Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3235-3256.doi: 10.3864/j.issn.0578-1752.2020.16.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Research Progress on the Crop Growth Model CropGrow

ZHU Yan(),TANG Liang,LIU LeiLei,LIU Bing,ZHANG XiaoHu,QIU XiaoLei,TIAN YongChao,CAO WeiXing()   

  1. Nanjing Agricultural University/National Engineering and Technology Center for Information Agriculture/Engineering Research Center of Smart Agriculture, Ministry of Education/Key Laboratory of Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs/Jiangsu Key Laboratory for Information Agriculture/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095
  • Received:2020-02-29 Accepted:2020-06-10 Online:2020-08-16 Published:2020-08-27
  • Contact: WeiXing CAO E-mail:yanzhu@njau.edu.cn;caow@njau.edu.cn

Abstract:

Agricultural information technology is formed as the result of integrating information technology and agricultural science, and has further facilitated the rapid development of digital agriculture (DA) and smart agriculture (SA). As one of the core technologies of DA and SA, crop growth model can dynamically simulate crop growth and development processes and their relationships with climate condition, soil characteristics and management strategy, so as to overcome the limitation of the spatial-temporal characteristics of traditional research on agricultural production management. It can provide powerful quantitative tools for crop productivity prediction and early warning and impact evaluation under different conditions. Through over 20-years systematic and profound exploration and practicing in wheat and rice crops, and based on the workflow of “physiological mechanism analysis-model algorithm development-dynamic productivity prediction-quantitative effect assessment-simulation platform development”, our research team has been devoted to the development and application of crop simulation model CropGrow, by integrating the technologies of system analysis, dynamic modeling, virtual reality, scenario simulation, and decision support. Firstly, based on the system analysis method and dynamic modeling technology, the comprehensive and mechanistic crop growth model CropGrow has been developed, including the submodels of phasic development and phenology, organ development and population establishment, photosynthetic production and biomass accumulation, assimilate partitioning and yield/quality formation, nutrient dynamics, and water balance, along with three-dimensional morphological and visual submodels, which could digitalize and visualize the processes of crop growth and productivity formation under different conditions. Further, by coupling geographic information system (GIS) and remote sensing (RS), the model-based regional crop productivity prediction technology has been established. Then, based on the scenario analysis, the contributions of climate change, soil improvement, variety updating, and strategy optimization to regional crop production have been quantified, and applications extended to generation of suitable management plan, design of ideal cultivar, assessment of climate impact, evaluation of land use and decision-making of agricultural policy. Finally, based on the component-based programming technology, a model-based digital and visual crop growth simulation system and decision support platform has been developed by integrating the crop production database and crop model components, further realizing the comprehensive functions of data management, parameter optimization, growth simulation, remote sensing coupling, regional prediction, management strategy design, effect evaluation, safety early warning and product release. In the future, based on the improvement of agro-information database, additional efforts in crop modeling will be made toward enhancing prediction ability, quantifying gene effects, developing intelligent decision-making, and coupling multiple models, which will provide digital support for the prediction and early warning of food production, quantitative evaluation of scenario effects, decision-making on management strategy, and optimal design of new crop cultivars, thus facilitating the security of national food and development of digital agriculture.

Key words: crop growth model, algorithm development, productivity prediction, impact assessment, decision support, system platform, digital farming

Fig. 1

Technical flowchart of development and application of the crop growth model CropGrow"

Fig. 2

Structural flowchart of crop growth model CropGrow"

Fig. 3

Comparisons between observed and simulated values of wheat phenology (a, b), LAI (c) and grain yield (d) with WheatGrow DOY is day of year"

Fig. 4

Three-dimensional morphological construction and visualization of rice organ, individual and population based on RiceGrow"

Fig. 5

Optimization strategy of simulation scale based on model and GIS coupling (a)Upscaling based on spatial interpolation;(b)Upscaling based on spatial division"

Fig. 6

Simulated productivity of winter wheat regions of China based on spatial interpolation (a)Optimal simulation grid resolution;(b)Simulation results of light-temperature potential productivity"

Fig. 7

Comparisons between observed and simulated values of LAI, leaf nitrogen accumulation (LNA) and leaf dry matter weight (LDW) by assimilating WheatGrow model with remote sensing information"

Fig. 8

Simulated LAI, leaf nitrogen accumulation (LNA) and grain yield of wheat in Yanhu farm by assimilating WheatGrow model with remote sensing information"

Fig. 9

Spatial distribution of yield gap and production gap at different levels in main rice production regions of China (a)Target yield-actual yield;(b)Potential yield - target yield;(c)YGTY-AY×planting area;(d)YGPY-TY×planting area"

Fig. 10

Contribution of different factors to rice yield increase in Taihu lake region from 1980 to 2010 A: Climate change; B: Soil improvement; C: Variety renewal; D: Measurement optimization"

Fig. 11

Spatial distribution of suitable sowing dates under different climate scenarios in main rice production regions of China"

Fig. 12

The dynamic variation of extinction coefficient of erect and flat types of wheat cultivar"

Fig. 13

Impacts of (a) 1.5℃ and (b) 2.0℃ warming scenarios on wheat grain yield for 60 representative global wheat-growing locations from 31 crop models"

Fig. 14

Function diagram of crop growth simulation and decision support support system"

Fig. 15

Interfaces of crop growth simulation and decision support system"

[1] 赵春江, 杨信廷, 李斌, 李明, 闫华. 中国农业信息技术发展回顾及展望. 农学学报, 2018,8(1):172-178.
ZHAO C J, YANG X T, LI B, LI M, YAN H. The retrospect and prospect of agricultural information technology in China. Journal of Agriculture, 2018, 8(1):172-178. (in Chinese)
[2] BOUMAN B A M, VAN KEULEN H, VAN LAAR H H, RABBINGE R. The 'School of de Wit' crop growth simulation models: A pedigree and historical overview. Agricultural Systems, 1996,52:171-198.
doi: 10.1016/0308-521X(96)00011-X
[3] 曹卫星, 罗卫红. 作物系统模拟及智能管理. 北京: 高等教育出版社, 2003.
CAO W X, LUO W H. Crop System Simulation and Intelligent Management. Beijing: Higher Education Press, 2003. (in Chinese)
[4] PENNING DE VRIES F W T, JANSEN D M, TEN BERGE H F M, BAKEMA A.. Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Wageningen: The Netherlands Pudoc, 1989.
[5] DE WIT C F. Photosynthesis of leaf canopies. Agricultural Research Reports 663. Wageningen,The Netherlands Pudoc, 1965:1-57.
[6] DUNCAN W G, LOOMIS R S, WILLIAMS W A, HANAU R. A model for simulating photosynthesis in plant communities. Hilgardia, 1967,38:181-205.
[7] JONES J W, HOOGENBOOM G, PORTER C H, BOOTE K J, BATCHELOR W D, HUNT L A, WILKENS P W, SINGH U, GIJSMAN A J, RITCHIE J T. The DSSAT cropping system model. European Journal of Agronomy, 2003,18:235-265.
[8] KEATING B A, CARBERRY P S, HAMMER G L, PROBERT M E, ROBERTSON M J, HOLZWORTH D, HUTH N I, HARGREAVES J N G, MEINKE H, HOCHMAN Z, MCLEAN G, VERBURG K, SNOW V, DIMES J P, SILBURN M, WANG E, BROWN S, BRISTOW K L, ASSENG S, CHAPMAN S, MCCOWN R L, FREEBAIRN D M, SMITH C J. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 2003,18:267-288.
[9] BRISSON N, GARY C, JUSTES E, ROCHE R, MARY B, RIPOCHE D, ZIMMER D, SIERRA J, BERTUZZI P, BURGER P, BUSSIÈRE F, CABIDOCHE Y M, CELLIER P, DEBAEKE P, GAUDILLÈRE J P, HÉNAULT C, MARAUX F, SFGUIN B, SINOQUFT H. An overview of the crop model STICS. European Journal of Agronomy, 2003,18(3/4):309-332.
[10] YIN X, VAN LAAR H H. Crop Systems Dynamics: An Ecophysiological Simulation Model for Genotype-by-Environment Interactions. Wageningen,The Netherlands: Wageningen Academic Publishers, 2005.
[11] LI T, ANGELES O, MARCAIDA M, MANALO E, MANALILI M P, RADANIELSON A, MOHANTY S. From ORYZA2000 to ORYZA(v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, 2017,237/238:246-256.
[12] 高亮之, 金之庆, 黄耀, 张立中. 水稻计算机模拟模型及其应用之一水稻钟模型——水稻发育动态的计算机模型. 中国农业气象, 1989,10(3):3-10.
GAO L Z, JIN Z Q, HUANG Y, ZHANG L Z. Rice clock model—a computer simulation model of rice development. Chinese Journal of Agrometeorology, 1989,10(3):3-10. (in Chinese)
[13] 黄策, 王天铎. 水稻群体物质生产过程的计算机模拟. 作物学报, 1986,12(1):1-8.
HUANG C, WANG T D. Computer simulation of biomass production in rice community. Acta Agronomica Sinica, 1986,12(1):1-8. (in Chinese)
[14] 高亮之, 金之庆, 黄耀, 陈华. 作物模拟与栽培优化原理的结合-RCSODS. 作物杂志, 1994(3):4-7.
GAO L Z, JIN Z Q, HUANG Y, CHEN H. Rice cultivation computer-simulated optimal decision-making system-RCSODS. Crops, 1994(3):4-7. (in Chinese)
[15] 殷新佑, 戚昌瀚. 水稻生长日历模拟模型及应用研究. 作物学报, 1994,20(3):339-346.
YIN X Y, QI C H. Studies on the rice growth calendar simulation model (RICAM). Acta Agronomica Sinica, 1994,20(3):339-346. (in Chinese)
[16] 贺东祥, 王天铎. 作物生长模型PGROWTH微气象模块的实验验证. 作物学报, 1995,21(7):419-423.
HE D X, WANG T D. Experimental validation of micrometeorological subroutines of the PGROWTH model. Acta Agronomica Sinica, 1995,21(7):419-423. (in Chinese)
[17] LIU B, LIU L L, ASSENG S, ZOU X D, LI J, CAO W X, ZHU Y. Modelling the effects of heat stress on post-heading durations in wheat: A comparison of temperature response routines. Agricultural and Forest Meteorology, 2016,222:45-58.
[18] WANG J, WANG E L, YANG X G, ZHANG F S, YIN H. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 2012,113:825-840.
[19] YAO N, LI Y, XU F, LIU J, CHEN S, MA H J, CHAU H W, LIU D L, LI M, FENG H, YU Q, HE J Q. Permanent wilting point plays an important role in simulating winter wheat growth under water deficit conditions. Agricultural Water Management, 2020,229:105954.
[20] TAO F, YOKOZAWA M, ZHANG Z. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new process-based model development, optimization, and uncertainties analysis. Agricultural and Forest Meteorology, 2009,149(5):831-850.
[21] 曹宏鑫, 杨余旺, 金之庆, 石春林, 葛道阔, 魏秀芳. 基于Web与模拟模型的水稻栽培数字化设计. 农业工程学报, 2008,24(12):137-140.
CAO H X, YANG Y W, JIN Z Q, SHI C L, GE D K, WEI X F. Digital design of rice cultivation based on Web and simulation model. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(12):137-140. (in Chinese)
[22] ROSENZWEIG C, JONES J W, HATFIELD J L, RUANE A C, BOOTE K J, THORBURN P, ANTLE J M, NELSON G C, PORTER C, JANSSEN S, ASSENG S, BASSO B, EWERT F, WALLACH D, BAIGORRIA G, WINTER J M. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 2013,170:166-182.
[23] ASSENG S, EWERT F, MARTRE P, RÖTTER R P, LOBELL D B, CAMMARANO D, KIMBALL B A, OTTMAN M J, WALL G W, WHITE J W, REYNOLDS M P, ALDERMAN P D, PRASAD P V V, AGGARWAL P K, ANOTHAI J, BASSO B, BIERNATH C, CHALLINOR A J, DE SANCTIS G, DOLTRA J, FERERES E, GARCIA-VILA M, GAYLER S, HOOGENBOOM G, HUNT L A, IZAURRALDE R C, JABLOUN M, JONES C D, KERSEBAUM K C, KOEHLER A-K, MÜLLER C, KUMAR S N, NENDEL C, O'LEARY G, OLESEN J E, PALOSUO T, PRIESACK E, REZAEI E E, RUANE A C, SEMENOV M A, SHCHERBAK I, STÖCKLE C, STRATONOVITCH P, STRECK T, SUPIT I, TAO F, THORBURN P J, WAHA K, WANG E, WALLACH D, WOLF J, ZHAO Z, ZHU Y. Rising temperatures reduce global wheat production. Nature Climate Change, 2015,5(2):143-147.
[24] MATIU M, ANKERST D P, MENZEL A. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS ONE, 2017,12(5):e0178339.
doi: 10.1371/journal.pone.0178339 pmid: 28552938
[25] ZHANG X H, XU H, JIANG L, ZHAO J Q, ZUO W J, QIU X L, TIAN Y C, CAO W X, ZHU Y. Selection of appropriate spatial resolution for the meteorological data for regional winter wheat potential productivity simulation in China based on WheatGrow model. Agronomy, 2018,8(10):198.
[26] ZHAO G, SIEBERT S, ENDERS A, REZAEI E E, YAN C Q, EWERT F. Demand for multi-scale weather data for regional crop modeling. Agricultural and Forest Meteorology, 2015,200:156-171.
doi: 10.1016/j.agrformet.2014.09.026
[27] XIAO D P, TAO F L. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. European Journal of Agronomy, 2014,52:112-122.
doi: 10.1016/j.eja.2013.09.020
[28] LIU L L, WANG E L, ZHU Y, TANG L, CAO W X. Effects of warming and autonomous breeding on the phenological development and grain yield of double-rice systems in China. Agriculture, Ecosystems and Environment, 2013,165:28-38.
doi: 10.1016/j.agee.2012.11.009
[29] FOLBERTH C, SKALSKY R, MOLTCHANOVA E, BALKOVIC J, AZEVEDO L B, OBERSTEINER M, VAN DER VELDE M. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nature Communications, 2016,7:11872.
pmid: 27323866
[30] CAO W X, MOSS D N. Modelling phasic development in wheat: A conceptual integration of physiological components. The Journal of Agricultural Science, 1997,129:163-172.
doi: 10.1017/S0021859697004668
[31] CAO W X, MOSS D N. Vernalization and phyllochron in winter wheat. Agronomy Journal, 1991,83:178-179.
doi: 10.2134/agronj1991.00021962008300010042x
[32] 严美春, 曹卫星, 罗卫红, 李存东. 小麦茎顶端原基发育模拟模型的研究. 作物学报, 2001,27(3):356-362.
YAN M C, CAO W X, LUO W H, LI C D. A simulation model of shoot apex primordium development in wheat. Acta Agronomica Sinica, 2001,27(3):356-362. (in Chinese)
[33] TANG L, ZHU Y, HANNAWAY D, MENG Y L, LIU L L, CHEN L, CAO W X. RiceGrow: A rice growth and productivity model. NJAS- Wageningen Journal of Life Sciences, 2009,57:83-92.
doi: 10.1016/j.njas.2009.12.003
[34] CAO W X, LIU T M, LUO W H, WANG S H, PAN J, GUO W S. Simulating organ growth in wheat based on the organ-weight fraction concept. Plant Production Science, 2002,5(3):248-256.
doi: 10.1626/pps.5.248
[35] 刘铁梅, 曹卫星, 罗卫红, 潘洁, 严美春. 小麦茎蘖动态模拟模型的研究. 华中农业大学学报. 2001,20(5):416-421.
LIU T M, CAO W X, LUO W H, PAN J, YAN M C. Simulation on wheat tillering dynamic. Journal of Huazhong Agricultural University, 2001,20(5):416-421. (in Chinese)
[36] PAN J, ZHU Y, JIANG D, DAI T B, LI Y X, CAO W X. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat. Field Crops Research, 2006,97(2):322-336.
doi: 10.1016/j.fcr.2005.11.006
[37] 陈洁, 汤亮, 刘小军, 曹卫星, 朱艳. 水稻植株氮素吸收与籽粒蛋白质积累模型. 中国农业科学, 2011,44(10):1997-2004.
doi: 10.3864/j.issn.0578-1752.2011.10.004
CHEN J, TANG L, LIU X J, CAO W X, ZHU Y. Modeling plant nitrogen uptake and grain protein accumulation in rice. Scientia Agricultura Sinica, 2011,44(10):1997-2004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.10.004
[38] PAN J, ZHU Y, CAO W X. Modeling plant carbon flow and grain starch accumulation in wheat. Field Crops Research, 2007,101(3):276-284.
doi: 10.1016/j.fcr.2006.12.005
[39] 陈洁, 汤亮, 刘小军, 曹卫星, 朱艳. 基于植株碳流的水稻籽粒淀粉积累模拟模型. 植物生态学报, 2011,35(4):431-440.
doi: 10.3724/SP.J.1258.2011.00431
CHEN J, TANG L, LIU X J, CAO W X, ZHU Y. Modeling rice grain starch accumulation based on plant carbon flow. Chinese Journal of Plant Ecology, 2011,35(4):431-440. (in Chinese)
doi: 10.3724/SP.J.1258.2011.00431
[40] SHI P H, TANG L, LIN C B, LIU L L, WANG H H, CAO W X, ZHU Y. Modeling the effects of post-anthesis heat stress on rice phenology. Field Crops Research, 2015,177:26-36.
doi: 10.1016/j.fcr.2015.02.023
[41] SHI P H, ZHU Y, TANG L, CHEN J L, SUN T, CAO W X, TIAN Y C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environmental and Experimental Botany, 2016,132:28-41.
doi: 10.1016/j.envexpbot.2016.08.006
[42] LIU B, ASSENG S, WANG A N, WANG S H, TANG L, CAO W X, ZHU Y, LIU L L. Modelling the effects of post-heading heat stress on biomass growth of winter wheat. Agricultural and Forest Meteorology, 2017,247:476-490.
doi: 10.1016/j.agrformet.2017.08.018
[43] JI H T, XIAO L J, XIA Y M, SONG H, LIU B, TANG L, CAO W X, ZHU Y, LIU L L. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology, 2017,243:33-42.
doi: 10.1016/j.agrformet.2017.04.016
[44] SUN T, HASEGAWA T, TANG L, WANG W, ZHOU J J, LIU L L, Liu B, CAO W X, ZHU Y. Stage-dependent temperature sensitivity function predicts seed-setting rates under short-term extreme heat stress in rice. Agricultural and Forest Meteorology, 2018,256:196-206.
[45] 肖浏骏. 拔节孕穗期低温胁迫对冬小麦生长发育及产量形成影响的模拟研究[D]. 南京: 南京农业大学, 2019.
XIAO L J. Modelling the effects of low temperature stress at elongation and booting stage on growth and yield formation in wheat[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[46] CAO W X, MOSS D N. Temperature and daylength interaction on phyllochron in wheat and barley. Crop Science, 1989,29:1046-1048.
doi: 10.2135/cropsci1989.0011183X002900040045x
[47] CAO W X, MOSS D N. Temperature effect on leaf emergence and phyllochron in wheat and barley. Crop Science, 1989,29:1018-1021.
doi: 10.2135/cropsci1989.0011183X002900040038x
[48] CAO W X, MOSS D N. Daylength effect on leaf emergence and phyllochron in wheat and barley. Crop Science, 1989,29:1021-1025.
doi: 10.2135/cropsci1989.0011183X002900040039x
[49] 庄恒扬. 作物-土壤系统氮磷钾养分的动态模拟与管理决策[D]. 南京: 南京农业大学, 2001.
ZHUANG H Y. Study on dynamic simulation and decision support on nitrogen, phosphorus, potassium in crop-soil system[D]. Nanjing: Nanjing Agricultural University, 2001. (in Chinese)
[50] ATA-UI-KARIM S T, YAO X, LIU X J, CAO W X, ZHU Y. Development of critical nitrogen dilution curve of japonica rice in Yangtze River Reaches. Field Crops Research, 2013,149:149-158.
doi: 10.1016/j.fcr.2013.03.012
[51] YAO X, ZHAO B, TIAN Y C, LIU X J, NI J, CAO W X, ZHU Y. Using leaf dry matter to quantify the critical nitrogen dilution curve for winter wheat cultivated in eastern China. Field Crops Research, 2014,159:33-42.
doi: 10.1016/j.fcr.2013.12.007
[52] TANG L, CHANG R J, BASSO B, LI T, ZHEN F X, LIU L L, CAO W X, ZHU Y. Improving the estimation and partitioning of plant nitrogen in the RiceGrow model. The Journal of Agricultural Science, 2018,156:959-970.
doi: 10.1017/S0021859618001004
[53] HU J C, CAO W X, ZHANG J B, JIANG D, FENG J. Quantifying responses of winter wheat physiological processes to soil water stress for use in growth simulation modeling. Pedosphere, 2004,14:509-518.
[54] LIU B, ASSENG S, LIU L L, TANG L, CAO W X, ZHU Y. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology, 2016,22:1890-1903.
doi: 10.1111/gcb.13212
[55] LIU L L, WALLACH D, LI J, LIU B, ZHANG L X, TANG L, ZHANG Y, QIU X L, CAO W X, ZHU Y. Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming. European Journal of Agronomy, 2018,94:46-53.
doi: 10.1016/j.eja.2017.12.001
[56] LIU B, MARTRE P, EWERT F, PORTER J R, CHALLINOR A J, MUELLER C, RUANE A C, WAHA K, THORBURN P J, AGGARWAL P K, AHMED M, BALKOVIC J, BASSO B, BIERNATH C, BINDI M, CAMMARANO D, DE SANCTIS G, DUMONT B, ESPADAFOR M, REZAEI E E, FERRISE R, GARCIA-VILA M, GAYLER S, GAO Y J, HORAN H, HOOGENBOOM G, IZAURRALDE R C, JONES C D, KASSIE B T, KERSEBAUM K C, KLEIN C, KOEHLER A K, MAIORANO A, MINOLI S, SAN MARTIN M M, KUMAR S N, NENDEL C, O'LEARY G J, PALOSUO T, PRIESACK E, RIPOCHE D, ROTTER R P, SEMENOV M A, STOCKLE C, STRECK T, SUPIT I, TAO F L, VAN DER VELDE M, WALLACH D, WANG E L, WEBBER H, WOLF J, XIAO L J, ZHANG Z, ZHAO Z G, ZHU Y, ASSENG S. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Global Change Biology, 2019,25(4):1428-1444.
doi: 10.1111/gcb.2019.25.issue-4
[57] 徐其军, 汤亮, 顾东祥, 姜海燕, 曹卫星, 朱艳. 基于形态参数的水稻根系三维建模及可视化. 农业工程学报, 2010,26(10):188-194.
XU Q J, TANG L, GU D X, JIANG H Y, CAO W X, ZHU Y. Architectural parameter-based three dimensional modeling and visualization of rice roots. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(10):188-194. (in Chinese)
[58] 谈峰, 汤亮, 胡军成, 姜海燕, 曹卫星, 朱艳. 小麦根系三维形态建模及可视化. 应用生态学报, 2011,22(1):137-143.
pmid: 21548300
TAN F, TANG L, HU J C, JIANG H Y, CAO W X, ZHU Y. Three-dimensional morphological modeling and visualization of wheat root system. Chinese Journal of Applied Ecology, 2011,22(1):137-143. (in Chinese)
pmid: 21548300
[59] 张文宇, 汤亮, 朱相成, 杨月, 曹卫星, 朱艳. 基于过程的小麦茎鞘夹角动态模拟. 应用生态学报, 2011,22(7):1765-1770.
pmid: 22007453
ZHANG W Y, TANG L, ZHU X C, YANG Y, CAO W X, ZHU Y. Dynamic simulation of wheat stem sheath angle based on process. Chinese Journal of Applied Ecology, 2011,22(7):1765-1770. (in Chinese)
pmid: 22007453
[60] 张永会, 汤亮, 刘小军, 曹卫星, 朱艳. 不同品种和氮素条件下水稻茎鞘夹角动态模拟. 中国农业科学, 2012,45(21):4361-4368.
doi: 10.3864/j.issn.0578-1752.2012.21.004
ZHANG Y H, TANG L, LIU X J, CAO W X, ZHU Y. Dynamic simulation of stem and sheath in rice under different varieties and nitrogen conditions. Scientia Agricultura Sinica, 2012,45(21):4361-4368. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.21.004
[61] ZHU Y, CHANG L Y, TANG L, JIANG H, ZHANG W Y, CAO W X. Modelling leaf shape dynamics in rice. NJAS-Wageningen Journal of Life Sciences, 2009,57(1):73-81.
doi: 10.1016/j.njas.2009.11.001
[62] 常丽英, 张文宇, 张玉屏, 顾东祥, 姚鑫锋, 朱艳, 曹卫星. 水稻叶色变化动态的模拟模型研究. 作物学报, 2007,33(7):1108-1115.
CHANG L Y, ZHANG W Y, ZHANG Y P, GU D X, YAO X F, ZHU Y, CAO W X. A simulation model on leaf color dynamic changes in rice. Acta Agronomica Sinica, 2007,33(7):1108-1115. (in Chinese)
[63] ZHANG Y H, TANG L, LIU X J, LIU L L, CAO W X, ZHU Y. Modeling curve dynamics and spatial geometry characteristics of rice leaves. Journal of Integrative Agriculture, 2017,16(10):2177-2190.
doi: 10.1016/S2095-3119(16)61597-6
[64] ZHANG Y H, TANG L, LIU X J, LIU L L, CAO W X, ZHU Y. Modeling the leaf angle dynamics in rice plant. PLoS ONE, 2017,12(2):e0171890.
doi: 10.1371/journal.pone.0171890 pmid: 28207799
[65] 雷晓俊, 汤亮, 张永会, 姜海燕, 曹卫星, 朱艳. 小麦麦穗几何模型构建与可视化. 农业工程学报, 2011,27(3):179-184.
LEI X J, TANG L, ZHANG Y H, JIANG H Y, CAO W X, ZHU Y. Geometric model and visualization of wheat spike. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(3):179-184. (in Chinese)
[66] ZHANG Y H, TANG L, LIU X J, LIU L L, CAO W X, ZHU Y. Modeling morphological dynamics and color characteristics of rice panicle. European Journal of Agronomy, 2014,52:279-290.
doi: 10.1016/j.eja.2013.08.008
[67] 伍艳莲, 曹卫星, 汤亮, 朱艳, 刘慧. 基于OpenGL的小麦形态可视化技术. 农业工程学报, 2009,25(1):121-126.
WU Y L, CAO W X, TANG L, ZHU Y, LIU H. Open GL-based visual technology for wheat morphology. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(1):121-126. (in Chinese)
[68] TANG L, SONG W G, HOU T C, LIU L L, CAO W X, ZHU Y. Collision detection of virtual plant based on bounding volume hierarchy: A case study on virtual wheat. Journal of Integrative Agriculture, 2018,17(2):306-314.
doi: 10.1016/S2095-3119(17)61769-6
[69] 汤亮, 雷晓俊, 刘小军, 孙传范, 曹卫星, 朱艳. 小麦群体生长状态实时绘制技术及实现. 农业工程学报, 2011,27(9):128-135.
TANG L, LEI X J, LIU X J, SUN C F, CAO W X, ZHU Y. Real-time rendering of wheat population growth status and its realization. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(9):128-135. (in Chinese)
[70] 刘慧, 汤亮, 张文宇, 伍艳莲, 曹卫星, 朱艳. 基于模型的可视化水稻生长系统的构建与实现. 农业工程学报, 2009,25(9):148-154.
LIU H, TANG L, ZHANG W Y, WU Y L, CAO W X, ZHU Y. Construction and implementation of model-based visual rice growth system. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(9):148-154. (in Chinese)
[71] LIU L L, ZHU Y, LIU X J, CAO W X, XU M, WANG X K, WANG E L. Spatiotemporal changes in soil nutrients: A case study in Taihu region of China. Journal of Integrative Agriculture, 2014,13(1):187-194.
doi: 10.1016/S2095-3119(13)60528-6
[72] LV Z F, LIU X J, TANG L, LIU L L, CAO W X, ZHU Y. Estimation of ecotype-specific cultivar parameters in a wheat phenology model and uncertainty analysis. Agricultural and Forest Meteorology, 2016,221:219-229.
doi: 10.1016/j.agrformet.2016.02.016
[73] SHI P H, TANG L, WANG L H, SUN T, LIU L L, CAO W X, ZHU Y. Post-heading heat stress in rice of south China during 1981-2010. PLoS ONE, 2015,10(6):e0130642.
pmid: 26110263
[74] LIU B, LIU L L, TIAN L Y, CAO W X, ZHU Y, ASSENG S. Post-heading heat stress and yield impact in winter wheat of China. Global Change Biology, 2014,20(2):372-381.
doi: 10.1111/gcb.12442 pmid: 24259291
[75] 姜晓剑, 汤亮, 刘小军, 黄芬, 曹卫星, 朱艳. 中国主要稻作区水稻生产气候资源的时空特征. 农业工程学报, 2011,27(7):238-245.
JIANG X J, TANG L, LIU X J, HUANG F, CAO W X, ZHU Y. Spatial and temporal characteristics of rice production climatic resources in main growing regions of China. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(7):238-245. (in Chinese)
[76] 石晓燕, 汤亮, 刘小军, 曹卫星, 朱艳. 基于模型和GIS的小麦空间生产力预测研究. 中国农业科学, 2009,42(11):3828-3835.
SHI X Y, TANG L, LIU X J, CAO W X, ZHU Y. Predicting spatial productivity in wheat based on model and GIS. Scientia Agricultura Sinica, 2009,42(11):3828-3835. (in Chinese)
[77] LV Z F, LIU X J, CAO W X, ZHU Y. Climate change impacts on regional winter wheat production in main wheat production regions of China. Agricultural and Forest Meteorology, 2013,171/172:234-248.
doi: 10.1016/j.agrformet.2012.12.008
[78] LV Z F, LIU X J, CAO W X, ZHU Y. A model-based estimate of regional wheat yield gaps and water use efficiency in main winter wheat production regions of China. Scientific Reports, 2017,7(1):6081.
doi: 10.1038/s41598-017-06312-x pmid: 28729701
[79] LIU L L, WANG E L, ZHU Y, TANG L. Contrasting effects of warming and autonomous breeding on single-rice productivity in China. Agriculture, Ecosystems & Environment, 2012,149:20-29.
[80] 吕尊富, 刘小军, 汤亮, 刘蕾蕾, 曹卫星, 朱艳. 区域气候模型数据修订方法及其在作物模拟中的应用. 中国农业科学, 2013,46(16):3334-3343.
doi: 10.3864/j.issn.0578-1752.2013.16.004
LÜ Z F, LIU X J, TANG L, LIU L L, CAO W X, ZHU Y. A method for correcting the meteorological data from regional climate model and its application in crop simulation. Scientia Agricultura Sinica, 2013,46(16):3334-3343. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.16.004
[81] LIU B, ASSENG S, MUELLER C, EWERT F, ELLIOTT J, LOBELL D B, MARTRE P, RUANE A C, WALLACH D, JONES J, ROSENZWEIG C, AGGARWAL P K, ALDERMAN P D, ANOTHAI J, BASSO B, BIERNATH C, CAMMARANO D, CHALLINOR A, DERYNG D, DE SANCTIS G, DOLTRA J, FERERES E, FOLBERTH C, GARCIA-VILA M, GAYLER S, HOOGENBOOM G, HUNT L A, IZAURRALDE R C, JABLOUN M, JONES C D, KERSEBAUM K C, KIMBALL B A, KOEHLER A K, KUMAR S N, NENDEL C, O'LEARY G J, OLESEN J E, OTTMAN M J, PALOSUO T, PRASAD P V V, PRIESACK E, PUGH T A M, REYNOLDS M, REZAEI E E, ROTTER R P, SCHMID E, SEMENOV M A, SHCHERBAK I, STEHFEST E, STOCKLE C O, STRATONOVITCH P, STRECK T, SUPIT I, TAO F L, THORBURN P, WAHA K, WALL G W, WANG E L, WHITE J W, WOLF J, ZHAO Z G, ZHU Y. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016,6(12):1130-1136.
doi: 10.1038/nclimate3115
[82] JIN X L, KUMAR L, LI Z H, FENG H K, XU X G, YANG G J, WANG J H. A review of data assimilation of remote sensing and crop models. European Journal of Agronomy, 2018,92:141-152.
doi: 10.1016/j.eja.2017.11.002
[83] HUANG Y, ZHU Y, LI W L, CAO W X, TIAN Y C. Assimilating remotely sensed information with the WheatGrow model based on the ensemble square root filter for improving regional wheat yield forecasts. Plant Production Science, 2013,16(4):352-364.
[84] WANG H, ZHU Y, LI W L, CAO W X, TIAN Y C. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment. Journal of Applied Remote Sensing, 2014,8(1):83674.
doi: 10.1117/1.JRS.8.083674
[85] GUO C L, TANG Y N, LU J, ZHU Y, CAO W X, CHENG T, ZHANG L, TIAN Y C. Predicting wheat productivity: Integrating time series of vegetation indices into crop modeling via sequential assimilation. Agricultural and Forest Meteorology, 2019,272:69-80.
[86] ZHANG L, GUO C L, ZHAO L Y, ZHU Y, CAO W X, TIAN Y C, CHENG T, WANG X. Estimating wheat yield by integrating the WheatGrow and PROSAIL models. Field Crops Research, 2016,192:55-66.
doi: 10.1016/j.fcr.2016.04.014
[87] 刘一江. 中国水稻主产区层次产量差、组分贡献率及增温效应的模拟研究[D]. 南京: 南京农业大学, 2019.
LIU Y J. Model-based estimates of yield gaps, component contributions and effects of warming across the main rice-growing regions of China[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[88] 戴进强. 基于模型的中国水稻生产力供需平衡与安全保障研究[D]. 南京: 南京农业大学, 2018.
DAI J Q. Research on the balance and security of Chinese rice productivity based on model[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[89] LIU L L, ZHU Y, TANG L, CAO W X, WANG E. Impacts of climate changes, soil nutrients, variety types and management practices on rice yield in East China: A case study in the Taihu region. Field Crops Research, 2013,149:40-48
doi: 10.1016/j.fcr.2013.04.022
王莉欢. 基于作物生长模型的水稻适宜播期模拟研究[D]. 南京: 南京农业大学, 2017.
doi: 10.1016/j.fcr.2013.04.022
90 WANG L H. Determining optimum sowing date of rice using multiple crop models[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[91] ZHANG W Y, TANG L, YANG X, LIU L L, CAO W X, ZHU Y. A simulation model for predicting canopy structure and light distribution in wheat. European Journal of Agronomy, 2015,67:1-11.
doi: 10.1016/j.eja.2015.02.010
[92] LIU Y J, TANG L, QIU X L, LIU B, CHANG X N, LIU L L, ZHANG X H, CAO W X, ZHU Y. Impacts of 1.5 and 2.0℃ global warming on rice production across China. Agricultural and Forest Meteorology, 2020,284:107900.
doi: 10.1016/j.agrformet.2020.107900
[93] 姜海燕, 茅金辉, 胥晓明, 傅兵, 曹卫星, 朱艳. 基于面向服务架构和WebGIS的小麦生产管理支持系统. 农业工程学报, 2012,28(8):159-166.
JIANG H Y, MAO J H, XU X M, FU B, CAO W X, ZHU Y. Support system for wheat production management based on service-oriented architecture and Web GIS. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(8):159-166. (in Chinese)
[94] 曹卫星, 潘洁, 朱艳, 刘晓军. 基于生长模型与WEB应用的小麦管理决策支持系统. 农业工程学报, 2007,23(1):133-138.
CAO W X, PAN J, ZHU Y, LIU X J. Growth model and Web application-based decision support system for wheat management. Transactions of the Chinese Society of Agricultural Engineering, 2007,23(1):133-138. (in Chinese)
[95] GRASSINI P, VAN BUSSEL L G J, VAN WART J, WOLF J, CLAESSENS L, YANG H S, BOOGAARD H, DE GROOT H, VAN ITTERSUM M K, CASSMAN K G. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research, 2015,177:49-63.
doi: 10.1016/j.fcr.2015.03.004
[96] WANG H S, VICENTE-SERRANO S M, TAO F L, ZHANG X D, WANG P X, ZHANG C, CHEN Y Y, ZHU D H, KENAWY A. Monitoring winter wheat drought threat in Northern China using multiple climate-based drought indices and soil moisture during 2000-2013. Agricultural and Forest Meteorology, 2016,228:1-12.
[97] WANG E L, BROWN H E, REBETZKE G J, ZHAO Z G, ZHENG B Y, CHAPMAN S C. Improving process-based crop models to better capture genotype×environment×management interactions. Journal of Experimental Botany, 2019,70(9):2389-2401.
doi: 10.1093/jxb/erz092 pmid: 30921457
[98] YIN X Y, VAN DER LINDEN C G, STRUIK P C. Bringing genetics and biochemistry to crop modelling, and vice versa. European Journal of Agronomy, 2018,100:132-140.
doi: 10.1016/j.eja.2018.02.005
[99] FENG P Y, WANG B, LIU L D, WATERS C, YU Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agricultural and Forest Meteorology, 2019,275:100-113.
doi: 10.1016/j.agrformet.2019.05.018
[100] JIN Z N, AZZARI G, YOU C, DI TOMMASO S, ASTON S, BURKE M, LOBELL D B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sensing of Environment, 2019,228:115-128.
doi: 10.1016/j.rse.2019.04.016
[101] 庄嘉祥, 姜海燕, 刘蕾蕾, 王芳芳, 汤亮, 朱艳, 曹卫星. 基于个体优势遗传算法的水稻物候期模型参数优化. 中国农业科学, 2013,46(11):2220-2231.
doi: 10.3864/j.issn.0578-1752.2013.11.005
ZHUANG J X, JIANG H Y, LIU L L, WANG F F, TANG L, ZHU Y, CAO W X. Parameters optimization of rice development stages model based on individual advantages genetic algorithm. Scientia Agricultura Sinica, 2013,46(11):2220-2231. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.11.005
[102] MAIORANO A, MARTRE P, ASSENG , S , EWERT F, MULLER C, ROTTER R P, RUANE A C, SEMENOV M A, WALLACH D, WANG E L, ALDERMAN P D, KASSIE B T, BIERNATH C, BASSO B, CAMMARAN D, CHALLINOR A J, DOLTRA J, DUMONT B, REZAEI E E, GAYLER S, KERSEBAUM K C, KIMBALL B A, KOEHLER A K, LIU B, O'LEARY G J, OLESEN J E, OTTMAN M J, PRIESACK E, REYNOLDS M, STRATONOVITCH P, STRECK T, THORBURN P J, WAHA K, WALL G W, WHITE J W, ZHAO Z G, ZHU Y. Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 2016,202:5-10.
doi: 10.1016/j.fcr.2016.05.001
[1] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[2] JIANG MingHong, LIU XinChao, TANG HuaJun, XIN XiaoPing, CHEN JiQuan, DONG Gang, WU RuQun, SHAO ChangLiang. Research Progress and Prospect of Life Cycle Assessment in Animal Husbandry [J]. Scientia Agricultura Sinica, 2019, 52(9): 1635-1645.
[3] XIAO Jian-Hua, HU Yu-Long, FAN Fu-Xiang, MA Hai-Kun, WANG Hong-Bin. Contruction of a Decision Support System for Dairy Cattle Breeding [J]. Scientia Agricultura Sinica, 2012, 45(10): 2012-2021.
[4] CAO Wei-Xing, ZHU Yan, TIAN Yong-Chao, YAO Xia, TANG Liang, LIU Xiao-Jun, NI Jun. 作物精确栽培;栽培方案设计;生长指标诊断;生产力预测Development and Implementation of Crop Precision Cultivation Technology [J]. Scientia Agricultura Sinica, 2011, 44(19): 3955-3969.
[5] CAO Hong-Xin, ZHAO Suo-Lao, GE Dao-Kuo, LIU Yong-Xia, LIU Yan, SUN Jin-Ying, YUE Yan-Bin, ZHANG Zhi-You, CHEN Yu-Li. Discussion on Development of Crop Models [J]. Scientia Agricultura Sinica, 2011, 44(17): 3520-3528.
[6] ZHAO Chun-jiang,LU Sheng-lian,GUO Xin-yu,XIAO Bo-xiang,WEN Wei-liang
. Exploration of Digital Plant and Its Technology System
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030 .
[7] QIN Fu, WANG Dong-yang, LI Suo-ping, Lü Kai-yu. Analysis of Agricultural Policies and Decision Support System in China-Review and Expectation [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 2956-2961.
[8] ,,,,. Research Progress and Prospect of Digital Farming Techniques [J]. Scientia Agricultura Sinica, 2006, 39(02): 281-288 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!