Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (4): 779-796.doi: 10.3864/j.issn.0578-1752.2024.04.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice

JIANG Wen1(), LIANG WenXin1, PEI Fei1, SU AnXiang1, MA GaoXing1, FANG Donglu2, HU QiuHui1, MA Ning1()   

  1. 1 College of Food Science and Engineering, Nanjing University of Finance and Economics/Jiangsu Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023
    2 College of Forestry, Nanjing Forestry University/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037
  • Received:2023-09-27 Accepted:2023-11-20 Online:2024-02-16 Published:2024-02-20
  • Contact: MA Ning

Abstract:

【Objective】The twin-screw extrusion process was used to produce extruded rice products with P. eryngii powder and rice flour as raw materials, and the predicted glycemic index of the products was analyzed to provide technical support for the development of edible mushroom extruded rice products with comprehensive nutrition and low glycemic index. 【Method】 The content of protein, crude fiber, amino acid and fat of extruded rice with 20%, 40% and 60% P. eryngii powder were determined. RVA rapid viscosity analyzer and rotary rheometer were used to analyze the gelatinization properties and rheological properties of P. eryngii powder with different additive amounts. The internal structure, color, texture properties, starch hydrolysis rate, predicted glycemic index (pGI) and sensory score of extrusion-rice with different dosage of P. eryngii were analyzed by scanning electron microscopy, colorimeter, texture analyzer, and in vitro digestion and sensory evaluation. 【Result】Compared with blank extruded rice, the content of protein, crude fiber and amino acid in extruded rice was significantly increased by adding P. eryngii powder, and the content of protein was increased by 71.84%, 70.19% and 96.70%, and the content of crude fiber was increased by 850%, 2350% and 3750%, respectively. The total amino acid content increased by 40.98%, 58.96% and 66.03%, respectively. The gelatinization and rheological properties of the mixed powder system showed a decreasing trend with the increase of the added amount of P. eryngii powder, and the peak viscosity, valley viscosity, final viscosity, disintegration value and recovery value gradually decreased, and G' and G" gradually decreased. The typical weak gel accounted for a large proportion of elasticity, and the added amount of 20% P. eryngii powder was the closest to the powder parameters of rice flour. Compared with the blank extruded rice, it was found by scanning electron microscopy that the cross section pores of extruded rice increased with the increase of the powder content, and the structure tightness decreased. Among them, 20% of extruded rice had tight structure and less cracks. The values of L* and b* in extruded rice of P. eryngii by colorimeter decreased significantly, and a* increased first and then decreased. The water absorption rate and cooking loss rate after cooking increased with the addition of P. eryngii powder, but the expansion rate had no significant effect, and the cooking characteristics of 20% P. eryngii extruded rice were the best. The hardness, elasticity, adhesiveness and chewability of the extruded rice increased with the addition of P. eryngii powder, while the cohesiveness and resilience first decreased and then increased. Starch digestibility, rapidly digestible starch (RDS), slowly digestible starch (SDS) and predicted glycemic index (pGI) also increased with the increase of P. eryngii powder addition, but they were all lower than that of normal rice and blank extruded rice, while resistant starch (RS) content was greater than that of the two groups and increased with the increase. The predicted glycemic index (pGI) value of 20% P. eryngii extruded rice was the lowest 60.18, which was 20.60 lower than that of normal rice, and the content of resistant starch (RS) was the highest. Sensory evaluation showed that the appearance structure, palatability, taste, cold rice texture and comprehensive score of P. eryngii extruded rice decreased with the increase of the amount of P. eryngii powder, while the odor score decreased first and then increased. From the point of view of the score, 20% of P. eryngii extruded rice was 66.75 scores, which was the most acceptable to consumers. 【Conclusion】 20% of extruded rice with P. eryngii was nutrient-rich and had suitable texture indexes. The predicted glycemic index (pGI) was 60.18, which was 20.60 lower than that of normal rice. The nutritional value of extruded rice was significantly improved by adding P. eryngii powder, and the food quality was better.

Key words: Pleurotus eryngii, extruded rice, viscoelasticity, digestion characteristics, quality characteristics

Table 1

Sensory evaluation of P. eryngii extruded rice"

评定项目
Evaluation prject
评定标准
Evaluation standard
分值
Score
气味(20分)
Smell (20)
菌菇香味浓郁 Mushroomaroma is rich 16-20
菌菇香味不明显 Mushroom aroma is not obvious 11-15
无菌菇香味甚至有异味 No mushroom smell or smell 0-10
外观结构(20分)
Appearance structure (20)
颜色有光泽,结构紧密,完整 Glossy color, compact structure, complete 13-20
颜色发暗,部分结构紧密,较完整 Dark color, part of the structure is tight, relatively complete 7-12
颜灰暗无光泽,饭粒爆花 Dark and dull color, rice burst 0-6
适口性(30分)
Palatability (30)
软硬适中,有嚼劲 Medium soft, chewy 20-30
略软,稍有嚼劲 Softer, relatively chewy 10-19
很软,无嚼劲 Soft, unchewy 0-9
滋味(25分)
Taste (25)
咀嚼时有甜味 Sweet taste 18-25
咀嚼时有甜味但夹杂其他味道 Sweet but mixed with other flavors 9-17
咀嚼时无甜味甚至有异味 No sweetness or even odor 0-8
冷饭质地(5分)
Cold rice texture (5)
质地松软,黏弹性较好,硬度适中 Soft, viscoelastic, moderate hardness 4-5
结团,粘弹性较差,稍变硬 Clumps, poor viscoelasticity, slightly hard 2-3
板结,粘弹性差,偏硬 Stiff, viscoelatic and hard 0-1
总分(100分) Total scores (100)

Table 2

Effect of adding amount of P. eryngii powder on the gelatinization characteristics of rice flour"

样品
Sample
峰值黏度
Peak
(cP)
谷值黏度
Trough
(cP)
崩解值
Breakdown
(cP)
最终黏度
Final Visc
(cP)
回生值
Setback
(cP)
峰值时间
Peak time
(min)
糊化温度
Pasting temperature
(℃)
0杏鲍菇-米粉混合粉
0 P. eryngii-Rice power
1809.33±35.92b 1013.00±1.00b 796.33±35.10a 1450.33±6.43b 437.33±5.51c 1.45±0.04f 50.22±0.03c
20%杏鲍菇-米粉混合粉
20% P. eryngii-Rice power
949.33±4.16c 547.33±9.29c 402.00±11.53c 762.00±7.21d 214.67±3.79e 1.8±0.07e 50.23±0.03c
40%杏鲍菇-米粉混合粉
40% P. eryngii-Rice power
545.67±10.21e 369.00±2.65e 176.67±11.68d 528.67±3.79f 159.67±2.52f 1.91±0.10d 50.22±0.03c
60%杏鲍菇-米粉混合粉
60% P. eryngii-Rice power
339.67±7.02g 249.67±3.06f 90.00±9.17e 359.33±3.79g 109.67±2.89g 1.71±0.04e 50.20±0.05c
空白挤压米
Blank extruded rice
1857.33±17.79a 1283.67±1.15a 573.67±16.92b 2212.33±9.07a 928.67±8.39a 6.02±0.04a 50.20±0.05c
20%杏鲍菇挤压米
20% P. eryngi extruded rice
879.67±22.05d 465.00 ±4.58d 414.67±24.79c 1155.00±6.08c 690.00±7.21b 5.25±0.04c 66.32±2.44a
40%杏鲍菇挤压米
40% P. eryngii extruded rice
410.00±3.61f 249.33±2.52f 160.67±2.89d 605.67±4.16e 356.33±6.35d 5.51±0.03b 54.07±2.99b
60%杏鲍菇挤压米
60% P. eryngii extruded rice
165.33±1.15h 149.67±0.58g 15.67±0.58f 227.00±1.73h 77.33±1.15h 5.93±0.07a ND

Fig. 1

Typical frequency dependence of G′ (A), G″ (B) and tanδ (C) of rice flour with P. eryngii powder at different concentrations"

Table 3

Table of basic ingredients of extruded rice with different amount of P. eryngii powder and P. eryngii power"

样品
Sample
水分
Moisture (%)
蛋白质
Protein (%)
脂肪
Fat (%)
粗纤维
Crude fiber (%)
淀粉
Starch (%)
杏鲍菇粉 P. eryngii power 8.97±0.01d 16.82±0.08a 1.22±0.02a 13.25±0. 63a 5.91±0.04f
普通大米(米粉) Normal rice (rice power) 14.39±0.05a 8.40±0.18d 0.19±0.02cd 0.10±0.03e 67.68±0.26a
空白挤压米 Blank extruded rice 12.00±0.04b 7.28±0.10e 0.07±0.01d 0.08±0.01e 65.31±0.58b
20%杏鲍菇挤压米 20% P. eryngii extruded rice 10.10±0.12c 12.51±0.05c 0.15±0.02cd 0.76±0.04d 56.02±0.63c
40%杏鲍菇挤压米 40% P. eryngii extruded rice 9.01±0.02d 12.39±0.10c 0.27±0.06c 1.96±0.15c 46.45±0.75d
60%杏鲍菇挤压米 60% P. eryngii extruded rice 9.00±0.01d 14.32±0.29b 0.40±0.17b 3.08±0.13b 32.78±0.10e

Table 4

Analysis table of amino acids contents of extruded rice with different amount of P. eryngii powder and P. eryngii power"

样品
Sample
氨基酸含量Amino acid content (mg∙g-1 dry weight)
杏鲍菇粉
P. eryngii power
普通大米
Normal
rice
空白挤压米
Blank extruded rice
20%杏鲍菇挤压米
20% P. eryngii extruded rice
40%杏鲍菇挤压米
40% P. eryngii extruded rice
60%杏鲍菇挤压米
60% P. eryngii extruded rice
天冬氨酸 Aspartic acid 8.51±0.32a 4.52±0.03d 4.43±0.05d 6.02±0.26c 6.67±0.18b 6.96±0.13b
苏氨酸 Threonine 4.67±0.17a 1.87±0.01e 1.79±0.02e 2.71±0.12d 3.21±0.08c 3.49±0.08b
丝氨酸 Serine 4.56±0.18a 2.44±0.01d 2.42±0.02d 3.30±0.14c 3.67±0.09b 3.82±0.07b
谷氨酸 Glutamic acid 13.55±0.52a 9.46±0.07c 9.31±0.11c 12.35±0.50b 12.94±0.32b 12.46±0.23b
甘氨酸 Glycine 4.36±0.15a 2.16±0.02e 2.14±0.02e 2.96±0.14d 3.37±0.08c 3.59±0.08b
丙氨酸 Alanine 5.70±0.21a 2.92±0.02e 2.83±0.03e 4.19±0.17d 4.88±0.13c 5.25±0.09b
半胱氨酸 Cysteine 0.42±0.01a 0.25±0.01c 0.27±0.01bc 0.31±0.01b 0.31±0.04b 0.27±0.03bc
缬氨酸 Valine 4.54±0.17a 3.00±0.01d 2.91±0.03d 3.95±0.17c 4.30±0.10b 4.38±0.09ab
蛋氨酸 Methionine 12.37±0.65a 0.89±0.00e 0.83±0.02e 3.21±0.13d 5.28±0.09c 7.00±0.10b
异亮氨酸 Isoleucine 4.11±0.13a 2.04±0.00e 2.01±0.03e 2.90±0.13d 3.35±0.09c 3.56±0.09b
亮氨酸 Leucine 6.81±0.20a 4.37±0.02c 4.34±0.05c 5.92±0.27b 6.53±0.23a 6.72±0.23a
酪氨酸 Tyrosine 3.24±0.12a 1.49±0.02d 1.42±0.06d 2.30±0.22c 2.75±0.09b 2.75±0.13b
苯丙氨酸 Phenylalanine 3.99±0.12a 2.98±0.00c 2.85±0.03c 3.72±0.16b 3.98±0.09a 4.04±0.09a
赖氨酸 Lysine 5.07±0.18a 1.91±0.01e 1.82±0.02e 2.44±0.10d 2.86±0.07c 3.24±0.06b
组氨酸 Histidine 2.31±0.08a 1.43±0.01d 1.42±0.02d 1.86±0.07c 1.97±0.03b 1.99±0.03b
精氨酸 Arginine 5.55±0.20a 3.77±0.03c 3.78±0.06c 4.87±0.26b 5.12±0.13b 4.96±0.12b
脯氨酸 Proline 4.12±0.17a 2.97±0.02c 2.80±0.03d 3.77±0.12b 4.11±0.07a 4.17±0.04a
总氨基酸 Total amino acid 93.88±3.58a 48.47±0.29e 47.37±0.61f 66.78±2.97d 75.30±1.91c 78.65±1.69b
必需氨基酸 Essential amino acid 41.56 17.06 16.55 24.85 29.51 32.43
非必需氨基酸 Non-essential acid 52.32 31.41 30.82 41.93 45.79 46.22
必需氨基酸/总氨基酸EAA/TAA 0.44 0.35 0.35 0.37 0.39 0.41
必需氨基酸/非必需氨基酸 EAA/NEAA 0.79 0.54 0.54 0.59 0.64 0.70

Fig. 2

Effect of diffrernt amount of P. eryngii powder on internal structure of extruded rice"

Fig. 3

Extruded rice produced with different amount of P. eryngii powder"

Table 5

Effect of different amount of P. eryngii powder on the color of extruded rice"

色差
Color
普通大米
Normal rice
空白挤压米
Blank extruded rice
20%杏鲍菇挤压米
20% P. eryngii extruded rice
40%杏鲍菇挤压米
40% P. eryngii extruded rice
60%杏鲍菇挤压米
60% P. eryngii extruded rice
L* 77.52±0.03a 69.99±0.03b 24.64±0.02c 21.77±0.03d 21.01±0.04e
a* 0.00±0.01e 0.36±0.02d 7.83±0.03a 4.74±0.01b 3.61±0.01c
b* 18.23±0.03b 21.06±0.04a 8.39±0.08c 4.86±0.08d 4.04±0.03e

Fig. 4

Effect of different amount of P. eryngii powder on cooking loss, water absorption, and volume expansion of extruded rice The data with different letters show significant difference (P<0.05)"

Fig. 5

In vitro digestion curve of extruded rice with different amount of P. eryngii powder of extruded rice"

Table 6

Effect of different amount of P. eryngii powder on calculated equilibrium concentrations (C∞), enzymatic hydrolysis speed rate (K), hydrolysis index (HI), predicted glycemic index (pGI), and in vitro starch digestion fraction of extruded rice"

样品
Sample
平衡浓度
C∞ (%)
酶解速率
K (s-1)b
AUC 水解指数
HI (%)
预测血糖指数
pGI
快速消化淀粉
RDS (%)
慢消化淀粉
SDS (%)
抗性淀粉
RS (%)
普通大米 Normal rice 57.29±0.59b 0.044±0.002b 103.03±1.07b 85.01±0.88b 86.38±0.48b 36.79±0.12a 23.15±0.09b 40.06±0.13d
空白挤压米
Blank extruded rice
60.28±0.18a 0.052±0.023ab 108.40±0.32a 89.44±0.26a 88.81±0.14a 36.01±0.02b 25.53±0.04a 38.46±0.02e
20%杏鲍菇挤压米
20% P. eryngii extruded rice
25.13±0.35e 0.074±0.017a 45.19±0.63e 37.29±0.52e 60.18±0.28e 18.53±0.21e 6.70±0.07e 74.77±0.18a
40%杏鲍菇挤压米
40% P. eryngii extruded rice
39.47±0.12d 0.063±0.001ab 70.97±0.21d 58.56±0.17d 71.86±0.10d 29.42±0.23d 11.36±0.11d 59.22±0.15b
60%杏鲍菇挤压米
60% P. eryngii extruded rice
46.20±0.19c 0.049±0.002ab 83.07±0.34c 68.54±0.28c 77.34±0.15c 31.58±0.47c 14.04±0.28c 54.38±0.55c

Table 7

Effect of different amount of P. eryngii powder on texture characteristics of extruded rice"

样品
Samples
硬度
Hardness (g)
弹性
Elastic (mm)
粘聚性
Cohesiveness (g.s)
胶着度
Adhesiveness (g)
咀嚼性
Chewiness (g)
回复性
Resilience
普通大米 Normal rice 2081.23±26.74c 0.59±0.17a 0.36±0.06b 757.70±143.65d 449.93±171.49c 0.13±0.01d
空白挤压米
Blank extruded rice
1159.15±10.93d 0.59±0.03a 0.59±0.03a 687.76±35.66d 408.42±18.25c 0.29± 0.01a
20%杏鲍菇挤压米
20% P. eryngii extruded rice
5408.67±271.94a 0.72±0.13a 0.53±0.05a 2886.83±158.20a 2121.81±199.06a 0.18±0.02c
40%杏鲍菇挤压米
40% P. eryngii extruded rice
3227.16±317.36b 0.61±0.02a 0.56±0.02a 1792.05±186.73b 1086.55±146.79b 0.21±0.02b
60%杏鲍菇挤压米
60% P. eryngii extruded rice
2910.33±134.70b 0.61±0.05a 0.43±0.01b 1246.54±70.08c 759.02±95.17bc 0.15±0.01d

Table 8

Sensory Evaluation Results of extruded rice with different amount of P. eryngii powder (scores)"

样品
Sample
气味
Smell
外观结构
Appearance structure
适口性
Palatability
滋味
Taste
冷饭质地
Cold rice texture
总分
Total score
普通大米
Normal rice
18.50±0.58b 18.00±0.82a 27.50±0.58a 22.75±0.50a 4.25±0.50a 91.00±0.82a
空白挤压米
Blank extruded rice
16.50±0.58c 15.50±0.58b 19.50±0.58b 18.25±0.50b 3.75±0.50ab 73.50±1.00b
20%杏鲍菇挤压米
20% P. eryngii extruded rice
15.50±0.58d 13.50±0.58c 18.00±0.82c 16.25±0.50c 3.25±0.50bc 66.75±1.89c
40%杏鲍菇挤压米
40% P. eryngii extruded rice
18.25±0.50b 10.25±0.96d 16.00±0.82d 13.50±0.58d 3.00±0.00cd 61.00±2.16d
60%杏鲍菇挤压米
60% P. eryngii extruded rice
19.50±0.58a 9.75±0.96d 13.5±0.58e 10.00±0.82e 2.50±0.58d 55.25±0.96e
[1]
马高兴, 王晗, 杨文建, 苏安祥, 裴斐, 马宁, 胡秋辉. 不同提取工艺对杏鲍菇多糖结构特征及免疫活性的影响. 食品科学, 2022, 43(17): 42-49.
MA G X, WANG H, YANG W J, SU A X, PEI F, MA N, HU Q H. Effects of different extraction processes on structural characteristic and immunomodulatory activity of Pleurotus eryngii polysaccharide. Food Science, 2022, 43(17): 42-49. (in Chinese)
[2]
赵换维. 杏鲍菇多肽制备工艺及体外活性研究[D]. 西安: 西北大学, 2019.
ZHAO H W. Study on preparation technology and the activity of polypeptide from Pleurotus eryngii in vitro[D]. Xi’an: Northwest University, 2019. (in Chinese)
[3]
CHEN L, ZHANG Y P, SHA O, XU W, WANG S J. Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice. International Journal of Biological Macromolecules, 2016, 93: 1206-1209.

doi: 10.1016/j.ijbiomac.2016.09.094
[4]
REN Z Z, LI J, XU N, ZHANG J J, SONG X L, WANG X X, GAO Z, JING H J, LI S S, ZHANG C, LIU M, ZHAO H J, JIA L. Anti- hyperlipidemic and antioxidant effects of alkali-extractable mycelia polysaccharides by Pleurotus eryngii var. tuolensis. Carbohydrate Polymers, 2017, 175: 282-292.
[5]
SUN Y N, LI W X. Activity-guided isolation and structural identification of immunomodulating substances from Pleurotus eryngii byproducts. International Immunopharmacology, 2017, 51: 82-90.

doi: 10.1016/j.intimp.2017.08.005
[6]
LONGVAH T, BOIROJU N K, PRASAD V S S, KUMAR K O, MANGTHYA K, SHARMA P, ANANTHAN R, RAVINDRA BABU V. Nutrient diversity in 251 Indian rice germplasms and dietary nutrient supply through rice in rice based diets. LWT-Food Science and Technology, 2021, 148: 111721.

doi: 10.1016/j.lwt.2021.111721
[7]
朱立树, 叶向阳, 江洋. 控制大米加工中碎米率的研究进展. 安徽农业科学, 2018, 46(2): 144-145, 148.
ZHU L S, YE X Y, JIANG Y. Research progress of technologies for decreasing broken rice kernel rate in rice processing. Journal of Anhui Agricultural Sciences, 2018, 46(2): 144-145, 148. (in Chinese)
[8]
王丽群, 郭振海, 孙庆申, 周野, 陈凯新, 卢淑雯. 稻米适度加工技术及其应用. 东北农业大学学报, 2022, 53(2): 91-98.
WANG L Q, GUO Z H, SUN Q S, ZHOU Y, CHEN K X, LU S W. Moderate processing technology of rice and its application. Journal of Northeast Agricultural University, 2022, 53(2): 91-98. (in Chinese)
[9]
KLEFTAKI S A, SIMATI S, AMERIKANOU C, GIOXARI A, TZAVARA C, ZERVAKIS G I, KALOGEROPOULOS N, KOKKINOS A, KALIORA A C. Pleurotus eryngii improves postprandial glycaemia, hunger and fullness perception, and enhances ghrelin suppression in people with metabolically unhealthy obesity. Pharmacological Research, 2022, 175: 105979.

doi: 10.1016/j.phrs.2021.105979
[10]
邓甜甜, 李波, 聂远洋. 杏鲍菇和南瓜在馒头加工中的应用研究. 河南科技学院学报(自然科学版), 2018, 46(6): 19-23, 34.
DENG T T, LI B, NIE Y Y. Application of Pleurotus eryngii and pumpkin in processing of Chinese steamed bread. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2018, 46(6): 19-23, 34. (in Chinese)
[11]
王颂. 杏鲍菇粉对面团流变学性质的影响及杏鲍菇饼干工艺的研究[D]. 南京: 南京农业大学, 2015.
WANG S. The study of the effect of Pleurotus eryngii powder on rheology properties of dough and optimization of the technology of Pleurotus eryngii biscuits[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[12]
王莉. 杏鲍菇红枣复合运动饮料的研制. 中国食用菌, 2020, 39(1): 52-54.
WANG L. Development of compound sports beverage of Pleurotus eryngii and Ziziphus jujuba. Edible Fungi of China, 2020, 39(1): 52-54. (in Chinese)
[13]
蔺志颖. 乳酸发酵杏鲍菇酱的加工及其风味物质研究[D]. 杨凌: 西北农林科技大学, 2018.
LIN Z Y. Study on processing and flavor components of Pleurotus eryngii sauce fermented by lactic acid bacteria[D]. Yangling: Northwest A & F University, 2018. (in Chinese)
[14]
乔瑶瑶, 张卜今, 程菲儿, 冯翠萍. 添加杏鲍菇粉对太谷饼品质的影响. 食品工业, 2022, 43(11): 139-143.
QIAO Y Y, ZHANG B J, CHENG F E, FENG C P. Effects of Pleurotus eryngii powder on quality of Taigu cake. The Food Industry, 2022, 43(11): 139-143. (in Chinese)
[15]
赵玲玲, 王文亮, 弓志青, 沈文凤, 杨建刚. 杏鲍菇粉对小麦面团、馒头质构及品质的影响. 食品科技, 2017, 42(6): 147-151.
ZHAO L L, WANG W L, GONG Z Q, SHEN W F, YANG J G. Effect of pleurotus eryngii powder on quality and textural properties of wheat dough and Chinese steamed bread. Food Science and Technology, 2017, 42(6): 147-151. (in Chinese)
[16]
NIE Y Y, ZHANG P H, DENG C J, XU L S, YU M J, YANG W, ZHAO R Y, LI B. Effects of Pleurotus eryngii (mushroom) powder and soluble polysaccharide addition on the rheological and microstructural properties of dough. Food Science & Nutrition, 2019, 7(6): 2113-2122.
[17]
林秀容, 杜昕, 刘松青, 王芳. 马铃薯-杏鲍菇复合面条工艺. 食品工业, 2021, 42(6): 44-49.
LIN X R, DU X, LIU S Q, WANG F. The technology of potato and Pleurotus eryngii composite noodles. The Food Industry, 2021, 42(6): 44-49. (in Chinese)
[18]
张鑫, 任元元, 邱道富, 游敬刚, 孟资宽, 邹育. 不同杂粮添加量对挤压重组米饭品质及体外消化特性的影响. 食品与发酵科技, 2021, 57(5): 36-41.
ZHANG X, REN Y Y, QIU D F, YOU J G, MENG Z K, ZOU Y. Effects of different amount of coarse cereals on quality and in vitro digestibility of extruded reconstituted rice. Food and Fermentation Sciences & Technology, 2021, 57(5): 36-41. (in Chinese)
[19]
王洁洁, 邵子晗, 韩晶, 李雪玲, 孙玥, 梁进. 挤压重组紫薯米工艺优化及其抗氧化活性研究. 食品工业科技, 2020, 41(8): 137-142, 150.
WANG J J, SHAO Z H, HAN J, LI X L, SUN Y, LIANG J. Optimization of process parameters and antioxidant activity of extrusion recombinant purple sweet potato rice. Science and Technology of Food Industry, 2020, 41(8): 137-142, 150. (in Chinese)
[20]
章丽琳. 马铃薯挤压重组米制备及其品质研究[D]. 长沙: 湖南农业大学, 2017.
ZHANG L L. Preparation and properties study of potato rice by extrusion cooking technology[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[21]
SUMARDIONO S, JOS B, ANTONI M F Z, NADILA Y, HANDAYANI N A. Physicochemical properties of novel artificial rice produced from sago, arrowroot, and mung bean flour using hot extrusion technology. Heliyon, 2022, 8(2): e08969.

doi: 10.1016/j.heliyon.2022.e08969
[22]
ARRIBAS C, CABELLOS B, CUADRADO C, GUILLAMÓN E, M PEDROSA M. Bioactive compounds, antioxidant activity, and sensory analysis of rice-based extruded snacks-like fortified with bean and carob fruit flours. Foods, 2019, 8(9): 381.

doi: 10.3390/foods8090381
[23]
SHAO Z H, HAN J, WANG J J, SUN Y, LI X L, LIANG J. Process optimization, digestibility and antioxidant activity of extruded rice with Agaricus bisporus. LWT-Food Science & Technology, 2021, 152: 112350.
[24]
祁湛瑶, 管立军, 高扬, 卢淑雯, 包怡红, 李家磊, 王崑仑, 严松, 张志宏, 江园园. 高膳食纤维食用菌营养工程米的工艺优化. 食品工业科技, 2019, 40(6): 216-222, 229.
QI Z Y, GUAN L J, GAO Y, LU S W, BAO Y H, LI J L, WANG K L, YAN S, ZHANG Z H, JIANG Y Y. Process optimization of high dietary fiber edible mushroom extruded nutrition engineering rice. Science and Technology of Food Industry, 2019, 40(6): 216-222, 229. (in Chinese)
[25]
李卢, 刘震远, 李喜宏, 李聪, 宋建新, 李悦明. 南瓜粉对挤压米膳食血糖指数及品质的影响. 食品与生物技术学报, 2021, 40(11): 39-45.
LI L, LIU Z Y, LI X H, LI C, SONG J X, LI Y M. Contribution of pumpkin powder addition on dietary glycemic index and quality of fresh extruded rice. Journal of Food Science and Biotechnology, 2021, 40(11): 39-45. (in Chinese)
[26]
NA-NAKORN K, KULRATTANARAK T, HAMAKER B R, TONGTA S. Starch digestion kinetics of extruded reformed rice is changed in different ways with added protein or fiber. Food & Function, 2019, 10(8): 4577-4583.
[27]
LIU X, ZHAO J F, ZHANG X, LI Y, ZHAO J, LI T T, ZHOU B Y, YANG H Y, QIAO L P. Enrichment of soybean dietary fiber and protein fortified rice grain by dry flour extrusion cooking: the physicochemical, pasting, taste, palatability, cooking and starch digestibility properties. RSC Advances, 2018, 8(47): 26682-26690.

doi: 10.1039/C8RA01781F
[28]
LI J, HOU G G, CHEN Z X, GEHRING K. Effects of endoxylanases, vital wheat gluten, and gum Arabic on the rheological properties, water mobility, and baking quality of whole-wheat saltine cracker dough. Journal of Cereal Science, 2013, 58(3): 437-445.

doi: 10.1016/j.jcs.2013.09.006
[29]
中华人民共和国国家标准.食品中水分的测定.GB 5009. 3- 2016.
Chinese Ministry of Health. Determination of moisture in foods,GB 5009.3- 2016. (in Chinese)
[30]
中华人民共和国国家标准.食品中蛋白质的测定.GB 5009. 5- 2016.
Chinese Ministry of Health. Determination of protein in foods,GB 5009.5- 2016. (in Chinese)
[31]
中华人民共和国国家标准.食品中脂肪的测定.GB 5009. 6- 2016.
Chinese Ministry of Health. Determination of fat in foods,GB 5009.6- 2016. (in Chinese)
[32]
中华人民共和国国家标准.植物类食品中粗纤维的测定.GB/T 5009. 10- 2003.
Chinese Ministry of Health. Determination of crude fiber in vegetable foods, GB/T 5009. 10- 2003. (in Chinese)
[33]
中华人民共和国国家标准.食品中氨基酸的测定.GB 5009. 124- 2016.
Chinese Ministry of Health.Determination of amino acid in foods, GB 5009.124- 2016. (in Chinese)
[34]
曹宸瑀, 杨嘉丹, 刘鸿铖, 邹岩, 同政泉, 王大为. 银耳五谷粉糊化特性、流变特性及其挤压米品质研究. 吉林农业大学学报. doi: 10.13327/j.jjlau.2021.5112.
CAO C Y, YANG J D, LIU H C, ZHOU Y, TONG Z Q, WANG D W. Study on the gelatinization characteristics, rheological properties and extruded rice quality of Tremella-multigrain flour. Journal of Jilin Agricultural University. doi: 10.13327/j.jjlau.2021.5112. (in Chinese)
[35]
ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 1992, 46(Suppl. 2): S33-S50.
[36]
陆萍. 发酵及多酚复合对大米淀粉结构和消化性能的影响[D]. 广州: 华南理工大学, 2020.
LU P. Effect of fermentation and polyphenol complexation on the structure and digestibility of rice starch[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
[37]
王立峰, 陈静宜, 陈超, 杨精华, 鞠兴荣. 不同包装方式下大米储藏品质及微观结构研究. 粮食与饲料工业, 2014(12): 1-5, 9.
WANG L F, CHEN J Y, CHEN C, YANG J H, JU X R. Study on the storage quality and microstructure of rice by different packaging methods. Cereal & Feed Industry, 2014(12): 1-5, 9. (in Chinese)
[38]
中华人民共和国国家标准.粮油检验稻谷、大米蒸煮食用品质感官评价方法. GB/T 15682- 2008.
Chinese Ministry of Health. Inspection of grain and oils-Method for sensory evaluation of paddy or rice cooking and eating quality, GB/T 15682- 2008. (in Chinese)
[39]
宋一诺. 淀粉-脂肪酸复合物对小麦淀粉糊化和回生特性的影响[D]. 郑州: 河南农业大学, 2015.
SONG Y N. Effects of complexes between fatty acids and starch on the gelatinization and retrogradation of wheat starch[D]. Zhengzhou: Henan Agricultural University, 2015. (in Chinese)
[40]
JEONG S, KIM M, YOON M R, LEE S Y. Preparation and characterization of gluten-free sheeted doughs and noodles with zein and rice flour containing different amylose contents. Journal of Cereal Science, 2017, 75: 138-142.

doi: 10.1016/j.jcs.2017.03.022
[41]
刘畅, 孟倩楠, 刘晓飞, 王雨晴, 杨春瑜, 张娜. 挤压重组米工艺及其品质特性研究进展. 食品研究与开发, 2021, 42(10): 198-203.
LIU C, MENG Q N, LIU X F, WANG Y Q, YANG C Y, ZHANG N. Progress of extruded rice grains technology and its quality characteristics. Food Research and Development, 2021, 42(10): 198-203. (in Chinese)
[42]
王梓杭, 范秀芝, 姚芬, 殷朝敏, 史德芳, 高虹, 沈汪洋. 香菇蛋白的提取工艺优化、功能特性及氨基酸评价. 现代食品科技, 2023, 39(6): 186-194.
WANG Z H, FAN X Z, YAO F, YAO C M, SHI D F, GAO H, SHEN W Y. Optimization of extraction, functional characteristic, and amino acid evaluation of Lentinula edodes Protein. Modern Food Science and Technology 2023, 39(6): 186-194. (in Chinese)
[43]
马文静, 张瑞, 周荣雪, 贾丽娜. 膨化技术及其在谷物淀粉制品中的应用研究进展. 食品工业, 2018, 39(11): 226-230.
MA W J, ZHANG R, ZHOU R X, JIA L N. Puffing technology and its application in cereal starch products. The Food Industry, 2018, 39(11): 226-230. (in Chinese)
[44]
江宁, 刘春泉, 李大婧, 周拥军. 不同干燥方法对杏鲍菇片品质和能耗的影响. 江苏农业科学, 2014, 42(9): 232-235.
JIANG N, LIU C Q, LI D J, ZHOU Y J. Effects of different drying methods on quality and energy consumption of Pleurotus eryngii slices. Jiangsu Agricultural Sciences, 2014, 42(9): 232-235. (in Chinese)
[45]
夏凡, 董月, 朱蕾, 张爱静, 王鹏杰, 袁建, 高瑀珑. 大米理化性质与其食用品质相关性研究. 粮食科技与经济, 2018, 43(5): 100-107.
XIA F, DONG Y, ZHU L, ZHANG A J, WANG P J, YUAN J, GAO Y L. Study on the relationship between physicochemical properties and edible quality of rice. Grain Science and Technology and Economy, 2018, 43(5): 100-107. (in Chinese)
[46]
张洁. 五谷米挤压生产技术研究[D]. 杨凌: 西北农林科技大学, 2012.
ZHANG J. Extrudable technology of grain-rice[D]. Yangling: Northwest A & F University, 2012. (in Chinese)
[47]
YE J P, HU X T, LUO S J, LIU W, CHEN J, ZENG Z R, LIU C M. Properties of starch after extrusion: A review. Starch-Stärke, 2018, 70(11/12): 1700110.

doi: 10.1002/star.v70.11-12
[48]
WANG N, WU L R, ZHANG F S, KAN J Q, ZHENG J. Modifying the rheological properties, in vitro digestion, and structure of rice starch by extrusion assisted addition with bamboo shoot dietary fiber. Food Chemistry, 2022, 375: 131900.

doi: 10.1016/j.foodchem.2021.131900
[49]
姜鹏, 刘念, 戴凌燕, 阮长青, 张东杰, 王长远, 李志江. 杂粮营养物体内和体外消化研究现状及其产物的功能性. 中国粮油学报, 2022, 37(5): 185-194.
JIANG P, LIU N, DAI L Y, RUAN C Q, ZHANG D J, WANG C Y, LI Z J. Research Status of in vivo and in vitro Digestion of Coarse Nutrients and Functional Properties of Their Products. Journal of the Chinese Cereals and Oils Association, 2022, 37(5): 185-194. (in Chinese)
[50]
吴艺婕. 不同蒸煮条件对黑米饭品质及低GI特性的影响[D]. 武汉: 华中农业大学, 2022.
WU Y J. Effects of different cooking conditions on the quality and low GI characteristics of black rice[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
[51]
LI H Y, GILBERT R G. Starch molecular structure: the basis for an improved understanding of cooked rice texture. Carbohydrate Polymers, 2018, 195: 9-17.

doi: S0144-8617(18)30451-X pmid: 29805029
[52]
MIRZAEI M, MOVAHHED S, ASADOLLAHZADEH M J, AHMADI CHENARBON H. Effect of carboxymethylcellulose and locust bean gums on some of physicochemical, mechanical, and textural properties of extruded rice. Journal of Texture Studies, 2021, 52(1): 91-100.

doi: 10.1111/jtxs.v52.1
[53]
KONO S, KAWAMURA I, ARAKI T, SAGARA Y. ANN modeling for optimum storage condition based on viscoelastic characteristics and sensory evaluation of frozen cooked rice. International Journal of Refrigeration, 2016, 65: 218-227.

doi: 10.1016/j.ijrefrig.2015.10.009
[54]
汤晓智, 扈战强, 周剑敏, 方勇, 沈新春, 胡秋辉. 糙米粉对小麦面团流变学及饼干品质特性的影响. 中国农业科学, 2014, 47(8): 1567-1576. doi: 10.3864/j.issn.0578-1752.2014.08.013.
TANG X Z, HU Z Q, ZHOU J M, FANG Y, SHEN X C, HU Q H. Influence of brown rice flour on wheat dough rheological properties and cookie quality characteristics. Scientia Agricultura Sinica, 2014, 47(8): 1567-1576. doi: 10.3864/j.issn.0578-1752.2014.08.013. (in Chinese)
[55]
BIAO Y, CHEN X, WANG S, CHEN G T, MCCLEMENTS D J, ZHAO L Y. Impact of mushroom (Pleurotus eryngii) flour upon quality attributes of wheat dough and functional cookies-baked products. Food Science & Nutrition, 2020, 8(1): 361-370.
[56]
SHAO Y F, BAO J S. Polyphenols in whole rice grain: genetic diversity and health benefits. Food Chemistry, 2015, 180: 86-97.

doi: S0308-8146(15)00197-1 pmid: 25766805
[57]
DANGI N, YADAV B S, YADAV R B. Pasting, rheological, thermal and gel textural properties of pearl millet starch as modified by guar gum and its acid hydrolysate. International Journal of Biological Macromolecules, 2019, 139: 387-396.

doi: S0141-8130(19)33785-7 pmid: 31381921
[58]
KAUSHAL P, KUMAR V, SHARMA H K. Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT-Food Science and Technology, 2012, 48(1): 59-68.

doi: 10.1016/j.lwt.2012.02.028
[59]
戚明明, 彭慧慧, 宋佳琳, 张静, 王思花, 马成业. 挤压和酶解挤压对豌豆粉淀粉体外消化率、蛋白质结构和流变特性的影响. 食品科学, 2022, 43(1): 76-82.
QI M M, PENG H H, SONG J L, ZHANG J, WANG S H, MA C Y. Effects of extrusion and enzymatic hydrolysis on the in vitro starch digestibility, protein structure and rheological properties of pea flour. Food Science, 2022, 43(1): 76-82. (in Chinese)
[60]
LIU C M, ZHANG Y J, LIU W, WAN J, WANG W H, WU L, ZUO N B, ZHOU Y R, YIN Z L. Preparation, physicochemical and texture properties of texturized rice produce by Improved Extrusion Cooking Technology. Journal of Cereal Science, 2011, 54(3): 473-480.

doi: 10.1016/j.jcs.2011.09.001
[61]
OLI P, WARD R, ADHIKARI B, TORLEY P. Parboiled rice: Understanding from a materials science approach. Journal of Food Engineering, 2014, 124: 173-183.

doi: 10.1016/j.jfoodeng.2013.09.010
[62]
蒋思远, 陈存社, 李赫, 刘新旗. 挤压重组米功能特性及组分的研究进展. 粮食与油脂, 2021, 34(1): 13-15.
JIANG S Y, CHEN C S, LI H, LIU X Q. Research progress on functional characteristics and component of extruded recombinant rice. Cereals & Oils, 2021, 34(1): 13-15. (in Chinese)
[63]
GANACHARI A, NIDONI U, HIREGOUDAR S, RAMAPPA K T, NAIK N, VANISHREE S, MATHAD P F. Development of rice analogues using by-products of rice and dhal Mills. Journal of Food Science and Technology, 2022, 59(8): 3150-3157.

doi: 10.1007/s13197-022-05405-4 pmid: 35872744
[64]
GUERRERO P, BEATTY E, KERRY J P, DE LA CABA K. Extrusion of soy protein with gelatin and sugars at low moisture content. Journal of Food Engineering, 2012, 110(1): 53-59.

doi: 10.1016/j.jfoodeng.2011.12.009
[65]
BUTT N A, ALI T M, MOIN A, HASNAIN A. Comparative study on morphological, rheological and functional characteristics of extruded rice starch citrates and lactates. International Journal of Biological Macromolecules, 2021, 180: 782-791.

doi: 10.1016/j.ijbiomac.2021.03.052 pmid: 33727187
[66]
HEGAZY H S, EL-BEDAWY A E A, RAHMA E H, GAAFAR A M. Effect of extrusion processs on nutritional, functional properties and antioxidant activity of germinated chickpea incorporated corn extrudates. American Journal of Food Science and Nutrition Research, 2017, 4(1): 59-66.
[67]
ZHENG Y X, YIN X X, KONG X L, CHEN S G, XU E B, LIU D H, OGAWA Y, YE X Q, TIAN J H. Introduction of chlorogenic acid during extrusion affects the physicochemical properties and enzymatic hydrolysis of rice flour. Food Hydrocolloids, 2021, 116: 106652.

doi: 10.1016/j.foodhyd.2021.106652
[68]
CHEN L, TIAN Y Q, ZHANG Z P, TONG Q Y, SUN B H, RASHED M M A, JIN Z Y. Effect of pullulan on the digestible, crystalline and morphological characteristics of rice starch. Food Hydrocolloids, 2017, 63: 383-390.

doi: 10.1016/j.foodhyd.2016.09.021
[69]
LIU T N, WANG K, XUE W, WANG L, ZHANG C N, ZHANG X X, CHEN Z X. In vitro starch digestibility, edible quality and microstructure of instant rice noodles enriched with rice bran insoluble dietary fiber. LWT-Food Science & Technology, 2021, 142: 111008.
[70]
DHITAL S, BRENNAN C, GIDLEY M J. Location and interactions of starches in planta: Effects on food and nutritional functionality. Trends in Food Science & Technology, 2019, 93: 158-166.
[71]
YU W W, ZOU W, DHITAL S, WU P, GIDLEY M J, FOX G P, GILBERT R G. The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour. Food Chemistry, 2018, 241: 493-501.

doi: 10.1016/j.foodchem.2017.09.021
[72]
XU J C, CHEN L, GUO X B, LIANG Y, XIE F W. Understanding the multi-scale structure and digestibility of different waxy maize starches. International Journal of Biological Macromolecules, 2020, 144: 252-258.

doi: S0141-8130(19)36804-7 pmid: 31846664
[73]
MEENU M, XU B J. A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch. Critical Reviews in Food Science and Nutrition, 2019, 59(18): 3019-3031.

doi: 10.1080/10408398.2018.1481360 pmid: 29846089
[74]
许汉斌. 茶多酚/面筋蛋白对淀粉消化性的影响及机理研究[D]. 天津: 天津科技大学, 2020.
XU H B. Effect of tea polyphenols/gluten protein on starch digestibility and its mechanism[D]. Tianjin: Tianjin University of Science & Technology, 2020. (in Chinese)
[75]
王艳峰, 杨锡洪, 曹峻菡, 曲长凤, 张丽萍, 缪锦来, 解万翠. 膳食纤维调节2型糖尿病血糖作用研究进展. 食品与机械, 2020, 36(10): 6-11, 17.
WANG Y F, YANG X H, CAO J H, QU C F, ZHANG L P, MIAO J L, XIE W C.Research progress on the mechanism of dietary fiber in regulating blood sugar of type 2 diabetes. Food & Machinery, 2020, 36(10): 6-11, 17. (in Chinese)
[1] SU AnXiang, HE AnQi, MA GaoXing, ZHAO LiYan, YANG WenJian, HU QiuHui. Modeling and Optimization of 3D Printing Process of Pleurotus Eryngii Powder Using Neural Network-Genetic Algorithm [J]. Scientia Agricultura Sinica, 2024, 57(3): 584-596.
[2] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[3] XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes [J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
[4] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[5] MA HuiZhen,CHEN XinYi,WANG ZhiJie,ZHU Ying,JIANG WeiQin,REN GaoLei,MA ZhongTao,WEI HaiYan,ZHANG HongCheng,LIU GuoDong. Analysis on Appearance and Cooking Taste Quality Characteristics of Some High Quality Japonica Rice in China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1338-1353.
[6] Di WU,JiaYu WANG,XiaoZhi TANG,QiuHui HU. Influence of Exogenous Protein Addition on Whole Wheat Dough Properties and Bread Quality Characteristics [J]. Scientia Agricultura Sinica, 2021, 54(6): 1258-1269.
[7] Ke YU,Lei LIU,RuiFen ZHANG,JianWei CHI,XuChao JIA,MingWei ZHANG. Effect of Pre-Enzymatic-Drum Drying Process on the Quality of Whole Wheat Flakes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1256-1268.
[8] TANG Xiao-Zhi, HU Zhan-Qiang, ZHOU Jian-Min, FANG Yong, SHEN Xin-Chun, HU Qiu-Hui. Influence of Brown Rice Flour on Wheat Dough Rheological Properties and Cookie Quality Characteristics [J]. Scientia Agricultura Sinica, 2014, 47(8): 1567-1576.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!