Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 236-249.doi: 10.3864/j.issn.0578-1752.2024.02.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

The Construction and Application of SSR and SNP Molecular ID for Maize Germplasm Resources of Jilin Province

ZHANG MingQi1,3(), WANG Rui1(), ZHANG ChunXiao2, SUN Bo1,3, REN Jie1, LI ShuFang4, WANG Lu1, ZHU ShaoXi1, ZHANG JiangBin1, SHI XinChen1, WANG HaiJie1, ZHANG YunLong1, TIAN HongLi1, ZHAO YiKun1, KUANG Meng3, WANG YuanDong1, YI HongMei1, LI XiaoHui2(), WANG FengGe1()   

  1. 1 Maize Research Institute, Beijing Academy of Agricultural and Forestry Sciences/Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province)/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
    2 Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin
    3 Institute of Cotton Research of Chunese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
    4 Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin
  • Received:2023-06-05 Accepted:2023-08-01 Online:2024-01-16 Published:2024-01-19

Abstract:

【Objective】 Crop germplasm resources hold a crucial strategic position. The Maize Germplasm Resources Bank in Jilin Province safeguards a collection of germplasm resources distinctively representative of the Northern Spring Maize Region. Traditional germplasm resource management faces challenges in ascertaining accurate identity information. To address this issue, molecular marker technology has been employed to establish a process for the construction and classification of molecular IDs for germplasm resources, thereby enabling precise identification and bolstering categorical management. Thorough exploration of the exceptional resources within Jilin Province's Maize Germplasm Resources Bank is intended to advance the shared utilization of these valuable germplasm resources. 【Method】 A total of 2 918 maize germplasm resources were utilized from the Jilin Provincial Maize Germplasm Resources Bank as subjects of the study, the molecular IDs were constructed by using 40 pairs of SSR markers and 61 214 SNP markers recommended in maize variety identification standards. Based on the molecular ID information, the germplasm resources were categorized into core, closely related, heterogeneous, and population groups for management purposes. Furthermore, the core germplasms were analyzed on genetic diversity. 【Result】 In this investigation, the SSR molecular IDs were constructed for 2 918 maize germplasm resources, while the SNP molecular IDs were constructed for 2 502 maize germplasm resources, excluding heterogeneous germplasm. The standards for the construction of SSR and SNP molecular IDs were established for maize germplasm resources. The SSR molecular ID is composed of a combination of three-digit numbers and one-letter code converted from 40 SSR loci fingerprints, stored in the form of a QR code. The SNP molecular ID converts the fingerprints of 61 214 SNP loci into visual barcodes. Based on the features of sample homozygosity and fingerprint specificity, the samples were categorized into 1 561 cores, 705 closely related, 416 heterogeneous, and 236 population types of germplasm resources. Genetic diversity analysis indicates that domestic germplasm resources, represented by Lüdahonggu and Huanggai groups, constituting the main germplasm resources in the Jilin Provincial Maize Germplasm Resources Bank, accounting for 64.38% of all core germplasm resources. 【Conclusion】 This research outlines a methodology for constructing molecular IDs for maize germplasm resources. The SSR molecular IDs were constructed for 2 918 accessions stored in the Jilin Provincial Maize Germplasm Resources Bank and the SNP molecular IDs were constructed for 2 502 among them. The germplasm resources were categorized into core, closely related, heterogeneous, and population types to achieve the classification management.

Key words: maize, germplasm resource, Jilin, SSR, SNP, molecular ID

Fig. 1

Schematic diagram of the process for constructing molecular IDs of germplasm resources"

Fig. 2

Comparison of the DNA fingerprinting profile between the core germplasm resource Ji754 and the landrace Zhengbai1 by the top ten SSR loci"

Fig. 3

A distribution chart of the proportion of homozygosity of maize germplasm resources of Jilin Province"

Table 1

Molecular IDs table of SSR markers of representative germplasm"

样品名
Sample name
分组
Classification
位点Loci
1 2 3 4 5 6 7 8 9 10
吉754
Ji754
Ⅰ组 Group Ⅰ 325Y 238Y 246Y 354Y 291Y 362Y 433Y 380Y 273Y 248Y
Ⅱ组 Group Ⅱ 183Y 267Y 202Y 169Y 221Y 212Y 393Y 278Y 229Y 178Y
Ⅲ组 Group Ⅲ 167Y 186Y 253Y 232Y 173Y 233Y 271Y 197Y 284Y 126Y
Ⅳ组 Group Ⅳ 280Y 234Y 215Y 172Y 183Y 204Y 183Y 261Y 312Y 310Y
郑白1
Zhengbai1
Ⅰ组 Group Ⅰ 320N 252Y 248Y 359N 314N 343N 421Y 364N 275N 260Y
Ⅱ组 Group Ⅱ 183Y 267N 202N 154Y 221N 212N 413N 284Y 222Y 185N
Ⅲ组 Group Ⅲ 154Y 184N 253N 232N 175Y 233N 297N 197N 284N 134N
Ⅳ组 Group Ⅳ 263N 000N 207Y 170Y 180N 215N 185N 261Y 304N 299Y

Fig. 4

Molecular IDs of SSR markers of representative germplasm resources"

Table 2

Maize germplasm resources classification management information table (sample table)"

序号
No.
样品
条码号
Sample barcode number
样品名称
Sample name
SSR分子
身份证
Molecular
ID of SSR markers
SNP分子
身份证
Molecular
ID of SNP markers
种质库分类
Bank
classification
纯合度
Homozygosity (%)
相同位
点占比
Proportion of identical loci (%)
表型数据
Phenotypic data
入库来源
Collection
source
首次扩
繁号
The first propagation number
存储
重量Storage weight
(g)
1 NZ00556 大红袍137
Dahongpao137
有Yes 有Yes 核心Core 95.00 无No 有Yes 02725Y14G0195 12W1429 58
2 NZ01291 遗501 Yi501 有Yes 有Yes 核心Core 95.00 无No 有Yes 03458Y14G0928 13J1166 113
3 NZ01447 郑58(山东)
Zheng58(Shandong)
有Yes 有Yes 核心Core 97.50 无No 有Yes 03621Y14G1091 13J1333 178
4 NZ00693 系14 Xi14 有Yes 有Yes 核心Core 90.00 无No 有Yes 02859Y14G0329 12W1568 30
5 NZ02361 43朝系43Chaoxi 有Yes 有Yes 核心Core 95.00 无No 有Yes 04550Y14G2020 13J1827 118
6 NZ02364 大器Daqi 有Yes 有Yes 核心Core 90.00 无No 有Yes 04555Y14G2025 100168 14
7 NZ02400 inbyed45 有Yes 有Yes 核心Core 90.00 无No 有Yes 04595Y14G2065 100217 144
8 NZ02519 大白棒Dabaibang 有Yes 有Yes 核心Core 92.50 无No 有Yes 04719Y14G2189 100370 55
9 NZ02526 秧Yang 有Yes 有Yes 核心Core 95.00 无No 有Yes 04727Y14G2197 100378 30
10 NZ00132 Mo17 有Yes 有Yes 核心Core 92.50 无No 有Yes WG208NZ00132 18G3830 201
11 NZ01465 郑58(河南)
Zheng58(Henan)
有Yes 有Yes 其它Others 100.00 无No 无No 03639Y14G1109 13J1351 106
12 NZ01555 K4H6003 有Yes 有Yes 群体Population 90.00 92.34 无No 03726Y14G1196 13W1201 101
13 NZ01556 K4H6004 有Yes 有Yes 群体Population 92.50 96.15 无No 03727Y14G1197 13W1202 197
14 NZ01557 K4H6005 有Yes 有Yes 群体Population 92.50 94.92 无No 03728Y14G1198 13W1203 179
15 NZ01559 K4H6002 有Yes 有Yes 群体Population 92.50 94.92 无No 03730Y14G1200 13W1205 139
16 NZ00942 MO17“c"cms 有Yes 有Yes 同近源
Closely related
92.50 98.90 有Yes 03107Y14G0577 13W0960 205
17 NZ00960 FRMO17 O2 有Yes 有Yes 同近源
Closely related
92.50 98.90 有Yes 03126Y14G0596 13W0980 102
18 NZ01377 系14 Xi14 有Yes 有Yes 同近源
Closely related
90.00 93.67 有Yes 03549Y14G1019 13J1260 130
19 NZ02308 FRM017Rfc 有Yes 有Yes 同近源
Closely related
90.00 98.70 有Yes 04496Y14G1966 13W1534 108
20 NZ02309 FRM017rhm 有Yes 有Yes 同近源
Closely related
92.50 98.50 有Yes 04497Y14G1967 13W1535 124
21 NZ02809 75-217 有Yes 有Yes 同近源
Closely related
90.00 99.98 有Yes 05027Y14G2497-2粉轴
05027Y14G2497-2 Pink cob
13J2310 78
22 NZ02810 75-217 有Yes 有Yes 同近源
Closely related
90.00 99.98 有Yes 05027Y14G2497-3圆粒
05027Y14G2497-3 Round grains
13J2310 100
23 NZ01899 K4H6001 有Yes 无No 异质性Heterogeneous 87.50 无No 无No 04055Y14G1525 13W1533 144
24 NZ00544 自16 Zi16 有Yes 无No 异质性Heterogeneous 85.00 无No 无No 02712Y14G0182 12W1416 99
25 NZ00570 大黄46
Dahuang46
有Yes 无No 异质性Heterogeneous 52.50 无No 无No 02740Y14G0210 12W1447 13
26 NZ00822 郑白1
Zhengbai1
有Yes 无No 异质性Heterogeneous 40.00 无No 无No 02985Y14G0455 12W0838 370
27 NZ01240 系14
Xi14
有Yes 无No 异质性Heterogeneous 77.50 无No 无No 03407Y14G0877 13J1114 71
28 NZ02719 MO17 有Yes 无No 异质性Heterogeneous 82.50 无No 无No 04930Y14G2400 13J2212 62
29 NZ02808 75-217 有Yes 无No 异质性Heterogeneous 55.00 无No 无No 05027Y14G2497-1红轴
05027Y14G2497-1 Red cob
13J2310 333

Fig. 5

Molecular IDs of representative germplasm resources based on SNP markers Black is AA genotype, white is BB genotype, dark gray is AB genotype, light gray means missing loci. Ten color bands correspond to ten chromosomes of maize"

Fig. 6

The graph of the pairwise comparison of Jilin core and homologous-resources using SSR and SNP markers"

Fig. 7

Genetic diversity analysis of germplasm resources based on SNP markers"

[1]
蔡东明, 陈耀锋, 王长发, 李继钢, 韩德俊. 我国农作物种质资源储备现状与分析. 农业与技术, 2021, 41(1): 8-10.
CAI D M, CHEN Y F, WANG C F, LI J G, HAN D J. Present situation and analysis of crop germplasm resources reserve in China. Agriculture and Technology, 2021, 41(1): 8-10. (in Chinese)
[2]
从春生, 李永祥, 李春辉, 石云素, 宋燕春, 张登峰, 黎裕, 王天宇. 分子标记辅助选择玉米杂种后代创新种质方法研究. 中国农业科学, 2016, 49(20): 3874-3885. DOI: 10.3864/j.issn.0578-1752.2016.20.002.
CONG C S, LI Y X, LI C H, SHI Y S, SONG Y C, ZHANG D F, LI Y, WANG T Y. Research on methodology of maize germplasm development with source of hybrids by using marker-assisted selection. Scientia Agricultura Sinica, 2016, 49(20): 3874-3885. DOI: 10.3864/j.issn.0578-1752.2016.20.002. (in Chinese)
[3]
颜学海, 许春梅, 刘三梅, 何发, 代世红, 郝丽宁, 马艳玮, 吴红梅. 我国农作物种质资源保护利用现状与思考. 农业科技通讯, 2022(10): 20-23.
YAN X H, XU C M, LIU S M, HE F, DAI S H, HAO L N, MA Y W, WU H M. Present situation and thinking on the protection and utilization of agricultural germplasm resources in China. Bulletin of Agricultural Science and Technology, 2022(10): 20-23. (in Chinese)
[4]
李淑华, 孙志超, 徐国良, 代玉仙, 荆绍凌. 吉林省玉米种质资源保存利用现状及研究对策. 玉米科学, 2010, 18(3): 65-67.
LI S H, SUN Z C, XU G L, DAI Y X, JING S L. Preservation and utilization status and research countermeasures for maize germplasm resources in Jilin Province. Journal of Maize Sciences, 2010, 18(3): 65-67. (in Chinese)
[5]
段永红, 余亚莹, 邓晶. 种质资源库在农作物种质资源普查中的作用和建议. 中国种业, 2017(9): 41-44.
DUAN Y H, YU Y Y, DENG J. Functions and suggestions of germplasm resource bank in general survey of agricultural germplasm resources. Chinese Seed Industry, 2017(9): 41-44. (in Chinese)
[6]
王国军, 杨华, 林田, 李天菲, 石群芳, 龙渡, 牛婷婷, 王飞, 刘鸿艳, 罗利军, 龙萍. 上海市农作物种质资源信息管理系统设计与应用. 植物遗传资源学报, 2023, 24(1): 203-214.

doi: 10.13430/j.cnki.jpgr.20220706001
WANG G J, YANG H, LIN T, LI T F, SHI Q F, LONG D, NIU T T, WANG F, LIU H Y, LUO L J, LONG P. Design and application of Shanghai crop germplasm resources information management system. Journal of Plant Genetic Resources, 2023, 24(1): 203-214. (in Chinese)
[7]
马庆国, 宋晓波, 贺君星, 周晔, 黄勇, 张俊佩, 裴东. 基于SSR分子标记的核桃种质资源分子身份证构建. 植物资源与环境学报, 2023, 32(2): 1-9.
MA Q G, SONG X B, HE J X, ZHOU Y, HUANG Y, ZHANG J P, PEI D. Establishment of molecular identity cards of walnut (Juglans spp.) germplasm resources based on SSR molecular marker. Journal of Plant Resources and Environment, 2023, 32(2): 1-9. (in Chinese)
[8]
胡玉璐, 姜百灵, 陈凌, 王海岗, 曹晓宁, 王瑞云, 乔治军. 利用SSR创建中国北方黍稷资源DNA身份证. 山西农业科学, 2022, 50(4): 478-485.
HU Y L, JIANG B L, CHEN L, WANG H G, CAO X N, WANG R Y, QIAO Z J. Using SSR to create DNA identity cards of broomcorn millet resources in northern China. Journal of Shanxi Agricultural Sciences, 2022, 50(4): 478-485. (in Chinese)
[9]
刘彬, 赵雨露, 杨鑫雷, 张建恒, 孙鑫博, 刘晓清, 温晓敏, 耿艳楼, 李悦有, 穆国俊, 吕玮. 251份藜麦种质资源遗传多样性及分子身份证构建. 植物遗传资源学报, 2022, 23(3): 706-721.

doi: 10.13430/j.cnki.jpgr.20211114002
LIU B, ZHAO Y L, YANG X L, ZHANG J H, SUN X B, LIU X Q, WEN X M, GENG Y L, LI Y Y, MU G J, W. Genetic diversity of 251 germplasm accessions and construction of molecular ID in quinoa (Chenopodium quinoa Willd.). Journal of Plant Genetic Resources, 2022, 23(3): 706-721. (in Chinese)
[10]
樊晓静, 于文涛, 蔡春平, 林浥, 王泽涵, 房婉萍, 张见明, 叶乃兴. 利用SNP标记构建茶树品种资源分子身份证. 中国农业科学, 2021, 54(8): 1751-1772. DOI: 10.3864/j.issn.0578-1752.2021.08.014.
FAN X J, YU W T, CAI C P, LIN Y, WANG Z H, FANG W P, ZHANG J M, YE N X. Construction of molecular ID for tea cultivars by using of single-nucleotide polymorphism (SNP) markers. Scientia Agricultura Sinica, 2021, 54(8): 1751-1772. DOI: 10.3864/j.issn.0578-1752.2021.08.014. (in Chinese)
[11]
陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证. 作物学报, 2022, 48(4): 908-919.

doi: 10.3724/SP.J.1006.2022.14034
CHEN X H, LIN Y X, WANG Q, DING M, WANG H G, CHEN L, GAO Z J, WANG R Y, QIAO Z J. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR. Acta Agronomica Sinica, 2022, 48(4): 908-919. (in Chinese)

doi: 10.3724/SP.J.1006.2022.14034
[12]
冉昆, 隋静, 王宏伟, 魏树伟, 张勇, 董冉, 董肖昌, 王少敏. 利用SSR荧光标记构建山东地方梨种质资源分子身份证. 果树学报, 2018, 35(S1): 71-78.
RAN K, SUI J, WANG H W, WEI S W, ZHANG Y, DONG R, DONG X C, WANG S M. Using the fluorescent labeled SSR markers to establish the molecular ID of pear germplasm resources in Shandong. Journal of Fruit Science, 2018, 35(S1): 71-78. (in Chinese)
[13]
高源, 刘凤之, 王昆, 王大江, 龚欣, 刘立军. 苹果部分种质资源分子身份证的构建. 中国农业科学, 2015, 48(19): 3887-3898. DOI: 10.3864/j.issn.0578-1752.2015.19.011.
GAO Y, LIU F Z, WANG K, WANG D J, GONG X, LIU L J. Establishment of molecular ID for some apple germplasm resources. Scientia Agricultura Sinica, 2015, 48(19): 3887-3898. DOI: 10.3864/j.issn.0578-1752.2015.19.011. (in Chinese)
[14]
唐源江, 曹雯静, 吴坤林. 基于SRAP标记的国兰种质资源遗传多样性分析及分子身份证构建. 中国农业科学, 2015, 48(9): 1795-1806. DOI: 10.3864/j.issn.0578-1752.2015.09.13.
TANG Y J, CAO W J, WU K L. Genetic diversity analysis and molecular identification card construction of Chinese Cymbidium germplasms based on SRAP markers. Scientia Agricultura Sinica, 2015, 48(9): 1795-1806. DOI: 10.3864/j.issn.0578-1752.2015.09.13. (in Chinese)
[15]
徐雷锋, 葛亮, 袁素霞, 任君芳, 袁迎迎, 李雅男, 刘春, 明军. 利用荧光标记SSR构建百合种质资源分子身份证. 园艺学报, 2014, 41(10): 2055-2064.
XU L F, GE L, YUAN S X, REN J F, YUAN Y Y, LI Y N, LIU C, MING J. Using the fluorescent labeled SSR markers to establish molecular identity of lily germplasms. Acta Horticulturae Sinica, 2014, 41(10): 2055-2064. (in Chinese)
[16]
邱杨, 李锡香, 李清霞, 陈亦辰, 沈镝, 王海平, 宋江萍. 利用SSR标记构建萝卜种质资源分子身份证. 植物遗传资源学报, 2014, 15(3): 648-654.

doi: 10.13430/j.cnki.jpgr.2014.03.029
QIU Y, LI X X, LI Q X, CHEN Y C, SHEN D, WANG H P, SONG J P. Establishment of the molecular identification for radish germplasm using SSR markers. Journal of Plant Genetic Resources, 2014, 15(3): 648-654. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2014.03.029
[17]
李斯更, 沈镝, 刘博, 邱杨, 张晓辉, 张忠华, 王海平, 李锡香. 基于黄瓜基因组重测序的InDel标记开发及其应用. 植物遗传资源学报, 2013, 14(2): 278-283.

doi: 10.13430/j.cnki.jpgr.2013.02.013
LI S G, SHEN D, LIU B, QIU Y, ZHANG X H, ZHANG Z H, WANG H P, LI X X. Development and application of cucumber InDel markers based on genome resequencing. Journal of Plant Genetic Resources, 2013, 14(2): 278-283. (in Chinese)
[18]
陈昌文, 曹珂, 王力荣, 朱更瑞, 方伟超. 中国桃主要品种资源及其野生近缘种的分子身份证构建. 中国农业科学, 2011, 44(10): 2081-2093. DOI: 10.3864/j.issn.0578-1752.2011.10.013.
CHEN C W, CAO K, WANG L R, ZHU G R, FANG W C. Molecular ID establishment of main China peach varieties and peach related species. Scientia Agricultura Sinica, 2011, 44(10): 2081-2093. DOI: 10.3864/j.issn.0578-1752.2011.10.013. (in Chinese)
[19]
宋伟, 赵久然, 王凤格, 田红丽, 葛建镕, 王元东, 赵衍鑫. SSR和SNP标记在玉米分子标记辅助背景选择中的应用比较. 玉米科学, 2016, 24(3): 57-61.
SONG W, ZHAO J R, WANG F G, TIAN H L, GE J R, WANG Y D, ZHAO Y X. Comparison of SSR and SNP markers in maize molecular marker assisted background selection. Journal of Maize Sciences, 2016, 24(3): 57-61. (in Chinese)
[20]
刘奇燕. SSR分子标记技术在种子纯度检测中的应用. 现代农业科技, 2017(13): 49, 51.
LIU Q Y. Application of SSR molecular marker technique in seed purity test. Modern Agricultural Science and Technology, 2017(13): 49, 51. (in Chinese)
[21]
WANG F G, TIAN H L, ZHAO J R, HONGMEI Y, WANG L, WEI S. Development and characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties. Maydica, 2011, 56(1): 7-18.
[22]
BREDEMEIJER G, COOKE R, GANAL M, PEETERS R, ISAAC P, NOORDIJK Y, RENDELL S, JACKSON J, RÖDER M, WENDEHAKE K, DIJCKS M, AMELAINE M, WICKAERT V, BERTRAND L, VOSMAN B. Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theoretical and Applied Genetics, 2002, 105: 1019-1026.
[23]
李世聪, 朱华国, 薛飞. 玉米种子纯度SSR分子标记检测研究报告. 种子科技, 2019, 37(7): 147-148.
LI S C, ZHU H G, XUE F. Research report on SSR molecular marker detection of maize seed purity. Seed Science & Technology, 2019, 37(7): 147-148. (in Chinese)
[24]
TIAN H L, WANG F G, ZHAO J R, YI H M, WANG L, WANG R, YANG Y, SONG W. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Molecular Breeding, 2015, 35(6): 136.

doi: 10.1007/s11032-015-0335-0
[25]
马世鹏, 张云龙, 段民孝, 易红梅, 许理文, 葛建镕, 范亚明, 赵怡锟, 田红丽, 杨扬, 霍永学, 王凤格, 王蕊, 李莉. 基于Maize6H-60K芯片精准分型的玉米DH群体遗传规律研究. 中国农业大学学报, 2022, 27(11): 1-12.
MA S P, ZHANG Y L, DUAN M X, YI H M, XU L W, GE J R, FAN Y M, ZHAO Y K, TIAN H L, YANG Y, HUO Y X, WANG F G, WANG R, LI L. Study on genetic rule of maize doubled haploid population based on Maize6H-60K accurate-genotyping. Journal of China Agricultural University, 2022, 27(11): 1-12. (in Chinese)
[26]
GUO Z F, WANG H W, TAO J J, REN Y H, XU C, WU K S, ZOU C, ZHANG J N, XU Y B. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding, 2019, 39(3): 37.

doi: 10.1007/s11032-019-0940-4
[27]
JIAO G J, PENG Z, MEI H Q, MIN W J, HONG Y X, BAO C Q, HUA Z J. SNP markers potential applied in DUS testing of maize. International Journal of Agriculture and Biology, 2020, 23(2): 417-422.
[28]
李巧英, 郑戈文. SNP分子标记技术在农作物种子检测中的研究与应用. 中国种业, 2019(11): 16-18.
LI Q Y, ZHENG G W. Research and application of SNP molecular marker technology in crop seed detection. China Seed Industry, 2019(11): 16-18. (in Chinese)
[29]
JIANG B, ZHAO Y K, YI H M, HUO Y X, WU H T, REN J, GE J R, ZHAO J R, WANG F G. PIDS: A user-friendly plant DNA fingerprint database management system. Genes, 2020, 11(4): 373.
[30]
ZHANG Z X, ZHANG F D, TANG W H, PI Y J, ZHENG Y L. Construction and characterization of normalized cDNA library of maize inbred MO17 from multiple tissues and developmental stages. Molecular Biology, 2005, 39(2): 177-184.

doi: 10.1007/s11008-005-0026-8
[31]
辛景树, 郭景伦, 贾希海. SSR技术在玉米种子纯度鉴定上的应用(上). 种子科技, 2005, 23(3): 155-157.
XIN J S, GUO J L, JIA X H. Application of SSR technology in purity identification of maize seed (I). Seed Science & Technology, 2005, 23(3): 155-157. (in Chinese)
[32]
MAHUKU G S. A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Molecular Biology Reporter, 2004, 22(1): 71-81.

doi: 10.1007/BF02773351
[33]
ALLEN G C, FLORES-VERGARA M A, KRASYNANSKI S, KUMAR S, THOMPSON W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 2006, 1(5): 2320-2325.

doi: 10.1038/nprot.2006.384 pmid: 17406474
[34]
刘可心, 王璐, 蔚荣海, 王凤格, 田红丽. 一种适于SNP芯片分型的玉米种皮组织DNA提取方法. 分子植物育种, 2017, 15(1): 195-199.
LIU K X, WANG L, YU R H, WANG F G, TIAN H L. A DNA extraction method from maize seed capsule tissue suitable for SNP chip genotyping. Molecular Plant Breeding, 2017, 15(1): 195-199. (in Chinese)
[35]
田红丽, 赵紫薇, 杨扬, 范亚明, 班秀丽, 易红梅, 杨洪明, 刘少荣, 高玉倩, 刘亚维, 王凤格. 290个吉林省审定玉米品种SSR-DNA指纹构建及遗传多样性分析. 作物学报, 2022, 48(12): 2994-3003.

doi: 10.3724/SP.J.1006.2022.13076
TIAN H L, ZHAO Z W, YANG Y, FAN Y M, BAN X L, YI H M, YANG H M, LIU S R, GAO Y Q, LIU Y W, WANG F G. Construction of SSR-DNA fingerprints and genetic diversity analysis of 290 maize varieties approved in Jilin Province, China. Acta Agronomica Sinica, 2022, 48(12): 2994-3003. (in Chinese)
[36]
王凤格, 李欣, 杨扬, 易红梅, 江彬, 张宪晨, 霍永学, 朱丽, 葛建镕, 王蕊, 任洁, 王璐, 田红丽, 赵久然. 植物品种SSR指纹分析专用软件SSR Analyser的研发. 中国农业科学, 2018, 51(12): 2248-2262. DOI: 10.3864/j.issn.0578-1752.2018.12.003.
WANG F G, LI X, YANG Y, YI H M, JIANG B, ZHANG X C, HUO Y X, ZHU L, GE J R, WANG R, REN J, WANG L, TIAN H L, ZHAO J R. SSR analyser: A special software suitable for SSR fingerprinting of plant varieties. Scientia Agricultura Sinica, 2018, 51(12): 2248-2262. DOI: 10.3864/j.issn.0578-1752.2018.12.003. (in Chinese)
[37]
TIAN H L, YANG Y, YI H M, XU L W, HE H, FAN Y M, WANG L, GE J R, LIU Y W, WANG F G, ZHAO J R. New resources for genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application. The Plant Journal, 2021, 105(4): 1113-1122.

doi: 10.1111/tpj.v105.4
[38]
PATZAK J, PAPRŠTEIN F, HENYCHOVÁ A, SEDLÁK J. Genetic diversity of Czech apple cultivars inferred from microsatellite markers analysis. Horticultural Science, 2012, 39(4): 149-157.

doi: 10.17221/218/2011-HORTSCI
[39]
曾艳华, 谢和霞, 江禹奉, 周锦国, 谢小东, 周海宇, 谭贤杰, 覃兰秋, 程伟东. 基于SNP标记的爆裂玉米农家品种遗传多样性. 作物杂志, 2020(5): 65-70.
ZENG Y H, XIE H X, JIANG Y F, ZHOU J G, XIE X D, ZHOU H Y, TAN X J, QIN L Q, CHENG W D. Genetic diversity of popcorn landraces based on SNP markers. Crops, 2020(5): 65-70. (in Chinese)
[40]
HE C, XIA Z L, CAMPBELL T A, BAUCHAN G R. Development and characterization of SSR markers and their use to assess genetic relationships among alfalfa germplasms. Crop Science, 2009, 49(6): 2176-2186.

doi: 10.2135/cropsci2007.04.0456
[41]
DRINIĆ S, TRIFUNOVIĆ S, DRINIĆ G, KONSTANTINOV K. Genetic divergence and its correlation to heterosis in maize as revealed by SSR-based markers. Maydica, 2002, 47: 1-8.
[42]
TIAN H L, YANG Y, WANG R, FAN Y M, YI H M, JIANG B, WANG L, REN J E, XU L W, ZHANG Y L, GE J R, LIU Y W, WANG F G, ZHAO J R. Screening of 200 core SNPs and the construction of a systematic SNP-DNA standard fingerprint database with more than 20,000 maize varieties. Agriculture, 2021, 11(7): 597.
[43]
林萍, 王开良, 姚小华, 任华东. 基于转录组SNP构建油茶主要品种资源的分子身份证. 中国农业科学, 2023, 56(2): 217-235. DOI: 10.3864/j.issn.0578-1752.2023.02.002.
LIN P, WANG K L, YAO X H, REN H D. Development of DNA molecular ID in Camellia oleifera germplasm based on transcriptome- wide SNPs. Scientia Agricultura Sinica, 2023, 56(2): 217-235. DOI: 10.3864/j.issn.0578-1752.2023.02.002. (in Chinese)
[44]
CHEN Z J, TANG D G, NI J X, LI P, WANG L, ZHOU J H, LI C Y, LAN H, LI L J, LIU J. Development of genic KASP SNP markers from RNA-Seq data for map-based cloning and marker-assisted selection in maize. BMC Plant Biology, 2021, 21(1): 157.

doi: 10.1186/s12870-021-02932-8 pmid: 33771110
[45]
SIMIC D, LEDENCAN T, JAMBROVIC A, ZDUNIC Z, BRKIC J, BRKIC A, MLADENOVIC-DRINIC S, BRKIC I. SNP and SSR marker analysis and mapping of a maize population. ABI Genetika, 2009, 41(3): 237-246.
[46]
田智硕, 姜建福, 张国海, 刘崇怀. 国外主要葡萄种质资源数据库简介. 中外葡萄与葡萄酒, 2012(1): 59-62.
TIAN Z S, JIANG J F, ZHANG G H, LIU C H. Brief introduction of database of main grape germplasm resources abroad. Sino-Overseas Grapevine & Wine, 2012(1): 59-62. (in Chinese)
[47]
付深造, 张恩瑜, 陈超. 我国作物种质资源保护利用现状及发展建议. 种子世界, 2013(10): 1-3.
FU S Z, ZHANG E Y, CHEN C. Present situation and development suggestions of crop germplasm resources protection and utilization in China. Seed World, 2013(10): 1-3. (in Chinese)
[48]
郭盛, 禾璐, 贾苏卿, 李世勇, 王秀明, 张璐, 董冰, 魏一凡. 农作物种质资源保护和开发利用存在的问题及对策. 中国种业, 2018(4): 41-43.
GUO S, HE L, JIA S Q, LI S Y, WANG X M, ZHANG L, DONG B, WEI Y F. Problems and countermeasures of conservation and opening utilization of crop germplasm resources. China Seed Industry, 2018(4): 41-43. (in Chinese)
[49]
王巍, 王远路. 20份玉米农家种质优势类群的划分和优势模式分析. 玉米科学, 2013, 21(4): 11-14.
WANG W, WANG Y L. Heterotic group and heterotic pattern in twenty maize landraces of Heilongjiang. Journal of Maize Sciences, 2013, 21(4): 11-14. (in Chinese)
[1] XU TianJun, LÜ TianFang, LI ZiHao, ZHANG Yong, LIU HongWei, LIU YueE, CAI WanTao, ZHANG RuYang, SONG Wei, XING JinFeng, ZHAO JiuRan, WANG RongHuan. Comparison of Heat Tolerance of Maize Hybrids and Their Parental Inbreds with Different Genotypes [J]. Scientia Agricultura Sinica, 2024, 57(2): 403-415.
[2] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[3] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[4] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[5] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[6] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[7] LIN YuNong, WANG ZeZhao, CHEN Yan, ZHU Bo, GAO Xue, ZHANG LuPei, GAO HuiJiang, XU LingYang, CAI WenTao, LI YingHao, LI JunYa, GAO ShuXin. Comparison of Imputation Accuracy for Different Low-Density SNP Selection Strategies [J]. Scientia Agricultura Sinica, 2023, 56(8): 1585-1593.
[8] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[9] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[10] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[11] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[12] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[13] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[14] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[15] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!