Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1806-1819.doi: 10.3864/j.issn.0578-1752.2020.09.009

• PLANT PROTECTION • Previous Articles     Next Articles

The Resistance Prediction of Wheat Hybrids Based on the Sensibility of Their Parents to Stripe Rust

TianYu ZHOU1,JiangLing LI1,Lan YANG1,RenWu RUAN2,YuHeng YANG3(),ZhongAn LI1()   

  1. 1 Citrus Research Institute, Southwest University, Chongqing 400712;
    2 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716;
    3 College of Plant Protection, Southwest University, Chongqing 400716
  • Received:2019-12-17 Accepted:2020-02-12 Online:2020-05-01 Published:2020-05-13
  • Contact: YuHeng YANG,ZhongAn LI E-mail:yyh023@swu.edu.cn;zhongan@cric.cn

Abstract:

【Objective】The objective of this study is to predict the resistance of wheat hybrids based on the resistance evaluation of their parental lines to stripe rust, and to enhance the predictability of disease resistance breeding in hybrid wheat. 【Method】A sensitive wheat variety, Mingxian 169, was used as negative control. A total of 13 restorer lines (male parents), 21 sterile lines (female parents), and their F1 hybrids were inoculated with a suspension of a mixture of fresh urediniospores (equal amounts of stripe rust pathogen physiological races CYR23, CYR31, CYR33, and CYR34) in the field. Stripe rust resistance genes Yr5, Yr9, Yr10, Yr15, Yr17, Yr18 and Yr26 were identified by PCR using their gene or linked molecular markers. In addition, semi-quantitative PCR was used to quantify the different stripe rust races in the adult plants of parent lines and a part of F1 hybrids. 【Result】Yr5, Yr10 and Yr15 were not identified in all materials, Yr26 was mostly existed in Sichuan wheat lines, Yr9 and Yr17 were mostly existed in the northern lines, Yr18 was not identified in restorer lines. The parental resistance genes were polymerized in F1 hybrids, which is consistent with the genetic law, indicating that the molecular marker can be used in wheat assistant breeding. The restorer lines from Sichuan and their F1 hybrids showed high resistance against stripe rust, speculating that there are homozygous dominant resistance genes against stripe rust. Meanwhile, these wheat lines can be used for stripe rust resistance breeding in China. The infection types (ITs) of F1 hybrids tended to the average of parental infection types. The results of binary regression analysis showed a significant correlation between parent lines and F1 hybrids in ITs (R2=0.812). Although Yr5 and Yr15 resistance genes were absent in all tested wheat lines, the restorers from Sichuan Province and their F1 hybrids showed higher resistance, speculating that those lines might carry unknown resistance genes against CYR34. The semi-quantitative PCR results indicated that CYR23 was not detected in all wheat lines. Only the restorer line 15CA50, sterile lines 17L6078 and 15L7128 were infected with a small amount of CYR31. The tested restorer lines Chuan 13 pin 6, MR1101, Chuanmai 98 and their F1 hybrids were not infected by CYR33 or CYR34. Meanwhile, the parents with complementary resistance to different races were found to increase the resistance level of F1 hybrids effectively. 【Conclusion】The F1 hybrids resistance to strip rust can be predicted according to the average of the ITs of parental lines, the higher levels of disease resistance of parents, the better resistance of F1 hybrids. Wheat varieties or lines with complementary resistance to different races of stripe rust should be screened as parents to improve the resistance level of F1 hybrids. The results revealed the rule of disease resistance between parents and their F1 hybrids, as well as providing a practical strategy for hybrid wheat disease resistance breeding.

Key words: hybrid wheat, stripe rust, resistance prediction, Puccinia striiformis f. sp. tritici, physiological race

Table 1

The primer sequences for stripe rust resistance genes"

Yr 基因
Yr genes
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
退火温度
Anneal temperature (℃)
片段大小
Fragment size (bp)
Yr5 Yr5-InsertionF[26]
Yr5-InsertionR
CTCACGCATTTGACCATATACAACT
TATTGCATAACATGGCCTCCAGT
52 +1281
Yr9 AF1[27]
AF4
F: GGAGACATCATGAAACATTTG
R: CTGTTGTTGGGCAGAAAG
46 +1500
Yr10 Yr10F1[27]
Yr10R1
TTGGAATTGGCGACAAGCGT
GTGATGATTACCCACTTCCTC
50 +755
Yr15 Y15K1_F2[28]
uhw301R
GGAGATAGAGCACATTACAGAC
TTTCGCATCCCACCCTACTG
55 +992
W_2F TGCACGCGGATATTAGGTAGG 55 +2014
W_2R TGATGAAGAGGACCAACGCA
Yr17 VENTRIUP[27]
LN2
AGGGGCTACTGACCAAGGCT
TGCAGCTACAGCAGTATGTACACAAAA
55 +262
Yr18 L34DINT9F[27]
L34PLUSR
TTGATGAAACCAGTTTTTTTTCTA
GCCATTTAACATAATCATGATGGA
45 +517
Yr26 WE173F[27]
WE173R
GGGACAAGGGGAGTTGAAGC
GAGAGTTCCAAGCAGAACAC
50 +451
-730

Table 2

The specific primer sequences for the physiological races of Pst"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
退火温度
Anneal temperature (℃)
CYR23 S360[33]
S413
F: AAGCGGCCTC
R: GGTGGTCCAAG
50
CYR31 CY31SP-1[34]
CY31SP-2
F: GCTACGTCAAGATGCGATACACC
R: TGTCAGAAGCAAGTGGTAAACTAGG
50
CYR33 CYR33SP-1[35]
CYR33SP-2
F: TGTCGTCTCGCCAATCTTT
R: GCGGGTGTCAGTTTCTCC
50
CYR34 V26SP-1[36]
V26SP-2
F: CTGTAAAGCGGATAAAGGAA
R: CATAAGAGCCACACTTGACC
57
Pst elongation factor Pst_EF F: TTCGCCGTCCGTGATATGAGACAA
R: ATGCGTATCATGGTGGTGGAGTGA
55

Fig. 1

Detection of genes resistant to wheat stripe rust in restorer lines"

Fig. 2

Detection of genes resistant to wheat stripe rust in sterile lines"

Table 3

Disease resistance of parents"

品系
Line
反应型
Infection type
抗病评价
Resistance evaluation
Yr 基因
Yr genes
恢复系
Restorer lines




小偃22 Xiaoyan 22 9 S Yr9
陕987 Shaan 987 5 MR Yr9+Yr17
高大1号 Gaoda No.1 7 MS Yr9+Yr17
伟隆121 Weilong 121 4 MR Yr17
15CA50 7 MS -
丰德存5号 Fengdecun No.5 7 MS -
西农807 Xinong 807 7 MS -
川14品16 Chuan 14 pin 16 2 R Yr26
川13品6 Chuan 13 pin 6 2 R Yr26
川麦93 Chuanmai 93 0 R Yr26
川麦98 Chuanmai 98 0 R Yr17+Yr26
MR1101 2 R Yr26
MY13-3 2 R Yr17
不育系
Sterile lines


08L5070 6 MR Yr9
15L7109 4 MR Yr9
15L7128 6 MR Yr9
15L7152 2 R Yr9+Yr18
17L6019 6 MR Yr9
17L6062 3 R Yr9
17L6065 3 R Yr9+Yr17
17L6067 3 R Yr9+Yr17
17L6078 6 MR Yr9
17L6085 5 MR Yr9+Yr17+Yr18
17L7030 6 MR Yr9+Yr17+Yr18
17L7106 3 R Yr9+Yr18
17L7123 3 R Yr9+Yr18
17L7140 3 R Yr9
17L9066 6 MR -
17L9154 4 MR Yr9+Yr17
17L9160 3 R Yr9+Yr17
17L9163 6 MR Yr9
17L9195 3 R Yr9
17L9210 2 R Yr9+Yr17
17L9217 4 MR Yr9

Table 4

Disease resistance of F1 hybrids"

编号
Number
F1
F1 hybrids
反应型
Infection type
抗病评价
Resistance evaluation
Yr基因
Yr genes
亲本反应型平均值
Infection type (average of parents)
1 17L6065×小偃22 17L6065×Xiaoyan 22 5 MR Yr9+Yr17 6
2 17L6067×小偃22 17L6067×Xiaoyan 22 5 MR Yr9+Yr17 6
3 17L9160×小偃22 17L9160×Xiaoyan 22 5 MR Yr9+Yr17 6
4 17L9154×陕987 17L9154×Shaan 987 4 MR Yr9+Yr17 4.5
5 17L9160×陕987 17L9160×Shaan 987 4 MR Yr9+Yr17 4
6 17L7123×高大1号 17L7123×Gaoda No.1 5 MR Yr9+Yr17+Yr18 5
7 17L7140×高大1号 17L7140×Gaoda No.1 5 MR Yr9+Yr17 5
8 17L7030×高大1号 17L7030×Gaoda No.1 7 MS Yr9+Yr17+Yr18 6.5
9 17L6078×高大1号 17L6078×Gaoda No.1 6 MR Yr9+Yr17 6.5
10 17L9066×高大1号 17L9066×Gaoda No.1 6 MR Yr9+Yr17 6.5
11 17L9154×高大1号 17L9154×Gaoda No.1 6 MR Yr9+Yr17 5.5
12 17L6067×丰德存5号 17L6067×Fengdecun No.5 6 MR Yr9+Yr17 5
13 17L6019×丰德存5号 17L6019×Fengdecun No.5 5 MR Yr9 6.5
14 17L6065×丰德存5号 17L6065×Fengdecun No.5 5 MR Yr9+Yr17 5
15 17L7106×丰德存5号 17L7106×Fengdecun No.5 7 MS Yr9+Yr18 5
16 17L7030×丰德存5号 17L7030×Fengdecun No.5 7 MS Yr9+Yr17+Yr18 6.5
17 17L7123×丰德存5号 17L7123×Fengdecun No.5 7 MS Yr9+Yr18 7
18 17L9154×丰德存5号 17L9154×Fengdecun No.5 5 MR Yr9+Yr17 5.5
19 15L7109×丰德存5号 15L7109×Fengdecun No.5 6 MR Yr9 5.5
20 17L6067×西农807 17L6067×Xinong 807 6 MR Yr9+Yr17 5
21 17L6019×西农807 17L6019×Xinong 807 6 MR Yr9 6.5
22 17L7030×西农807 17L7030×Xinong 807 5 MR Yr9+Yr17+Yr18 6.5
23 17L7123×西农807 17L7123×Xinong 807 5 MR Yr9+Yr18 5
24 17L7140×西农807 17L7140×Xinong 807 5 MR Yr9 5
25 17L9154×西农807 17L9154×Xinong 807 6 MR Yr9+Yr17 5.5
26 15L7109×西农807 15L7109×Xinong 807 5 MR Yr9 5.5
27 17L6067×川14品16 17L6067×Chuan 14 pin 16 2 R Yr9+Yr17+Yr26 2.5
28 15L7109×川14品16 15L7109×Chuan 14 pin 16 2 R Yr9+Yr26 3
29 15L7128×川14品16 15L7128×Chuan 14 pin 16 2 R Yr9+Yr26 4
30 15L7152×川14品16 15L7152×Chuan 14 pin 16 2 R Yr9+Yr18+Yr26 2
31 17L6065×川13品6 17L6065×Chuan 13 pin 6 2 R Yr9+Yr17+Yr26 3
32 17L6067×川13品6 17L6067×Chuan 13 pin 6 2 R Yr9+Yr17+Yr26 3
33 17L9154×川13品6 17L9154×Chuan 13 pin 6 2 R Yr9+Yr17+Yr26 3.5
34 17L6065×MR1101 2 R Yr9+Yr17+Yr26 2.5
35 17L6067×MR1101 2 R Yr9+Yr17+Yr26 2.5
36 17L6085×MR1101 2 R Yr9+Yr17+Yr18+Yr26 3.5
37 17L7106×MR1101 2 R Yr9+Yr26+Yr18 2.5
38 17L7030×MR1101 2 R Yr9+Yr17+Yr26+Yr18 4
39 17L7123×MR1101 2 R Yr9+Yr26+Yr18 2.5
40 17L7140×MR1101 2 R Yr9+Yr26 2.5
41 17L9154×MR1101 0 R Yr9+Yr17+Yr26 3
42 15L7109×MR1101 0 R Yr9+Yr26 3
编号
Number
F1
F1 hybrids
反应型
Infection type
抗病评价
Resistance evaluation
Yr基因
Yr genes
亲本反应型平均值
Infection type (average of parents)
43 15L7128×MR1101 1 R Yr9 +Yr26 4
44 15L7152×MR1101 2 R Yr9+Yr18+Yr26 2
45 08L5070×MR1101 2 R Yr9+Yr26 4
46 17L6065×MY13-3 2 R Yr9+Yr17 2.5
47 17L6067×MY13-3 2 R Yr9+Yr17 2.5
48 17L6085×MY13-3 2 R Yr9+Yr17+Yr18 3.5
49 17L7106×MY13-3 2 R Yr9+Yr17+Yr18 2.5
50 17L7030×MY13-3 2 R Yr9+Yr17+Yr18 4
51 17L7123×MY13-3 2 R Yr9+Yr17+Yr18 2.5
52 17L7140×MY13-3 2 R Yr9+Yr17 2.5
53 17L9154×MY13-3 2 R Yr9+Yr17 3
54 17L9163×MY13-3 2 R Yr9+Yr17 4
55 15L7109×MY13-3 2 R Yr9+Yr17 3
56 15L7128×MY13-3 2 R Yr9+Yr17 4
57 15L7152×MY13-3 2 R Yr9+Yr17+Yr18 2
58 08L5070×MY13-3 2 R Yr9+Yr17 4
59 17L6065×川麦93 17L6065×Chuanmai 93 1 R Yr9+Yr17+Yr26 1.5
60 17L6067×川麦93 17L6067×Chuanmai 93 1 R Yr9+Yr17+Yr26 1.5
61 17L6085×川麦93 17L6085×Chuanmai 93 1 R Yr9+Yr26 2.5
62 17L7106×川麦93 17L7106×Chuanmai 93 1 R Yr9+Yr26+Yr18 1.5
63 17L7030×川麦93 17L7030×Chuanmai 93 2 R Yr9+Yr17+Yr26+Yr18 3
64 17L7123×川麦93 17L7123×Chuanmai 93 1 R Yr9+Yr26+Yr18 1.5
65 17L7140×川麦93 17L7140×Chuanmai 93 1 R Yr9+Yr26 1.5
66 17L9154×川麦93 17L9154×Chuanmai 93 1 R Yr9+Yr17+Yr26 2
67 17L9163×川麦93 17L9163×Chuanmai 93 2 R Yr9+Yr26 3
68 15L7109×川麦93 15L7109×Chuanmai 93 2 R Yr9+Yr26 2
69 15L7128×川麦93 15L7128×Chuanmai 93 2 R Yr9+Yr26 3
70 15L7152×川麦93 15L7152×Chuanmai 93 2 R Yr9+Yr18+Yr26 1
71 08L5070×川麦93 08L5070×Chuanmai 93 2 R Yr9+Yr26 3
72 17L6065×川麦98 17L6065×Chuanmai 98 2 R Yr9+Yr17+Yr26 1.5
73 17L6067×川麦98 17L6067×Chuanmai 98 2 R Yr9+Yr17+Yr26 1.5
74 17L6085×川麦98 17L6085×Chuanmai 98 2 R Yr9 +Yr17+Yr18+Yr26 2.5
75 17L7106×川麦98 17L7106×Chuanmai 98 2 R Yr9+Yr18+Yr26 1.5
76 17L7030×川麦98 17L7030×Chuanmai 98 2 R Yr9+Yr17+Yr18+Yr26 3
77 17L7123×川麦98 17L7123×Chuanmai 98 2 R Yr9+Yr18+Yr26 3
78 17L7140×川麦98 17L7140×Chuanmai 98 2 R Yr9+Yr26 1.5
79 17L9160×15CA50 6 MR Yr9+Yr17 5
80 17L6062×15CA50 7 MS Yr9 5
81 17L7106×15CA50 6 MR Yr9+Yr18 5
82 17L7140×15CA50 5 MR Yr9 5
83 17L9160×伟隆121 17L9160×Weilong 121 4 MR Yr9+Yr17 3.5
84 17L6062×伟隆121 17L6062×Weilong 121 4 MR Yr9+Yr17 3.5
85 17L6065×伟隆121 17L6065×Weilong 121 4 MR Yr9+Yr17 3.5
86 17L7106×伟隆121 17L7106×Weilong 121 3 R Yr9+Yr17+Yr18 3.5

Fig. 3

Binary regression analysis of infection type between parents and F1 hybrids"

Fig. 4

Amount of CYR23, CYR31, CYR33, CYR34 in infected plants"

[1] GODFRAY H C J, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C . Food security: The challenge of feeding 9 billion people. Science, 2010,327(5967):812-818.
doi: 10.1126/science.1185383 pmid: 20110467
[2] FOLEY J A, RAMANKUTTY N, BRAUMAN K A, CASSIDY E S, GERBER J S, JOHNSTON M, MUELLER N D, O’CONNELL C, RAY D K, WEST P C, BALZER C, BENNETT E M, CARPENTER S R, HILL J, MONFREDA C, POLASKY S, ROCKSTROM J, SHEEHAN J, SIEBERT S, TILMAN D, ZAKS D P M . Solutions for a cultivated planet. Nature, 2011,478(7369):337-342.
doi: 10.1038/nature10452 pmid: 21993620
[3] RAY D K, RAMANKUTTY N, MUELLER N D, WEST P C, FOLEY J A . Recent patterns of crop yield growth and stagnation. Nature Communications, 2012,3:1293.
doi: 10.1038/ncomms2296 pmid: 23250423
[4] RAY D K, MUELLER N D, WEST P C, FOLEY J A . Yield trends are insufficient to double global crop production by 2050. PloS ONE, 2013,8(6):e66428.
doi: 10.1371/journal.pone.0066428 pmid: 23840465
[5] WHITFORD R, FLEURY D, REIF J C, GARCIA M, OKADA T, KORZUN V, LANGRIDGE P . Hybrid breeding in wheat: Technologies to improve hybrid wheat seed production. Journal of Experimental Botany, 2013,64(18):5411-5428.
doi: 10.1093/jxb/ert333 pmid: 24179097
[6] 丁位华, 冯素伟, 姜小苓, 王丹, 杨艳艳, 李婷婷, 茹振刚 . 播期、密度和行距对BNS型杂交小麦光合及产量的影响. 麦类作物学报, 2017,37(3):366-375.
DING W H, FENG S W, JIANG X L, WANG D, YANG Y Y, LI T T, RU Z G . Effect of sowing date, density and row spacing on photosynthetic characteristic and yield of BNS hybrid wheat. Journal of Triticeae Crops, 2017,37(3):366-375. (in Chinese)
[7] KOEMEL J E, GUENZI A C, CARVER B F, PAYTON M E, MORGAN G H, SMITH E L . Hybrid and pure line hard winter wheat yield and stability. Crop Science, 2004,44(1):107-113.
doi: 10.2135/cropsci2004.1070
[8] KEMPE K, GILS M . Pollination control technologies for hybrid breeding. Molecular Breeding, 2011,27(4):417-437.
doi: 10.1007/s11032-011-9555-0
[9] TUCKER E J, BAUMANN U, KOUIDRI A, SUCHECKI R, BAES M, GARCIA M, OKADA T, DONG C M, WU Y Z, SANDHU A, SINGH M, LANGRIDGE P, WOLTERS P, ALBERTSEN M C, CIGAN A M, WHITFORD R . Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nature Communications, 2017,8(1):869.
doi: 10.1038/s41467-017-00945-2 pmid: 29021581
[10] LONGIN C F, MÜHLEISEN J, MAURER H P, ZHANG H L, GOWDA M, REIF J C . Hybrid breeding in autogamous cereals. Theoretical and Applied Genetics, 2012,125(6):1087-1096.
doi: 10.1007/s00122-012-1967-7 pmid: 22918662
[11] 朱冠楠, 曹幸穗 . 杂交水稻和杂交小麦的选育(1960-2000年)—面向国民经济主战场的新中国农业科技. 中国科学院院刊, 2019,34(9):1036-1045.
ZHU G N, CAO X S . Breeding of hybrid rice and hybrid wheat (1960-2000)-China agricultural science and technology facing the main battlefield of national economy. Bulletin of Chinese Academy of Sciences, 2019,34(9):1036-1045. (in Chinese)
[12] RASHEED A, XIA X C . From markers to genome-based breeding in wheat. Theoretical and Applied Genetics, 2019,132(3):767-784.
doi: 10.1007/s00122-019-03286-4 pmid: 30673804
[13] CUI Y R, LI R D, LI G W, ZHANG F, ZHU T T, ZHANG Q F, ALI J, LI Z K, XU S D . Hybrid breeding of rice via genomic selection. Plant Biotechnology Journal, 2020,18(1):57-67.
doi: 10.1111/pbi.13170 pmid: 31124256
[14] 张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, 周俭民 . 植物免疫研究与抗病虫绿色防控: 进展、机遇与挑战. 中国科学: 生命科学, 2019,49(11):1479-1507.
ZHANG J, DONG S M, WANG W, ZHAO J H, CHEN X W, GUO H S, HE G C, HE Z H, KANG Z S, LI Y, PENG Y L, WANG G L, ZHOU X P, WANG Y C, ZHOU J M . Plant immunity and sustainable control of pests in China: Advances, opportunities and challenges. Scientia Sinica Vitae, 2019,49(11):1479-1507. (in Chinese)
[15] GUPTA P K, BALYAN H S, GAHLAUT V, SARIPALLI G, PAL B, BASNET B R, JOSHI A K . Hybrid wheat: Past, present and future. Theoretical and Applied Genetics, 2019,132(9):2463-2483.
doi: 10.1007/s00122-019-03397-y pmid: 31321476
[16] 史丽丽, 张改生, 牛娜, 马守才, 李红霞, 徐开杰 . 杂交小麦杂种一代白粉病抗性表现规律的研究. 麦类作物学报, 2009,29(5):919-924.
SHI L L, ZHANG G S, NIU N, MA S C, LI H X, XU K J . Performance on powdery mildew resistance of F1 generation in hybrid wheat. Journal of Triticeae Crops, 2009,29(5):919-924. (in Chinese)
[17] LIU F, ZHAO Y S, BEIER S, JIANG Y, THORWARTH P, HLONGIN C F, GANAL M, HIMMELBACH A, REIF J C, SCHULTHESS A W . Exome association analysis sheds light onto leaf rust (Puccinia triticina) resistance genes currently used in wheat breeding (Triticum aestivum L.). Plant Biotechnology Journal, 2019, doi: 10.1111/pbi.13303.
doi: 10.1111/pbi.13303 pmid: 31782598
[18] BOEVEN P H, WURSCHU T, WEISSMANN S, MIEDANER T, MAURER H P . Prediction of hybrid performance for Fusarium head blight resistance in triticale (× Triticosecale Wittmack). Euphytica, 2016,207(3):475-490.
doi: 10.1007/s10681-015-1498-9
[19] ALI N, HESLOP-HARRISON J P, AHMAD H, GRAYBOSCH R A, HEIN G L, SCHWARZACHER T . TIntrogression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance. Heredity, 2016,177(2):114-123.
doi: 10.1038/hdy.2016.36 pmid: 27245423
[20] 赵仁慧, 刘炳亮, 寿路路, 陈甜甜, 王海燕, 王秀娥, 别同德 . 分子标记辅助聚合抗小麦黄花叶病和白粉病育种. 麦类作物学报, 2017,37(12):1541-1549.
ZHAO R H, LIU B L, SHOU L L, CHEN T T, WANG H Y, WANG X E, BIE T D . Pyramiding disease resistance to wheat yellow mosaic virus and powdery mildew by molecular marker-assisted selection. Journal of Triticeae Crops, 2017,37(12):1541-1549. (in Chinese)
[21] 崔彩红, 房伟强, 李兴锋, 王洪刚, 鲍印广 . 携带抗秆锈病基因Sr25Sr26小麦新种质的分子标记辅助选育. 山东农业科学, 2015,47(4):13-17.
CUI C H, FANG W Q, LI X F, WANG H G, BAO Y G . Marker assisted selection of wheat germplasms with stem rust resistance genes Sr25 and Sr26. Shandong Agricultural Sciences, 2015,47(4):13-17. (in Chinese)
[22] CHEN W Q, WELLINGS C, CHEN X M, KANG Z S, LIU T G . Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 2014,15(5):433-446.
doi: 10.1111/mpp.12116 pmid: 24373199
[23] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽 . 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015,48(17):3439-3453.
doi: 10.3864/j.issn.0578-1752.2015.17.011
KANG Z S, WANG X J, ZHAO J, TANG C L, HUANG L L . Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 2015,48(17):3439-3453. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.17.011
[24] 张玉薇, 刘太国, 刘博, 高利, 陈万权 . 中国75个国审小麦品种抗条锈基因推导. 植物保护学报, 2014,41(1):45-53.
ZHANG Y W, LIU T G, LIU B, GAO L, CHEN W Q . Gene postulation of stripe rust resistance genes of 75 Chinese commercial wheat cultivars. Journal of Plant Protection, 2014,41(1):45-53. (in Chinese)
[25] 李中安, . 一种以蓝粒为标记性状的两系法杂交小麦的选育方法: CN200610042629.8[P]. (2006-09-06)[2019-12-17].
LI Z A . A breeding method of two-line hybrid wheat marked by blue grain: CN200610042629.8[P]. (2006-09-06)[2019-12-17]. (in Chinese)
[26] MARCHAL C, ZHANG J P, ZHANG P, FENWICK P, STEUERNAGEL B, ADAMSKI N M, BOYD L, MCLNTOSH R, WULFF B B H, BERRY S, LAGUDAH E, UAUY C . BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 2018,4(9):662-668.
doi: 10.1038/s41477-018-0236-4 pmid: 30150615
[27] ZENG Q D, HAN D J, WANG Q L, YUAN F P, WU J H, ZHANG L, WANG X J, HAUNG L L, CHEN X M, KANG Z S . Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica, 2014,196(2):271-284.
doi: 10.1007/s10681-013-1030-z
[28] KLYMIUK V, YANIV E, HUANG L, RAATS D, FATIUKHA A, CHEN S, FENG L, FRENKEL Z, KRUGMAN T, LIDZBARSKY G, CHANG W, JÄÄSKELÄINEN M J, SCHUDOMA C, PAULIN L, LAINE P, BARIANA H, SELA H, SALEEM K, SØRENSEN C K, HOVMØLLER M S, DISTELFELD A, CHALHOUB B, DUBCOVSKY J, KOROL A B, SCHULMAN A H, FAHIMA T . Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications, 2018,9(1):3735.
doi: 10.1038/s41467-018-06138-9 pmid: 30282993
[29] YANG Y H, CHEN F J, HAN D J, RUAN R W, LI B Q, YU Y, BI C W . Evaluation of resistance of current wheat cultivars and breeding lines to stripe rust from three Gorges reservoir area. Journal of General Plant Pathology, 2017,83(5):283-290.
[30] 李北, 徐琪, 杨宇衡, 王琪琳, 曾庆东, 吴建辉, 穆京妹, 黄丽丽, 康振生, 韩德俊 . 重庆麦区小麦品种(系)抗条锈性评价与基因分析. 中国农业科学, 2017,50(3):413-425.
doi: 10.3864/j.issn.0578-1752.2017.03.001
LI B, XU Q, YANG Y H, WANG Q L, ZENG Q D, WU J H, MU J M, HUANG L L, KANG Z S, HAN D J . Stripe rust resistance and genes in Chongqing wheat cultivars and lines. Scientia Agricultura Sinica, 2017,50(3):413-425. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.03.001
[31] CHOQUER M, BOCCARA M, VIDAL-CROS A . A semi- quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Current Genetics, 2003,43(4):303-309.
doi: 10.1007/s00294-003-0397-0 pmid: 12740713
[32] XU Q, TANG C L, WANG L K, ZHAO C C, KANG Z S, WANG X J . Haustoria-arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 2019, doi: 10.1111/mpp.12882.
[33] 曹丽华, 康振生, 赵杰, 黄丽丽, 魏国荣 . 中国小麦条锈菌4个流行小种的RAPD标记. 西北农林科技大学学报(自然科学版), 2004,32(7):37-40.
CAO L H, KANG Z S, ZHAO J, HUANG L L, WEI G R . RAPD markers of Puccinia striiformis f. sp. tritici in China. Journal of Northwest Agriculture and Forestry University (Nature Science Edition), 2004,32(7):37-40. (in Chinese)
[34] 曹丽华, 康振生, 郑文明, 黄丽丽, 李振岐 . 小麦条锈菌条中31号生理小种SCAR检测标记的建立. 菌物学报, 2005,24(1):98-103.
CAO L H, KANG Z S, ZHENG W M, HUANG L L, LI Z Q . The development of SCAR detection marker of Puccinia striiformis f. sp. tritici race CYR31 in China. Mycosystema, 2005,24(1):98-103. (in Chinese)
[35] WANG B T, HU X P, LI Q, HAO B J, ZHANG B, LI G B, KANG Z S . Development of race-specific SCAR markers for detection of Chinese races CYR32 and CYR33 of Puccinia striiformis f. sp. tritici. Plant Disease, 2010,94(2):221-228.
doi: 10.1094/PDIS-94-2-0221 pmid: 30754258
[36] 郭婧, 李敏州, 夏滔, 李高宝, 申雪雪, 樊玉, 李强, 王保通 . 小麦条锈菌新菌系V26的SCAR 检测标记. 植物病理学报, 2014,44(5):449-454.
GUO J, LI M Z, XIA T, LI G B, SHEN X X, FAN Y, LI Q, WANG B T . Race-specific SCAR marker for new strain V26 of Puccinia strifformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2014,44(5):449-454. (in Chinese)
[37] MIEDANER T, SCHULTHESS A W, GOWDA M, REIF J C, LONGIN C F H . High accuracy of predicting hybrid performance of Fusarium head blight resistance by mid-parent values in wheat. Theoretical and Applied Genetics, 2017,130(2):461-470.
doi: 10.1007/s00122-016-2826-8 pmid: 27866226
[38] 吴春太, 徐如宏, 张庆勤 . 高产抗病优质互补的品种间杂交研究. 西南农业学报, 2010,23(6):1891-1894.
WU C T, XU R H, ZHANG Q Q . Study of hybridization between varieties with exchangeable supply in high-yield disease resistance and good quality. Southwest China Journal of Agricultural Sciences, 2010,23(6):1891-1894. (in Chinese)
[39] 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 高利, 彭云良, 金社林, 陈万权 . 中国小麦条锈菌条中34号的发现及其致病特性. 植物病理学报, 2017,47(5):681-687.
LIU B, LIU T G, ZHANG Z Y, JIA Q Z, WANG B T, GAO L, PENG Y L, JIN S L, CHEN W Q . Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2017,47(5):681-687. (in Chinese)
[40] 姚强, 王洁荣, 孟岩, 詹刚明, 黄丽丽, 康振生 . 中国小麦条锈病菌CYR32和CYR33的毒性及基因型多样性. 植物保护学报, 2018,45(1):46-52.
YAO Q, WANG J R, MENG Y, ZHAN G M, HUANG L L, KANG Z S . Virulence and genotypic diversity of wheat stripe rust races CYR32 and CYR33 in China. Journal of Plant Protection, 2018,45(1):46-52. (in Chinese)
[41] 黄苗苗, 孙振宇, 曹世勤, 贾秋珍, 刘太国, 陈万权 . 223份小麦农家品种田间抗条锈病性评价及抗病基因分子检测. 植物保护学报, 2018,45(1):90-100.
HUANG M M, SUN Z Y, CAO S Q, JIA Q Z, LIU T G, CHEN W Q . Evaluation of the resistance of 223 wheat landraces in Gansu Province to stripe rust and molecular detection. Journal of Plant Protection, 2018,45(1):90-100. (in Chinese)
[42] REHMAN A U, SAJJAD M, KHAN S H, AHMAD N . Prospects of wheat breeding for durable resistance against brown, yellow and black rust fungi. International Journal of Agriculture and Biology, 2013,15(6):1209-1220.
[43] LIU G Z, ZHAO Y S, GOWDA M, LONGIN C F, REIF J C, METTE M F . Predicting hybrid performance for quality traits through genomic-assisted approaches in Central European wheat. PLoS ONE, 2016,11(7):e0158635.
doi: 10.1371/journal.pone.0158635 pmid: 27383841
[44] STEINER B, BUERSTMAYR M, MICHEL S, SCHWEIGER W, LEMMENS M, BUERSTMAYR H . Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Tropical Plant Pathology, 2017,42(3):165-174.
[45] AGOSTINELLI A M, CLARK A J, BROWN-GUEDIRA G, VAN SANFORD D A . Optimizing phenotypic and genotypic selection for Fusarium head blight resistance in wheat. Euphytica, 2012,186(1):115-126.
doi: 10.1534/g3.116.032532 pmid: 27440921
[46] SALAMEH A, BUERSTMAYR M, STEINER B, NEUMAYER A, LEMMENS M, BUERSTMAYR H . Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits. Molecular Breeding, 2010,28(4):485-494.
doi: 10.1007/s11032-010-9498-x
[47] KIM M S, OUK S, JUNG K H, SONG Y, YANG J Y, CHO Y G . Breeding hybrid rice with genes resistant to diseases and insects using marker-assisted selection and evaluation of biological assay. Plant Breeding and Biotechnology, 2019,7(3):272-286.
doi: 10.9787/PBB.2019.7.3.272
[48] SINGH R P, HUERTA-ESPINO J, WILLIAM H M . Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry, 2005,29(2):121-127.
[49] SINGH R P, SINGH P K, RUTKOSKI J, HODSON D P, HE X, JORGENSEN L N, HOVMOLLER M S, HUERTA-ESPINO J . Disease impact on wheat yield potential and prospects of genetic control. Annual Review of Phytopathology, 2016,54:303-322.
doi: 10.1146/annurev-phyto-080615-095835 pmid: 27296137
[50] 李峰奇, 韩德俊, 魏国荣, 曾庆东, 黄丽丽, 康振生 . 黄淮麦区126 个小麦品种(系)抗条锈病基因的分子检测. 中国农业科学, 2008,41(10):3060-3069.
LI F Q, HAN D J, WEI G R, ZENG Q D, HUANG L L, KANG Z S . Molecular detection of stripe rust resistant genes in 126 winter wheat varieties from the Huanghuai wheat region. Scientia Agricultura Sinica, 2008,41(10):3060-3069. (in Chinese)
[51] 任勇, 李生荣, 周强, 杜小英, 何员江, 魏育明, 郑有良 . 134份四川小麦品种(系)的条锈病抗性评价. 麦类作物学报, 2014,34(6):847-853.
REN Y, LI S R, ZHOU Q, DU X Y, HE Y J, WEI Y M, ZHENG Y L . Evaluation of resistance to stripe rust of 134 wheat cultivars and lines from Sichuan Province. Journal of Triticeae Crops, 2014,34(6):847- 853. (in Chinese)
[52] SAVADI S, PRASAD P, KASHYAP P L, BHARDWAJ S C . Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant Pathology, 2018,67(4):771-791.
[53] WANG Y P, CHENG X, SHAN Q W, ZHANG Y, LIU J X, CAO C X, QIU J L . Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014,32(9):947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[54] ARAKI M, ISHII T . Towards social acceptance of plant breeding by genome editing. Trends in Plant Science, 2015,20(3):145-149.
doi: 10.1016/j.tplants.2015.01.010 pmid: 25726138
[1] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[2] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[3] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[4] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[5] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[6] GUAN FangNian,LONG Li,YAO FangJie,WANG YuQi,JIANG QianTao,KANG HouYang,JIANG YunFeng,LI Wei,DENG Mei,LI Hao,CHEN GuoYue. Evaluation of Resistance to Stripe Rust and Molecular Detection of Important Known Yr Gene(s) of 152 Chinese Wheat Landraces from the Huang-huai-hai [J]. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637.
[7] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
[8] LI Bei, XU Qi, YANG YuHeng, WANG QiLin, ZENG QingDong, WU JianHui, MU JingMei, HUANG LiLi, KANG ZhenSheng, HAN DeJun. Stripe Rust Resistance and Genes in Chongqing Wheat Cultivars and Lines [J]. Scientia Agricultura Sinica, 2017, 50(3): 413-425.
[9] HUANG Liang, LIU TaiGuo, XIAO XingZhi, QU ChunYan, LIU Bo, GAO Li, LUO PeiGao, CHEN WanQuan. Evaluation of Stripe Rust Resistance and Molecular Detection of Yr Genes of 79 Wheat Varieties (Lines) in China [J]. Scientia Agricultura Sinica, 2017, 50(16): 3122-3134.
[10] LI Zhi-jiang, JIA Guan-qing, LI Xiang-yu, LI Yi-chu, MA Jin-feng, ZHI Hui, TANG Sha, ZHANG Shuo, CHAI Yang, LI Yan-dong, DIAO Xian-min. Determination of Standard Varieties for Identifying Physiological Races of Foxtail Millet Blast Fungus [J]. Scientia Agricultura Sinica, 2016, 49(17): 3308-3318.
[11] ZHOU Xin-li, ZHAN Gang-ming, HUANG Li-li, HAN De-jun, KANG Zhen-sheng. Evaluation of Resistance to Stripe Rust in Eighty Abroad Spring Wheat Germplasms [J]. Scientia Agricultura Sinica, 2015, 48(8): 1518-1526.
[12] WANG Tu-hong, GUO Qing-yun, LIN Rui-ming, YAO Qiang, FENG Jing, WANG Feng-tao, CHEN Wan-quan, XU Shi-chang. Postulation of Stripe Rust Resistance Genes in Chinese 40 Wheat Landraces and 40 Commercial Cultivars in the Southern Region of Gansu Province [J]. Scientia Agricultura Sinica, 2015, 48(19): 3834-3847.
[13] LI Hong-Hao, PENG Hua-Xian, XI Ya-Dong, WANG Xiao-Li, LIU Bo-Wei. Characteristics of Mating Types, Physiological Races, Metalaxyl Sensitivity and mtDNA Haplotypes of Phytophthora infestans in Sichuan Province [J]. Scientia Agricultura Sinica, 2013, 46(4): 728-736.
[14] HAN De-Jun, ZHANG Pei-Yu, WANG Qi-Lin, ZENG Qing-Dong, WU Jian-Hui, ZHOU Xin-Li, WANG Xiao-Jie, HUANG Li-Li, KANG Zhen-Sheng. Identification and Evaluation of Resistance to Stripe Rust in 1980 Wheat Landraces and Abroad Germplasm [J]. Scientia Agricultura Sinica, 2012, 45(24): 5013-5023.
[15] HAO Wei-Wei, TANG Cai-Guo, LI Bao-Chun, HAO Chen-Yang, ZHANG Xue-Yong. Analysis of Wheat-Thinopyrum ponticum Translocation Lines with Broad Spectrum Resistance to Stripe Rusts [J]. Scientia Agricultura Sinica, 2012, 45(16): 3240-3248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!