Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (20): 4348-4357.doi: 10.3864/j.issn.0578-1752.2021.20.009

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like

LIU ChangYun1(),LI XinYu1,TIAN ShaoRui1,WANG Jing1,PEI YueHong1,MA XiaoZhou1,2,FAN GuangJin1,WANG DaiBin3(),SUN XianChao1()   

  1. 1College of Plant Protection, Southwest University, Chongqing 400715
    2Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715
    3Chongqing Tobacco Science Research Institute, Chongqing 400715
  • Received:2021-04-02 Accepted:2021-04-24 Online:2021-10-16 Published:2021-10-25
  • Contact: DaiBin WANG,XianChao SUN E-mail:15228920380@163.com;467572562@qq.com;sunxianchao@163.com

Abstract:

【Objective】As an important vegetable crop, tomato (Solanum lycopersicum) is endangered by various biological factors including pests, fungi, bacteria and viruses. The objective of this study is to clarify the antiviral function and mechanism of S. lycopersicum resistance gene SlN-like, and to provide a theoretical basis for the genetic breeding of antiviral S. lycopersicum and the targeted development of the antiviral agents. 【Method】The full length of SlN-like was obtained from the Solanaceae Genomics Network database and was divided into four segments, fusion PCR was used to amplify the full length of sequence. Bioinformatics was used to analyze the evolutionary relationship, protein characteristics, conserved domains, subcellular location and interaction relationship of SlN-like. Real-time fluorescent quantitative PCR was used to analyze the SlN-like expression in S. lycopersicum roots, stems, leaves, flowers and fruits and its response after tobacco mosaic virus (TMV) infection. S. lycopersicum endogenous SlN-like was silenced using tobacco rattle virus (TRV)-mediated gene silencing technology, and the silent plants were inoculated with TMV-GFP to clarify the influence of SlN-like on virus infection. The expressions of abscisic acid (ABA), jasmonic acid (JA) and ethylene (ET) hormone-related genes in silenced plants, and the expression of SlN-like after application of ethephon (ETH) for 3, 6, 12 and 24 h were analyzed by real-time fluorescence quantitative PCR to investigate the mechanism of SlN-like regulatory hormone pathway in response to virus infection. 【Result】Through molecular cloning and fusion PCR technology, a 3 444 bp SlN-like was cloned from S. lycopersicum variety Micro-Tom, and uploaded to NCBI to obtain the sequence number MW792493. Through bioinformatics analysis, it was found that SlN-like contains TIR, NB-ARC and NACHT domains, and is closely related to Solanum tuberosum N-like (AAP44394.1). SlN-like expressed in all tissues of S. lycopersicum, with the highest expression in stems, followed by roots, flowers, leaves and fruits. After TMV-GFP infection S. lycopersicum at 5th and 7th day, the SlN-like expression level was higher than that of PBS treatment, and TMV-GFP infection would cause the expression of SlN-like to increase continuously. TRV vector induced silencing of SlN-like in S. lycopersicum, and it was found that silencing 78.3% of SlN-like did not affect tomato growth phenotype, but silencing SlN-like promoted the infection of TMV-GFP. Real-time fluorescent quantitative PCR analysis found that the expression of ERF1 in SlN-like-silent plants was significantly reduced, only 12.5% of that in the control group. The expression of SlN-like increased after 3 h of external application of ethephon, and reached the highest peak at 12 h, which was 2.71 times that of the control group, and returned to normal at 24 h. 【Conclusion】S. lycopersicum SlN-like belongs to the NBS-LRR disease-resistant protein family, its expression is induced by TMV infection. Silencing SlN-like can promote TMV-GFP infection and reduce the expression of ethylene-related gene ERF1, while external application of ethephon resulted in the differential expression of SlN-like, revealing that SlN-like participates in S. lycopersicum antiviral defense through the ethylene pathway.

Key words: Solanum lycopersicum, SlN-like, tobacco mosaic virus (TMV), gene expression, ethylene

Table 1

Primers used in this study"

引物名称
Primer name
引物序列F
Primer sequence F (5′-3′)
引物序列R
Primer sequence R (5′-3′)
PCR P1 ATGAATCAGGAAAGTTCAGTGC CGGCTAATGCATCTAACTGTTC
P2 GAACAGTTAGATGCATTAGCCG CATGCCAATCAAGCCACCTC
P3 TGGCACTGACAAGATCGAAG CATCGAGAATCAATCCCTCC
P4 GGAGGGATTGATTCTCGATG TCAATTCTCATACACAAGACG
qPCR SlN-like ACTTTCCTAGCCCACGTACC ATACACAAGACGCACTCCA
TMV MP TTAGGTTCCCTGACGGTGAC ACCGTTGCGTCGTCTACTCT
ABI1 GCCGTTGTTTGTTCATCTC ACTGTATCACCTTGCCTCC
ERF1 GCTCTTAACGTCGGATGGTC AGCCAAACCCTAGCTCCATT
COI1 CAGCAGCCCATTGTTTCTTAC TACTGGCCAAGTACTTCCAATC
ACTIN CGGTGCCCACTTTCCGATCT TCCTCACCGTCAGCCATTTT
VIGS TRV:SlN-like CCGGAATTCCAATTCCGTCCTCTATGTCTC CCGCTCGAGGTTACCATCGAGAATCAATC

Fig. 1

Phylogenetic analyses of SlN-like and its homologues"

Fig. 2

Expression analysis of SlN-like"

Fig. 3

Phenotype and silencing efficiency detection in SlN-like silenced plant"

Fig. 4

Silencing of SlN-like promotes TMV-GFP infection"

Fig. 5

Hormone-related gene expression in SlN-like silenced plant"

Fig. 6

SlN-like expression after external application of ethephon"

[1] MARATHE R, ANANDALAKSHMI R, LIU Y, DINESH-KUMAR S P. The tobacco mosaic virus resistance gene, N. Molecular Plant Pathology, 2002, 3(3):167-172.
doi: 10.1046/j.1364-3703.2002.00110.x
[2] PADGETT H S, BEACHY R N. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. The Plant Cell, 1993, 5(5):577-586.
[3] 王倩, 刘贯山. 烟草N基因及其介导的抗TMV信号转导分子机制. 中国烟草科学, 2016, 37(3):93-99.
WANG Q, LIU G S. The tobacco N gene and the signal transduction of N-mediated TMV resistance. Chinese Tobacco Science, 2016, 37(3):93-99. (in Chinese)
[4] WHITHAM S, MCCORMICK S, BAKER B. The N gene tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(16):8776-8781.
[5] ERICKSON F L, HOLZBERG S, CALDERÓN-URREA A, HANDLEY V, AXTELL M, CORR C, BAKER B. The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. The Plant Journal, 1999, 18(1):67-75.
doi: 10.1046/j.1365-313X.1999.00426.x
[6] GREENBERG J T. Programmed cell death in plant-pathogen interactions. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48:525-545.
doi: 10.1146/arplant.1997.48.issue-1
[7] DINESH-KUMAR S P, THAM W H, BAKER B J. Structure-function analysis of the tobacco mosaic virus resistance gene N. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26):14789-14794.
[8] WHITHAM S, DINESH-KUMAR S P, CHOI D, HEHL R, CORR C, BAKER B. The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the interleukin-1 receptor. Cell, 1994, 78(6):1101-1115.
doi: 10.1016/0092-8674(94)90283-6
[9] DINESH-KUMAR S P, WHITHAM S, CHOI D, HEHL R, CORR C, BAKER B. Transposon tagging of tobacco mosaic virus resistance gene N: Its possible role in the TMV-N-mediated signal transduction pathway. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10):4175-4180.
[10] 张恒木, 陈剑平, 程晔. 烟草抗烟草花叶病毒基因N的研究. 浙江农业学报, 2001, 13(2):55-60.
ZHANG H M, CHEN J P, CHENG Y. Study on the resistant gene N of tobacco to tobacco mosaic virus (TMV). Acta Agriculturae Zhejiangensis, 2001, 13(2):55-60. (in Chinese)
[11] PADMANABHAN M S, MA S, BURCH-SMITH T M, CZYMMEK K, HUIJSER P, DINESH-KUMAR S P. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor- mediated plant innate immunity. PLoS Pathogens, 2013, 9(3):e1003235.
doi: 10.1371/journal.ppat.1003235
[12] GAO J S, SASAKI N, KANEGAE H, KONAGAYA K I, TAKIZAWA K, HAYASHI N, OKANO Y, KASAHARA M, MATSUSHITA Y, NYUNOYA H. The TIR-NBS but not LRR domains of two novel N-like proteins are functionally competent to induce the elicitor p50-dependent hypersensitive response. Physiological and Molecular Plant Pathology, 2007, 71:78-87.
doi: 10.1016/j.pmpp.2007.11.002
[13] ZHANG G Y, CHEN M, GUO J M, XU T W, LI L C, XU Z S, MA Y Z, CHEN X P. Isolation and characteristics of the CN gene, a tobacco mosaic virus resistance N gene homolog, from tobacco. Biochemical Genetics, 2009, 47(3/4):301-314.
doi: 10.1007/s10528-009-9229-3
[14] 谢鹏. TMV抗性基因N介导的烟草过敏性反应及同源基因克隆[D]. 合肥: 安徽农业大学, 2013.
XIE P. Studies on hypersensitive response mediated by TMV resistance gene N and cloning of homologous gene in Nicotiana tabacum[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese)
[15] 谢鹏, 胡丽, 蔡永萍, 林毅, 高俊山. TMV抗性基因N介导的烟草过敏性反应研究. 核农学报, 2013, 27(12):1809-1816.
XIE P, HU L, CAI Y P, LIN Y, GAO J S. Studies on hypersensitive response mediated by TMV resistance gene N in Nicotiana tabacum. Journal of Nuclear Agricultural Sciences, 2013, 27(12):1809-1816. (in Chinese)
[16] FERNANDEZ-POZO N, MENDA N, EDWARDS J D, SAHA S, TECLE I Y, STRICKLER S R, BOMBARELY A, FISHER-YORK T, PUJAR A, FOERSTER H, YAN A, MUELLER L A. The sol genomics network (SGN)—From genotype to phenotype to breeding. Nucleic Acids Research, 2015, 43(Database issue):D1036-D1041.
doi: 10.1093/nar/gku1195
[17] CHOU K C, SHEN H B. Cell-PLoc 2.0: An improved package of web-servers for predicting subcellular localization of proteins in various organisms. Natural Science, 2010, 2(10):1090-1103.
doi: 10.4236/ns.2010.210136
[18] LV X, XIANG S Y, WANG X C, WU L, LIU C Y, YUAN M T, GONG W W, WIN H, HAO C, XUE Y, MA L S, CHENG D Q, SUN X C. Synthetic chloroinconazide compound exhibits highly efficient antiviral activity against tobacco mosaic virus. Pest Management Science, 2020, 76(11):3636-3648.
doi: 10.1002/ps.v76.11
[19] LIU C Y, PU Y D, PENG H R, LV X, TIAN S R, WEI X F, ZHANG J, ZOU A H, FAN G J, SUN X C. Transcriptome sequencing reveals that photoinduced gene IP-L affects the expression of PsbO to response to virus infection in Nicotiana benthamiana. Physiological and Molecular Plant Pathology, 2021, 114:101613.
doi: 10.1016/j.pmpp.2021.101613
[20] 潘琪, 刘旭旭, 彭浩然, 蒲运丹, 张永至, 叶思涵, 吴根土, 青玲, 孙现超. 番茄SYTA的克隆及表达分析. 中国农业科学, 2017, 50(15):2936-2945.
PAN Q, LIU X X, PENG H R, PU Y D, ZHANG Y Z, YE S H, WU G T, QING L, SUN X C. Cloning, expression analysis of Solanum lycopersicum SYTA. Scientia Agricultura Sinica, 2017, 50(15):2936-2945. (in Chinese)
[21] KNAPP E, LEWANDOWSKI D J. Tobacco mosaic virus, not just a single component virus anymore. Molecular Plant Pathology, 2001, 2(3):117-123.
doi: 10.1046/j.1364-3703.2001.00064.x
[22] SCHOLTHOF K B G, ADKINS S, CZOSNEK H, PALUKAITIS P, JACQUOT E, HOHN T, HOHN B, SAUNDERS K, CANDRESSE T, AHLQUIST P, HEMENWAY C, FOSTER G D. Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 2011, 12(9):938-954.
doi: 10.1111/j.1364-3703.2011.00752.x
[23] DANGL J L, JONES J D. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839):826-833.
doi: 10.1038/35081161
[24] VAN DER BIEZEN E A, JONES J D. Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Sciences, 1998, 23(12):454-456.
doi: 10.1016/S0968-0004(98)01311-5
[25] JIANG G, LIU D, YIN D, ZHOU Z, SHI Y, LI C, ZHU L, ZHAI W. A rice NBS-ARC gene conferring quantitative resistance to bacterial blight is regulated by a pathogen effector-inducible miRNA. Molecular Plant, 2020, 13(12):1752-1767.
doi: 10.1016/j.molp.2020.09.015
[26] HULBERT S H, WEBB C A, SMITH S M, SUN Q. Resistance gene complexes: Evolution and utilization. Annual Review of Phytopathology, 2001, 39:285-312.
doi: 10.1146/phyto.2001.39.issue-1
[27] GUO Y L, FITZ J, SCHNEEBERGER K, OSSOWSKI S, CAO J, WEIGEL D. Genome-wide comparison of nucleotide-binding site- leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiology, 2011, 157(2):757-769.
doi: 10.1104/pp.111.181990
[28] LUO S, ZHANG Y, HU Q, CHEN J, LI K, LU C, LIU H, WANG W, KUANG H. Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. Plant Physiology, 2012, 159(1):197-210.
doi: 10.1104/pp.111.192062
[29] 黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019, 49(10):1227-1281.
LI J, LI C Y. Seventy-year major research progress in plant hormones by Chinese scholars. Scientia Sinica Vitae, 2019, 49(10):1227-1281. (in Chinese)
[30] 左建儒, 漆小泉, 林荣呈, 钱前, 顾红雅, 陈凡, 杨淑华, 陈之端, 白永飞, 王雷, 王小菁, 姜里文, 萧浪涛, 种康, 王台. 2019年中国植物科学若干领域重要研究进展. 植物学报, 2020, 55(3):257-269.
doi: 10.11983/CBB20108
ZUO J R, QI X Q, LIN R C, QIAN Q, GU H Y, CHEN F, YANG S H, CHEN Z D, BAI Y F, WANG L, WANG X J, JIANG L W, XIAO L T, ZHONG K, WANG T. Achievements and advance in Chinese plant sciences in 2019. Chinese Bulletin of Botany, 2020, 55(3):257-269. (in Chinese)
doi: 10.11983/CBB20108
[31] ZHAO H, YIN C, MA B, CHEN S Y, ZHANG J S. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. Journal of Integrative Plant Biology, 2021, 63(1):102-125.
doi: 10.1111/jipb.v63.1
[32] DING Y, MURPHY K M, PORETSKY E, MAFU S, YANG B, CHAR S N, CHRISTENSEN S A, SALDIVAR E, WU M, WANG Q, et al. Multiple genes recruited from hormone pathways partition maize diterpenoid defences. Nature Plants, 2019, 5(10):1043-1056.
doi: 10.1038/s41477-019-0509-6
[33] YANG D L, YANG Y, HE Z. Roles of plant hormones and their interplay in rice immunity. Molecular Plant, 2013, 6(3):675-685.
doi: 10.1093/mp/sst056
[34] AERTS N, PEREIRA MENDES M, VAN WEES S C. Multiple levels of crosstalk in hormone networks regulating plant defense. The Plant Journal, 2021, 105(2):489-504.
doi: 10.1111/tpj.v105.2
[35] ZHAO Z X, FENG Q, LIU P Q, HE X R, ZHAO J H, XU Y J, ZHANG L L, HUANG Y Y, ZHAO J Q, FAN J, LI Y, XIAO S Y, WANG W M. RPW8.1 enhances the ethylene-signaling pathway to feedback-attenuate its mediated cell death and disease resistance in Arabidopsis. New Phytologist, 2021, 229(1):516-531.
doi: 10.1111/nph.v229.1
[36] TANG D, CHRISTIANSEN K M, INNES R W. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiology, 2005, 138(2):1018-1026.
doi: 10.1104/pp.105.060400
[37] ALAZEM M, LIN N S. Roles of plant hormones in the regulation of host-virus interactions. Molecular Plant Pathology, 2015, 16(5):529-540.
doi: 10.1111/mpp.2015.16.issue-5
[38] GERI C, LOVE A J, CECCHINI E, BARRETT S J, LAIRD J, COVEY S N, MILNER J J. Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV-infection and show reduced ethylene sensitivity. Plant Molecular Biology, 2004, 56(1):111-124.
doi: 10.1007/s11103-004-2649-x
[39] WANG S, HAN K, PENG J, ZHAO J, JIANG L, LU Y, ZHENG H, LIN L, CHEN J, YAN F. NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in Nicotiana benthamiana. Molecular Plant Pathology, 2019, 20(7):990-1004.
doi: 10.1111/mpp.2019.20.issue-7
[40] SANSREGRET R, DUFOUR V, LANGLOIS M, DAAYF F, DUNOYER P, VOINNET O, BOUARAB K. Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. PLoS Pathogens, 2013, 9(6):e1003435.
doi: 10.1371/journal.ppat.1003435
[41] 彭浩然, 潘琪, 魏周玲, 蒲运丹, 张永至, 吴根土, 青玲, 孙现超. 番茄抗性相关基因SlHin1的克隆、表达与抗病毒功能. 中国农业科学, 2017, 50(7):1242-1251.
PENG H R, PAN Q, WEI Z L, PU Y D, ZHANG Y Z, WU G T, QING L, SUN X C. Cloning, expression and anti-virus function analysis of tomato resistance-related gene SlHin1. Scientia Agricultura Sinica, 2017, 50(7):1242-1251. (in Chinese)
[42] 彭浩然, 蒲运丹, 张永至, 薛杨, 武改霞, 青玲, 孙现超. ToMV外壳蛋白互作IP-L蛋白的亚细胞定位及表达分析. 中国农业科学, 2017, 50(17):3344-3351.
PENG H R, PU Y D, ZHANG Y Z, XUE Y, WU G T, QING L, SUN X C. Subcellular localization and expression analyses of IP-L protein interacting with ToMV coat protein. Scientia Agricultura Sinica, 2017, 50(17):3344-3351. (in Chinese)
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[4] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[5] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[6] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[7] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[8] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[9] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[10] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[11] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[12] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[13] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[14] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[15] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!