accepted:2023-06-16 Online:2024-02-01 Published:2024-02-05

Abstract:

【Objective】 The aim of this study was to analyze the characteristics of changes in soil acidity and nutrient content after the conversion of paddy fields with different parent material development into dryland and vegetable fields in Qiyang, a typical county in the red soil area, so as to provide a scientific basis for the rational use of land to prevent acidification in the area. 【Method】18 sites were selected and collected from paddy fields and adjacent dryland and vegetable fields to analyze the changes of soil pH, exchangeable acid, exchangeable salt-based ions, organic matter, cation exchange, and nutrient content and their interrelationships. 【Result】 The pH of all the soils developed with alkaline parent material was significantly higher than that of the soils developed with acidic parent material. Soil pH decreased by 0.48 units after the conversion of acidic parent material developed paddy fields to vegetable fields; soil pH decreased by 0.74 and 0.53 units after the conversion of alkaline parent material developed paddy fields to drylands and vegetable fields, respectively. The bilinear model fit analysis showed that the soil exchangeable aluminum content increased rapidly when the soil pH was below 5.88, 5.78 and 5.63 in the paddy field, dryland and vegetable field, respectively, and the increment of soil exchangeable aluminum content increased by 1.09, 2.33 and 2.93 cmol(+)·kg-1 by one pH unit, respectively. Soil organic matter and total nitrogen content decreased by 11.06 and 0.42 g·kg-1, respectively, in the acidic matrices developed paddy fields converted to drylands, while no significant changes were observed in vegetable fields; soil organic matter and total nitrogen content decreased significantly in the alkaline matrices developed paddy fields converted to drylands and vegetable fields, by 13.88-17.28 and 0.57-0.71 g·kg-1, respectively. The total and effective phosphorus content of the soil increased significantly from 0.41-0.48 g·kg-1 and 26.79-28.69 mg·kg-1 after the conversion of the paddy field with alkaline parent material to dryland and vegetable field, respectively. Correlation analysis showed that soil pH was significantly and positively correlated with soil exchangeable calcium and magnesium, cation exchange, organic matter content and total nitrogen content (P<0.01); soil exchangeable acid and aluminum were significantly correlated with effective phosphorus content (P<0.05) and negative correlation (P<0.01) with soil exchangeable calcium and magnesium, cation exchange, organic matter and total nitrogen. 【Conclusion】Soil organic matter and total nitrogen content decreased significantly after the conversion of acidic and alkaline parent material developed paddy fields to drylands, while soil total phosphorus and effective phosphorus content tended to increase. Soil acidification was observed after the conversion of paddy fields to vegetable fields for acidic parent materials or to drylands and vegetable fields for alkaline parent materials; the increased nitrification and increased leaching of salt-based ions from paddy fields to drylands and vegetable fields might be one of the main reasons for soil acidification.

Key words: parent material, red soil, conversion of paddy fields to dry land and vegetable field, soil acidity, nutrient characteristics

Fig. 1

Location of sampling points in Qiyang city"

Table 1

Sampling site information"

土地利用
Land use
作物/轮作模式
Crop/rotation patterns
灌溉水源
Irrigation water
施肥种类
Fertilizer application types
水田
Paddy fields
一季稻-冬闲
Single rice - Winter leisure
池塘、水库
Ponds, reservoirs
尿素、复合肥
Urea, compound fertilizer
旱地
Dry land
冬油菜-夏玉米、花生、大豆
Winter canola - Summer maize, peanuts, soybeans
不灌溉
No irrigation
尿素、复合肥
Urea, compound fertilizer
菜地
Vegetable fields
白菜、莴苣、生菜、茄子
Cabbage, asparagus lettuce, lettuce, eggplant
池塘、污水
Ponds, reservoirs
尿素、复合肥、火土灰
Urea, compound fertilizer, plant ash

Fig. 2

Soil pH of different land uses under different parent materials “n” is the sample size of a single utilization method; The solid line in the box represents the median value and the dashed line represents the average value. Different letters indicate significant differences under different land uses and parent materials (P<0.05). The same as below"

Fig. 3

Exchangeable acid, hydrogen and aluminum content of different land uses under different parent materials"

Fig. 4

Relationship between soil pH and exchangeable aluminum in soil under different land uses"

Fig. 5

Exchangeable calcium, magnesium, potassium and sodium contents of different land uses under different parent materials"

Fig. 6

Organic matter content and cation exchange capacity of different land uses under different parent materials"

Fig. 7

Total and available N, P and K contents of different land uses under different parent materials"

Table 2

Correlation analysis of soil acidity and soil properties"

pH Ex.A Ex.H Ex.Al Ex.Ca Ex.Mg Ex.K Ex.Na CEC SOM TN TP TK AN AP AK
pH 1 -0.659** -0.772** -0.606** 0.839** 0.315** -0.008 0.141 0.334** 0.331** 0.337** -0.011 0.129 0.233** -0.117 -0.037
Ex.A 1 0.903** 0.993** -0.539** -0.289** 0.021 -0.226** -0.255** -0.207** -0.237** 0.054 -0.079 -0.110 0.177* 0.028
Ex.H 1 0.845** -0.628** -0.309** 0.001 -0.234** -0.325** -0.246** -0.288** 0.053 -0.119 -0.146 0.155* -0.002
Ex.Al 1 -0.497** -0.275** 0.026 -0.216** -0.227** -0.190* -0.215** 0.052 -0.065 -0.097 0.176* 0.036
Ex.Ca 1 0.231* -0.038 0.284** 0.558** 0.493** 0.534** 0.195* 0.245** 0.350** -0.115 0.032
Ex.Mg 1 0.306** 0.253** 0.319** 0.241** 0.223** 0.417** 0.035 0.148 0.348** 0.288**
Ex.K 1 0.194* 0.266** -0.199* -0.127 0.412** 0.355** -0.197* 0.461** 0.947**
Ex.Na 1 0.263** 0.241** 0.389** 0.373** 0.226** 0.177* 0.245** 0.249**
CEC 1 0.506** 0.536** 0.565** 0.277** 0.423** 0.229** 0.267**
SOM 1 0.886** 0.277** -0.230** 0.874** -0.049 -0.206**
TN 1 0.351** -0.064 0.757** 0.029 -0.123
TP 1 0.209** 0.203** 0.633** 0.429**
TK 1 -0.292** -0.002 0.357**
AN 1 -0.009 -0.239**
AP 1 0.471**
AK 1

Fig. 8

Principal component analysis (PCA) of soil acidity and soil properties"

[1]
赵其国. 我国红壤的退化问题. 土壤, 1995, 27(6): 281-285.
ZHAO Q G. Degradation of red soil in China. Soils, 1995, 27(6): 281-285. (in Chinese)
[2]
徐仁扣, 李九玉, 周世伟, 徐明岗, 沈仁芳. 我国农田土壤酸化调控的科学问题与技术措施. 中国科学院院刊, 2018, 33(2): 160-167.
XU R K, LI J Y, ZHOU S W, XU M G, SHEN R F. Scientific issues and controlling strategies of soil acidification of croplands in China. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160-167. (in Chinese)
[3]
刘佳, 陈晓芬, 刘明, 吴萌, 王伯仁, 蔡泽江, 张桃林, 李忠佩. 长期施肥对旱地红壤细菌群落的影响. 土壤学报, 2020, 57(2): 468-478.
LIU J, CHEN X F, LIU M, WU M, WANG B R, CAI Z J, ZHANG T L, LI Z P. Effects of long-term fertilization on bacterial community in upland red soil. Acta Pedologica Sinica, 2020, 57(2): 468-478. (in Chinese)
[4]
张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应. 生态学杂志, 2019, 38(6): 1900-1908.
ZHANG L Y, ZHAO X Q, SHEN R F. Soil acidification and its ecological effects. Chinese Journal of Ecology, 2019, 38(6): 1900-1908. (in Chinese)
[5]
李春培, 李雪, 汪璇, 刘刚才, 赵吉霞, 熊俊芬. 酸化环境对紫色母岩风化产物交换性盐基离子及其酸缓冲容量的影响. 土壤学报. https://kns.cnki.net/kcms/detail/32.1119.P.20221031.0955.002.html.
LI C P, LI X, WANG X, LIU G C, ZHAO J X, XIONG J F. Effect of the acidification environment on exchangeable cations and acid buffering capacity of weathering products of purple parent rock. Acta Pedologica Sinica. https://kns.cnki.net/kcms/detail/32.1119.P.20221031.0955.002.html. in Chinese)
[6]
WU J S, ZHOU P, LI L, SU Y R, YUAN H Z, SYERS J K. Restricted mineralization of fresh organic materials incorporated into a subtropical paddy soil. Journal of the Science of Food and Agriculture, 2012, 92(5): 1031-1037.

doi: 10.1002/jsfa.4645 pmid: 21993911
[7]
章晓芳, 郑生猛, 夏银行, 胡亚军, 苏以荣, 陈香碧. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征. 环境科学, 2020, 41(3): 1466-1473.
ZHANG X F, ZHENG S M, XIA Y H, HU Y J, SU Y R, CHEN X B. Responses of soil organic carbon fractions to land use types in hilly red soil regions, China. Environmental Science, 2020, 41(3): 1466-1473. (in Chinese)
[8]
章明奎, 杨东伟. 南方丘陵地水改旱后土壤发生学性质与类型的变化. 土壤通报, 2013, 44(4): 786-792.
ZHANG M K, YANG D W. Changes in genetic characteristics and types of soils in hilly regions after alteration from paddy fields to upland. Chinese Journal of Soil Science, 2013, 44(4): 786-792. (in Chinese)
[9]
SHENG R, MENG D L, WU M N, DI H J, QIN H L, WEI W X. Effect of agricultural land use change on community composition of bacteria and ammonia oxidizers. Journal of Soils and Sediments, 2013, 13(7): 1246-1256.

doi: 10.1007/s11368-013-0713-3
[10]
蔡泽江, 余强毅, 吴文斌, 文石林. 广东省增城区不同耕地利用类型下赤红壤酸度变化. 农业资源与环境学报, 2021, 38(6): 980-988.
CAI Z J, YU Q Y, WU W B, WEN S L. Changes in soil acidity under different land use in Zengcheng District, Guangdong Province. Journal of Agricultural Resources and Environment, 2021, 38(6): 980-988. (in Chinese)
[11]
LI Q Q, LI A W, YU X L, DAI T F, PENG Y Y, YUAN D G, ZHAO B, TAO Q, WANG C Q, LI B, GAO X S, LI Y D, WU D Y, XU Q. Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s. The Science of the Total Environment, 2020, 698: 134320.

doi: 10.1016/j.scitotenv.2019.134320
[12]
CAI Z J, YANG C F, DU X Y, ZHANG L, WEN S L, YANG Y D. Parent material and altitude influence red soil acidification after converted rice paddy to upland in a hilly region of Southern China. Journal of Soils and Sediments, 2023, 23(4): 1628-1640.

doi: 10.1007/s11368-023-03426-w
[13]
方利平, 章明奎. 利用方式改变对水稻土发生学特性的影响. 土壤通报, 2006, 37(4): 815-816.
FANG L P, ZHANG M K. Effects of land use on genetic properties of paddy soils. Chinese Journal of Soil Science, 2006, 37(4): 815-816. (in Chinese)
[14]
WU X, NGUYEN-SY T, SUN Z, WANTANABE T, TAWARAYA K, HU R G, CHENG W G. Soil organic matter dynamics as affected by land use change from rice paddy to wetland. Wetlands, 2020, 40(6): 2199-2207.

doi: 10.1007/s13157-020-01321-5
[15]
DAI X Q, YUAN Y, WANG H M. Changes of anaerobic to aerobic conditions but not of crop type induced bulk soil microbial community variation in the initial conversion of paddy soils to drained soils. CATENA, 2016, 147: 578-585.

doi: 10.1016/j.catena.2016.08.012
[16]
QIN H L, QUAN Z, YUAN H Z, LIU X L, ZHU Y J, CHEN C L, GUO J H, WU J S, WEI W X. Response of ammonium-oxidizing (amoA) and nitrate-reducing (narG) gene abundances in groundwater to land use change. Water, Air, & Soil Pollution, 2014, 225(5): 1908.
[17]
周睿, 潘贤章, 王昌坤, 刘娅, 李燕丽, 石荣杰, 解宪丽. 上海市城郊土壤有机质的时空变异特征及其影响因素. 土壤, 2014, 46(3): 433-438.
ZHOU R, PAN X Z, WANG C K, LIU Y, LI Y L, SHI R J, XIE X L. Spatial-temporal variation characteristics of soil organic matter and its impact factors in suburban Shanghai. Soils, 2014, 46(3): 433-438. (in Chinese)
[18]
WANG H, GUAN D S, ZHANG R D, CHEN Y J, HU Y T, XIAO L. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecological Engineering, 2014, 70: 206-211.

doi: 10.1016/j.ecoleng.2014.05.027
[19]
黄锦法, 曹志洪, 李艾芬, 张蚕生. 稻麦轮作田改为保护地菜田土壤肥力质量的演变. 植物营养与肥料学报, 2003, 9(1): 19-25.
HUANG J F, CAO Z H, LI A F, ZHANG C S. Soil fertility quality evolution after land use change from rice-wheat rotation to plastic film covered vegetable. Plant Nutrition and Fertilizing Science, 2003, 9(1): 19-25. (in Chinese)
[20]
唐贤, 蔡泽江, 徐明岗, 梁丰, 文石林, 高强. 红壤不同利用方式下的剖面酸度特征. 植物营养与肥料学报, 2018, 24(6): 1704-1712.
TANG X, CAI Z J, XU M G, LIANG F, WEN S L, GAO Q. Acidity characteristics of red soil profile under different land use patterns. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1704-1712. (in Chinese)
[21]
WEN H Y, WU H Y, DONG Y, FENG W J, LU Y, HU Y M, ZHANG G L. Differential soil acidification caused by parent materials and land-use changes in the Pearl River Delta region. Soil Use and Management, 2023, 39(1): 329-341.

doi: 10.1111/sum.v39.1
[22]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000: 110-250.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000: 110-250. (in Chinese)
[23]
红梅, 郑海春, 魏晓军, 李跃进, 米富贵, 陈彤. 石灰性土壤交换性钙和镁测定方法的研究. 土壤学报, 2014, 51(1): 82-89.
HONG M, ZHENG H C, WEI X J, LI Y J, MI F G, CHEN T. Determination of exchangeable calcium and magnesium in calcareous soil. Acta Pedologica Sinica, 2014, 51(1): 82-89. (in Chinese)
[24]
姚玉才, 邱志腾, 陈小梅, 章明奎. 水耕人为土长期改旱后土壤类型演变的探讨. 土壤通报, 2016, 47(5): 1029-1035.
YAO Y C, QIU Z T, CHEN X M, ZHANG M K. Evolution of soil types after long-term land-use conversion from paddy fields into dryland. Chinese Journal of Soil Science, 2016, 47(5): 1029-1035. (in Chinese)
[25]
张永春, 汪吉东, 沈明星, 沈其荣, 许仙菊, 宁运旺. 长期不同施肥对太湖地区典型土壤酸化的影响. 土壤学报, 2010, 47(3): 465-472.
ZHANG Y C, WANG J D, SHEN M X, SHEN Q R, XU X J, NING Y W. Effects of long-term fertilization on soil acidification in Taihu Lake region, China. Acta Pedologica Sinica, 2010, 47(3): 465-472. (in Chinese)
[26]
赵凯丽, 徐明岗, 周晓阳, 蔡泽江, 王伯仁, 刘瑜, 颜芳, 孙楠. 南方典型红壤区旱地与水田土壤酸度的剖面差异性. 土壤, 2022, 54(5): 1010-1015.
ZHAO K L, XU M G, ZHOU X Y, CAI Z J, WANG B R, LIU Y, YAN F, SUN N. Changes in pH at different depths of red soils under paddy field and dry land. Soils, 2022, 54(5): 1010-1015. (in Chinese)
[27]
梁文君, 蔡泽江, 宋芳芳, 周世伟, 艾天成, 徐明岗. 不同母质发育红壤上玉米生长与土壤pH、交换性铝、交换性钙的关系. 农业环境科学学报, 2017, 36(8): 1544-1550.
LIANG W J, CAI Z J, SONG F F, ZHOU S W, AI T C, XU M G. Relationships between maize growth and the pH, exchangeable aluminum and calcium of red soils derived from different parent materials. Journal of Agro-Environment Science, 2017, 36(8): 1544-1550. (in Chinese)
[28]
ULRICH B. Natural and anthropogenic components of soil acidification. Zeitschrift Für Pflanzenernährung Und Bodenkunde, 1986, 149(6): 702-717.

doi: 10.1002/jpln.v149:6
[29]
胡波, 王云琦, 王玉杰, 郭平, 刘春霞, 唐晓芬, 孙素琪. 重庆缙云山酸雨区森林土壤酸缓冲机制及影响因素. 水土保持学报, 2013, 27(5): 77-83.
HU B, WANG Y Q, WANG Y J, GUO P, LIU C X, TANG X F, SUN S Q. Acidic buffering capability and its influencing factors of typical forests soil in Jinyun Mountain, Chongqing. Journal of Soil and Water Conservation, 2013, 27(5): 77-83. (in Chinese)
[30]
赵叶舟, 王浩铭, 汪自强. 豆科植物和根瘤菌在生态环境中的地位和作用. 农业环境与发展, 2013, 30(4): 7-12.
ZHAO Y Z, WANG H M, WANG Z Q. The role of leguminous plants and Rhizobium in ecological environment. Agro-Environment & Development, 2013, 30(4): 7-12. (in Chinese)
[31]
周海燕, 徐明岗, 蔡泽江, 文石林, 吴红慧. 湖南祁阳县土壤酸化主要驱动因素贡献解析. 中国农业科学, 2019, 52(8): 1400-1412. doi: 10.3864/j.issn.0578-1752.2019.08.010.
ZHOU H Y, XU M G, CAI Z J, WEN S L, WU H H. Quantitative analysis of driving-factors of soil acidification in Qiyang County, Hunan Province. Scientia Agricultura Sinica, 2019, 52(8): 1400-1412. doi: 10.3864/j.issn.0578-1752.2019.08.010. (in Chinese)
[32]
DONG Y, YANG J L, ZHAO X R, YANG S H, MULDER J, DÖRSCH P, ZHANG G L. Seasonal dynamics of soil pH and N transformation as affected by N fertilization in subtropical China: An in situ 15N labeling study. The Science of the Total Environment, 2022, 816: 151596.

doi: 10.1016/j.scitotenv.2021.151596
[33]
WANG Y L, ZHANG H L, TANG J W, XU J B, KOU T J, HUANG H M. Accelerated phosphorus accumulation and acidification of soils under plastic greenhouse condition in four representative organic vegetable cultivation sites. Scientia Horticulturae, 2015, 195: 67-73.

doi: 10.1016/j.scienta.2015.08.041
[34]
YANG J L, ZHANG G L. Si cycling and isotope fractionation: Implications on weathering and soil formation processes in a typical subtropical area. Geoderma, 2019, 337: 479-490.

doi: 10.1016/j.geoderma.2018.09.047
[35]
周千雅, 谭军, 周琼霞, 肖文锋, 李宏光, 张赛, 王生才, 李强. 不同秸秆营养土对湖南假植烟苗生长发育的影响. 湖南农业科学, 2018(5): 24-27.
ZHOU Q Y, TAN J, ZHOU Q X, XIAO W F, LI H G, ZHANG S, WANG S C, LI Q. Effects of different straw nutrient soil on growth and development of Hunan transplanting tobacco seedlings. Hunan Agricultural Sciences, 2018(5): 24-27. (in Chinese)
[36]
肖艳松, 杨如意, 廖雅桦, 曹志辉, 简宏, 李丽娟, 李思军, 许娜. 不同火土灰用量对烟苗生长发育的影响. 中国烟草科学, 2022, 43(1): 22-26.
XIAO Y S, YANG R Y, LIAO Y H, CAO Z H, JIAN H, LI L J, LI S J, XU N. Effects of different amounts of fired soil on development of tobacco seedlings. Chinese Tobacco Science, 2022, 43(1): 22-26. (in Chinese)
[37]
李秀春, 李宏光, 肖艳松, 宋文静, 郑学博, 董建新. 火土灰对烟草苗期根系生长及根际养分的影响. 中国烟草科学, 2020, 41(5): 43-48.
LI X C, LI H G, XIAO Y S, SONG W J, ZHENG X B, DONG J X. Effects of fired soil on root growth and rhizosphere nutrients of tobacco at seedling stage. Chinese Tobacco Science, 2020, 41(5): 43-48. (in Chinese)
[38]
徐颖菲, 姚玉才, 章明奎. 全年淹水种植茭白对水田土壤性态的影响. 土壤通报, 2019, 50(1): 15-21.
XU Y F, YAO Y C, ZHANG M K. Effects of Zizania latifolia plantation with the whole year water-logging on soil properties of paddy fields. Chinese Journal of Soil Science, 2019, 50(1): 15-21. (in Chinese)
[39]
湖南省农业厅. 湖南土壤. 北京: 中国农业出版社, 1989.
Hunan Provincial Department of Agriculture. Hunan Soil. Beijing: China Agriculture Press, 1989. (in Chinese)
[40]
曾成城, 苏天明, 苏利荣, 秦芳, 李琴, 何铁光, 俞月凤, 张雨, 徐亮, 冯倩. 广西典型喀斯特地区不同土地利用方式土壤养分特征. 江苏农业科学, 2021, 49(2): 199-203.
ZENG C C, SU T M, SU L R, QIN F, LI Q, HE T G, YU Y F, ZHANG Y, XU L, FENG Q. Soil nutrient characteristics of different land use types in typical Karst area of Guangxi Zhuang Autonomous Region. Jiangsu Agricultural Sciences, 2021, 49(2): 199-203. (in Chinese)
[41]
李文军, 黄庆海, 李大明, 柳开楼, 叶会财, 肖国滨, 张文菊, 徐明岗. 长期施肥红壤性稻田和旱地土壤有机碳积累差异. 植物营养与肥料学报, 2021, 27(3): 544-552.
LI W J, HUANG Q H, LI D M, LIU K L, YE H C, XIAO G B, ZHANG W J, XU M G. Differences in organic carbon accumulation between reddish paddy and upland soils under long-term fertilization. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 544-552. (in Chinese)
[42]
LAL R. Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 2002, 116(3): 353-362.

pmid: 11822713
[43]
谭炳昌, 樊剑波, 何园球. 长期施用化肥对我国南方水田表土有机碳含量的影响. 土壤学报, 2014, 51(1): 96-103.
TAN B C, FAN J B, HE Y Q. Effect of long-term application of chemical fertilizers on soil organic carbon content in top layer of paddy fields in South China. Acta Pedologica Sinica, 2014, 51(1): 96-103. (in Chinese)
[44]
吕贻忠, 李保国. 土壤学. 北京: 中国农业出版社, 2006: 150-154.
Y Z, LI B G. Agrology. Beijing: China Agriculture Press, 2006: 150-154. (in Chinese)
[45]
关松, 窦森. 土壤有机质分解与转化的驱动因素. 安徽农业科学, 2006, 34(10): 2203-2206.
GUAN S, DOU S. Driving factors of the decomposition and transformation of soil organic matter. Journal of Anhui Agricultural Sciences, 2006, 34(10): 2203-2206. (in Chinese)
[46]
MOTAVALLI P P, PALM C A, PARTON W J, ELLIOTT E T, FREY S D. Soil pH and organic C dynamics in tropical forest soils: evidence from laboratory and simulation studies. Soil Biology and Biochemistry, 1995, 27(12): 1589-1599.

doi: 10.1016/0038-0717(95)00082-P
[47]
章永松, 林咸永, 倪吾钟. 淹水和风干过程对水稻土磷吸附、解吸及有效磷的影响(英文). 中国水稻科学, 1998, 12(1): 40-44.
ZHANG Y S, LIN X Y, NI W Z. Effects of flooding and subsequent air-drying on phosphorus adsorption, desorption and available phosphorus in the paddy soils. Chinese Journal of Rice Science, 1998, 12(1): 40-44.
[48]
邵兴华. 水稻土淹水过程铁氧化物转化对磷饱和度和磷、氮释放的影响[D]. 杭州: 浙江大学, 2005.
SHAO X H. Effects of transformation of iron oxides on phosphorus saturation and release of phosphorus and nitrogen in flooded paddy soils[D]. Hangzhou: Zhejiang University, 2005. (in Chinese)
[1] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[2] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[3] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
[4] ZHONG Liang,GUO Xi,GUO JiaXin,HAN Yi,ZHU Qing,XIONG Xing. Soil Texture Classification of Hyperspectral Based on Data Mining Technology [J]. Scientia Agricultura Sinica, 2020, 53(21): 4449-4459.
[5] WANG YuanPeng,HUANG Jing,SUN YuXiang,LIU KaiLou,ZHOU Hu,HAN TianFu,DU JiangXue,JIANG XianJun,CHEN Jin,ZHANG HuiMin. Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County [J]. Scientia Agricultura Sinica, 2020, 53(16): 3294-3306.
[6] ZHOU HaiYan,XU MingGang,CAI ZeJiang,WEN ShiLin,WU HongHui. Quantitative Analysis of Driving-Factors of Soil Acidification in Qiyang County, Hunan Province [J]. Scientia Agricultura Sinica, 2019, 52(8): 1400-1412.
[7] YAN ZhiHao,HU ZhiHua,WANG ShiChao,HUAI ShengChang,WU HongLiang,WANG JinYu,XING TingTing,YU XiChu,LI DaMing,LU ChangAi. Effects of Lime Content on Soil Acidity, Soil Nutrients and Crop Growth in Rice-Rape Rotation System [J]. Scientia Agricultura Sinica, 2019, 52(23): 4285-4295.
[8] LI DongChu,WANG BoRen,HUANG Jing,ZHANG YangZhu,XU MingGang,ZHANG ShuXiang,ZHANG HuiMin. Change of Phosphorus in Red Soil and Its Effect to Grain Yield Under Long-Term Different Fertilizations [J]. Scientia Agricultura Sinica, 2019, 52(21): 3830-3841.
[9] SHEN FengMin,JIANG GuiYing,ZHANG YuJun,LIU Fang,LIU ShiLiang,LIU KaiLou. Response of Different Forms of Nitrogen Migration in Typical Red Soil to Long-Term Different Fertilization Systems [J]. Scientia Agricultura Sinica, 2019, 52(14): 2468-2483.
[10] LÜ Bo,WANG YuHan,XIA Hao,YAO ZiHan,JIANG CunCang. Effects of Biochar and Other Amendments on the Cabbage Growth and Soil Fertility in Yellow-Brown Soil and Red Soil [J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315.
[11] DU Bin, HU XiaoTao, WANG WenE, MA LiHua, ZHOU ShiWei. Stem Flow Influencing Factors Sensitivity Analysis and Stem Flow Model Applicability in Filling Stage of Alternate Furrow Irrigated Maize [J]. Scientia Agricultura Sinica, 2018, 51(2): 233-245.
[12] JIANG GuiYing, ZHANG YuJun, WEI Xi, ZHANG DongXu, LIU ShiLiang, LIU KaiLou, HUANG ShaoMin, SHEN FengMin. The Soil Infrared Spectral Characteristics of Soil Organic Matter under Different Carbon Saturation Levels [J]. Scientia Agricultura Sinica, 2018, 51(16): 3117-3129.
[13] CHENG YanHong, HUANG QianRu, WU Lin, HUANG ShangShu, ZHONG YiJun, SUN YongMing, ZHANG Kun, ZHANG XinLiang. Effects of Straw Mulching and Vetiver Grass Hedgerows on Soil Enzyme Activities and Soil Microbial Community Structure in Red Soil Sloping Land [J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.
[14] YING Jie-guan, LIN Qing-yi, ZHANG Meng-yang, HUANG Yi, PENG Shu-ang, JIANG Cun-cang. Mitigative Effect of Biochar on Aluminum Toxicity of Acid Soil and the Potential Mechanism [J]. Scientia Agricultura Sinica, 2016, 49(23): 4576-4583.
[15] HU Min, XIANG Yong-sheng, LU Jian-wei. Effects of Lime Application Rates on Soil Acidity and Barley Seeding Growth in Acidic Soils [J]. Scientia Agricultura Sinica, 2016, 49(20): 3896-3903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!