Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 167-183.doi: 10.3864/j.issn.0578-1752.2022.01.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin

DU JinTing1,2(),ZHANG Yan1(),LI Yan2,WANG JiaJia1,LIAO Na1,ZHONG LiHuang1,LUO BiQun3,LIN Jiang3   

  1. 1Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610
    2College of Food Science, South China Agricultural University, Guangzhou 510640
    3Guangdong Xinghui Biological Technology Co., Ltd., Longchuan 517323, Guangdong
  • Received:2021-05-26 Accepted:2021-09-13 Online:2022-01-01 Published:2022-01-07
  • Contact: Yan ZHANG E-mail:3046023329@qq.com;zhang__yan_@126.com

Abstract:

【Objective】 Tea saponin is a naturally active substance with wide application prospective, and its purity is the key factor limiting its application and value. In this study, the optimal conditions for ultrasonic-assisted two-phase extraction (UAATPE) of tea saponin from camellia meal were explored, and the possible extraction mechanism was discussed in order to develop an efficient, high-purity extraction technology, so as to provide a technical guidance for high-value utilization of camellia meal. 【Method】 On the basis of the single factor experimental results, the key factors affecting the yield of tea saponin were screened by Plackett Burman design, and the extraction process was optimized by Box-Behnken design. The extraction efficiency of tea saponin using the UAATPE method was evaluated by comparing the extraction yield and purity to the traditional ethanol extraction method and water extraction method. Scanning electron microscopy (SEM) was employed to analyze the microstructure of camellia meal, and the possible mechanism of extraction by the UAATPE method was discussed. 【Result】 The key factors affecting the yield of tea saponin were mass fraction of ethanol, mass fraction of ammonium sulfate, and ultrasonic time. The process parameters optimized by Box-Behnken design were as follows: an ethanol content of 27.50% (W/W), an ammonium sulfate content of 19.60% (W/W), a liquid-solid ratio of 50﹕1, an ultrasonic time of 32 min, an ultrasonic power of 300 W and an extraction temperature of 60℃, and the yield of tea saponin at (26.21±0.54)% was achieved under the optimized conditions. Compared with the traditional method of ethanol extraction, the purity of tea saponin extracted by the UAATPE method increased by 6.57% (P<0.05), although the difference of the yield of tea saponin extracted by these two methods was not significant. Compared with the traditional method of water extraction, the yield and purity of tea saponin extracted using the UAATPE method were increased by 17.74% and 40.23%, respectively (P<0.01). The microstructure showed that owing to the effect of the camellia meal treated by the UAATPE method, the ultrasonic cavitation accelerated the tissue damage of the camellia meal, producing a large number of voids and strong surface shrinkage, which effectively promoted the release of tea saponin in the camellia meal. In the process of the UAATPE extraction, the tea saponin first entered the bottom phase with high electrical conductivity through solid-liquid extraction in the two-phase water system, and then moved to the top phase with high polarity through liquid-liquid extraction, achieving primary purification and improving the purity of tea saponin. 【Conclusion】 The UAATPE method could significantly improve the yield and purity of tea saponin, thus providing a new novel method for the efficient utilization of camellia meal.

Key words: camellia meal, tea saponin, ultrasound, aqueous two-phase extraction, Plackett-Burman, response surface design

Table 1

Gradient elution condition"

流动相
Mobile phase
时间 Time (min)
0 25 35 40 45
A:甲醇 A: Methanol 10 60 62 70 72
B:0.4%乙酸溶液
B: 0.4% acetic acid solution
90 40 38 30 28

Fig. 1

HPLC chromatograms of reference substance (A) and test sample (B)"

Table 2

Plackett-Burman design factors and levels"

水平Level A
乙醇质量分数
Concentration of ethanol (%)
B
硫酸铵质量分数
Concentration of ammonium sulphate (%)
C
液固比
Solvent-to-material ratio
D
提取温度
Extraction
temperature (℃)
E
功率
Ultrasonic power
(W)
F
超声时间
Ultrasonic time
(min)
-1 26 18 40﹕1 50 250 20
+1 30 22 60﹕1 70 350 40

Table 3

Box-Behnken design factors and levels"

因素
Factor
水平 Level
-1 0 +1
乙醇质量分数 Concentration of ethanol (x1, %) 26 28 30
硫酸铵质量分数
Concentration of ammonium sulphate (x2, %)
18 20 22
超声时间 Ultrasonic time (x3, min) 20 30 40

Fig. 2

Phase diagrams of ethanol/ammonium sulphate and ethanol/dipotassium phosphate systems"

Fig. 3

Partition coefficient (K), recovery(R) and comparison (α) of tea saponin in ethanol/ammonium sulphate and ethanol/dipotassium phosphate systems"

Fig. 4

The distribution of phase ratio of ethanol/ammonium sulphate"

Fig. 5

The effect of ethanol concentration on the tea saponin extraction yield Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 6

The effect of ammonium sulphate concentration on the tea saponin extraction yield"

Fig. 7

The effect of solvent-to-material on the tea saponin extraction yield"

Fig. 8

The effect of ultrasonic power on the tea saponin extraction yield"

Fig. 9

The effect of ultrasonic time on the tea saponin extraction yield"

Fig. 10

The effect of extraction temperature on the tea saponin extraction yield"

Table 4

Experimental design and result of Plackett-Burman"

试验顺序 Test no. A B C D E F 茶皂素得率 Tea saponin yield (%)
1 +1 -1 +1 +1 +1 -1 22.58
2 -1 -1 -1 -1 -1 -1 22.88
3 +1 +1 -1 +1 +1 +1 18.97
4 -1 +1 +1 +1 -1 -1 22.10
5 +1 +1 +1 -1 -1 -1 19.74
6 -1 +1 +1 -1 +1 +1 19.51
7 -1 -1 +1 -1 +1 +1 22.76
8 -1 +1 -1 +1 +1 -1 22.54
9 +1 -1 -1 -1 +1 -1 21.34
10 -1 -1 -1 +1 -1 +1 21.26
11 +1 +1 -1 -1 -1 +1 18.57
12 +1 -1 +1 +1 -1 +1 19.98

Table 5

Analysis of variance table for the Plackett-Burman design experiment"

方差来源
Sources of variation
平方和
Quadratic sum
自由度
DOF
均方
Mean square
F
F value
P
P value
模型 Model 25.50 6 4.25 9.40 0.0132
乙醇质量分数 Concentration of ethanol 8.12 1 8.12 17.96 0.0082
硫酸铵质量分数 Concentration of ammonium sulphate 7.32 1 7.32 16.18 0.0101
液固比 Solvent-to-material ratio 0.10 1 0.10 0.23 0.6538
提取温度 Temperature 0.58 1 0.58 1.28 0.3101
功率 Ultrasonic power 0.84 1 0.84 1.85 0.2316
超声时间 Ultrasonic time 8.55 1 8.55 18.92 0.0074
残差 Residual 2.26 5 0.45
总差 Total 27.76 11
R2 0.9186 R2Adj 0.8209 R2Pred 0.5310

Table 6

Experimental design and results of response surface analysis"

标准顺序
Standard
试验顺序
Test no.
乙醇质量分数
Concentration of ethanol x1
盐质量分数
Concentration of ammonium sulphate x2
超声时间
Ultrasonic time x3
茶皂素得率
Tea saponin yield (%)
11 1 30 20 20 24.04
15 2 28 22 20 23.20
13 3 28 20 30 26.85
14 4 28 20 30 26.35
5 5 28 20 30 26.75
6 6 28 20 30 26.12
10 7 28 20 30 26.83
3 8 28 22 40 24.01
9 9 26 18 30 25.41
2 10 30 18 30 21.64
12 11 28 18 20 23.95
7 12 26 20 20 23.86
8 13 26 20 40 25.33
17 14 30 22 30 23.41
4 15 26 22 30 21.65
16 16 30 20 40 23.46
1 17 28 18 40 24.29

Table 7

Regression model variance analysis"

参数
Parameter
平方和
Quadratic sum
自由度
DOF
均方
Mean square
F
F value
P
P value
显著性
Significance
模型Model 44.46 9 4.94 61.17 <0.0001 **
x1 1.71 1 1.71 21.19 0.0025 **
x2 1.14 1 1.14 14.12 0.0071 **
x3 0.52 1 0.52 6.44 0.0388 *
x1x2 7.65 1 7.65 94.68 <0.0001 **
x1x3 1.05 1 1.05 13.01 0.0087 **
x2x3 0.055 1 0.055 0.68 0.4355
x12 11.07 1 11.07 137.05 <0.0001 **
x22 15.70 1 15.70 194.48 <0.0001 **
x32 2.60 1 2.60 32.23 0.0008 **
残差 Residual 0.57 7 0.081
失拟项 Lack of fit 0.14 3 0.045 0.42 0.7464
纯误差 Pure error 0.43 4 0.11
总和 Total 45.02 16

Fig. 11

Response surface plot showing the effects of ethanol concentration (x1), ammonium sulphate concentration (x2) and ultrasonic time (x3) on the yield of tea saponin"

Table 8

The results of tea saponin from Camellia meal by different methods"

方法
Method
溶剂
Solvent
提取条件 Extraction condition 得率
Yield
(%)
纯度
Purity
(%)
时间
Time (min)
温度
Temperature (℃)
液固比
Solvent-to-material
乙醇提取法
Ethanol extraction
80%乙醇 80% ethanol 60 80 10:1 27.02±0.37a 62.01±0.03b
水提法
Water extraction
H2O 60 80 10:1 22.26±0.99b 47.13±0.06c
超声波辅助双水相提取法
UAATPE
27.50%乙醇/19.60%硫酸铵
27.50% ethanol/19.60% ammonium sulphate
32 60 50:1 26.21±0.54a 66.09±0.04a

Fig. 12

The pictures of the herb by electron scanning microscopy a: Non-extracted; b: Ethanol-extraction; c: UAAEPE; d: Water-extraction"

Fig. 13

Schematic diagram of dynamic extraction process of tea saponin by UAATPE"

[1] ZHAO Y, SU R Q, ZHANG W T, YAO G L, CHEN J. Antibacterial activity of tea saponin from Camellia oleifera shell by novel extraction method. Industrial Crops and Products, 2020, 153: 112604.
doi: 10.1016/j.indcrop.2020.112604
[2] 杨友志, 赖琼玮, 谭传波, 骆金杰, 张帆, 周魁香, 吴丹, 周娟. 油茶籽粕综合利用研究进展. 粮食科技与经济, 2020, 45(11): 138-142.
YANG Y Z, LAI Q W, TAN C B, LUO J J, ZHANG F, ZHOU K X, WU D, ZHOU J. Research progress on comprehensive utilization of Camellia seed meal. Grain Science and Technology and Economy, 2020, 45(11): 138-142. (in Chinese)
[3] 高伟, 幸伟年, 龚春, 徐林初. 茶油的营养价值和开发前景. 江西林业科技, 2013(4): 52-55.
GAO W, XING W N, GONG C, XU L C. Nutritional value and development prospects of Camellia oil. Jiangxi Forestry Science and Technology, 2013(4): 52-55. (in Chinese)
[4] 马力. 茶油与橄榄油营养价值的比较. 粮食与食品工业, 2007, 14(6): 19-21.
MA L. Comparison of Camellia oil and olilve oil in nutritional value. Cereal & Food Industry, 2007, 14(6): 19-21. (in Chinese)
[5] JEEPIPALLI S P K, DU B, SABITALIYEVICH U Y, XU B J. New insights into potential nutritional effects of dietary saponins in protecting against the development of obesity. Food Chemistry, 2020, 318: 126474.
doi: 10.1016/j.foodchem.2020.126474
[6] WANG Y M, REN N, RANKIN G O, LI B, ROJANASAKUL Y, TU Y Y, CHEN Y C. Anti-proliferative effect and cell cycle arrest induced by saponins extracted from tea (Camellia sinensis) flower in human ovarian cancer cells. Journal of Functional Foods, 2017, 37: 310-321.
doi: 10.1016/j.jff.2017.08.001
[7] DEL HIERRO J N, HERRERA T, FORNARI T, REGLERO G, MARTIN D. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities. Journal of Functional Foods, 2018, 40: 484-497.
doi: 10.1016/j.jff.2017.11.032
[8] KHAN M I, AHHMED A, SHIN J H, BAEK J S, KIM M Y, KIM J D. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study in vitro and in vivo. Evidence Based Complementary and Alternative Medicine, 2018, 2018: 3486106.
[9] 干丽. 油茶饼粕中茶皂素苷元的制备与分析研究[D]. 长沙: 湖南中医药大学, 2015.
GAN L. Study on the preparation of tea saponin aglycone from tea cake[D]. Changsha: Hunan University of Chinese Medicine, 2015. (in Chinese)
[10] 李扬. 茶皂素提取及其洗涤产品的开发研究[D]. 广州: 华南农业大学, 2016.
LI Y. Study on the extraction of camellia saponin and its detergent products development[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese)
[11] 侯如燕. 茶皂素提取纯化及其抗菌活性研究[D]. 合肥: 安徽农业大学, 2002.
HOU R Y. Studies on teasaponins’ extraction and isolation and its antifungi actibities[D]. Hefei: Anhui Agricultural University, 2002. (in Chinese)
[12] 王佳佳, 李国琰, 张雁, 廖娜, 魏振承, 李巧玲. 油茶粕中茶皂素连续多级逆流水提工艺的建立. 食品科学技术学报, 2021, 39(1): 153-161.
WANG J J, LI G Y, ZHANG Y, LIAO N, WEI Z C, LI Q L. Establishment of continuous multi-stage countercurrent water extraction process of tea saponin from Camellia meal. Journal of Food Science and Technology, 2021, 39(1): 153-161. (in Chinese)
[13] 孙万里. 乙醇提取茶皂素的研究. 粮食与油脂, 2019, 32(3): 22-24.
SUN W L. Study on ethanol extraction tea saponin. Cereals & Oils, 2019, 32(3): 22-24. (in Chinese)
[14] 于辉, 陈海光, 吴波, 任文彬. 正丙醇提取茶皂素工艺. 食品科学, 2013, 34(2): 58-62.
YU H, CHEN H G, WU B, REN W B. Optimization of extraction process for tea saponin from Camellia oleifera seed meal with n-propanol. Food Science, 2013, 34(2): 58-62. (in Chinese)
[15] LIN Y Y, ZENG H Y, WANG K, LIN H, LI P F, HUANG Y X, ZHOU S Y, ZHANG W, CHEN C, FAN H J. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: Process optimization, structure characterization and antioxidant activity. International Journal of Biological Macromolecules, 2019, 136: 305-315.
doi: 10.1016/j.ijbiomac.2019.06.064
[16] ZHAO M M, BAI J W, BU X Y, TANG Y, HAN W Q, LI D L, WANG L B, YANG Y, XU Y Q. Microwave-assisted aqueous two-phase extraction of phenolic compounds from Ribes nigrum L. and its antibacterial effect on foodborne pathogens. Food Control, 2021, 119: 107449.
doi: 10.1016/j.foodcont.2020.107449
[17] 尹丽茸, 张建华, 宋光艳, 阿拉西·斯尔克米德克, 郭梦琦, 钟耀广. HPLC-TOF/MS测定茶籽粕中的茶皂素主要成分. 中国粮油学报, 2013, 28(12): 97-101.
YIN L R, ZHANG J H, SONG G Y, ARASI SILKMIDEC, GUO M Q, ZHONG Y G. Determination of main components of tea saponin in tea seed meal by HPLC-TOF / MS. Journal of the Chinese Cereals and Oils Association, 2013, 28(12): 97-101. (in Chinese)
[18] 易醒, 孟培, 侯海涛, 肖小年, 桂静芬, 刘唤. 二次通用旋转组合设计优化油茶枯中茶皂素的提取工艺. 中国食品学报, 2017, 17(9): 90-98.
YI X, MENG P, HOU H T, XIAO X N, GUI J F, LIU H. Optimization of technological conditions for saponin extraction from Camellia oleifera seed pomace by quadratic general spinning design. Journal of Chinese Institute of Food Science and Technology, 2017, 17(9): 90-98. (in Chinese)
[19] 张武君, 黄颖桢, 张玉灿. 超声提取苦瓜皂苷的工艺优化研究. 中国农学通报, 2015, 31(34): 273-277.
ZHANG W J, HUANG Y Z, ZHANG Y C. Optimization of ultrasonic extraction process for balsam pear saponin. Chinese Agricultural Science Bulletin, 2015, 31(34): 273-277. (in Chinese)
[20] ZHANG W, ZHU D, FAN H J, LIU X Q, WAN Q, WU X H, LIU P, TANG J Z. Simultaneous extraction and purification of alkaloids from Sophora flavescens Ait. by microwave-assisted aqueous two-phase extraction with ethanol/ammonia sulfate system. Separation and Purification Technology, 2015, 141: 113-123.
doi: 10.1016/j.seppur.2014.11.014
[21] ZHANG W, LIU X Q, FAN H J, ZHU D, WU X H, HUANG X W, JAMES T. Separation and purification of alkaloids from Sophora flavescens Ait.by focused microwave-assisted aqueous two-phase extraction coupled with reversed micellar extraction. Industrial Crops and Products, 2016(86): 231-238.
[22] ZHENG X Z, XU X W, LIU C H, SUN Y, LIN Z, LIU H J. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology, 2013, 104: 17-25.
doi: 10.1016/j.seppur.2012.11.011
[23] ARYANTI N, WARDHANI H D, WASI A, RAMADHAN G A, PURBASARI A. Extraction characteristics of anthocyanin from roselle (Hibiscus sabdariffa L.) calyces by ultrasound-assisted extraction. Advanced Science Letters, 2017, 23(6): 5626-5628.
doi: 10.1166/asl.2017.8785
[24] 郭杰, 陶蕾, 王吉鸿, 王瑞雪. 响应面试验优化超声波辅助双水相提取蕨麻多糖. 食品与发酵工业, 2021, 47(14): 151-159.
GUO J, TAO L, WANG J H, WANG R X. Optimization of ultrasonic-assisted aqueous two-phase extraction of polysaccharides from Potentilla anserina L. using response surface methodology. Food and Fermentation Industries, 2021, 47(14): 151-159. (in Chinese)
[25] 张喜峰, 杨春慧, 罗光宏. 乙醇/硫酸铵双水相体系分离纯化葡萄籽总黄酮. 食品与发酵工业, 2013, 39(10): 254-258.
ZHANG X F, YANG C H, LUO G H. Seperation and purification of total flabonids of grape seedswith ethanol/amonium sulphate aqueous two-phase system. Food and Fermentation Industries, 2013, 39(10): 254-258. (in Chinese)
[26] BENDAHOU A, DUFRESNE A, KADDAMI H, HABIBI Y. Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L. Carbohydrate Polymers, 2006, 68(3): 601-608.
doi: 10.1016/j.carbpol.2006.10.016
[27] 卢鹏飞, 高志强, 孙敏, 赵剑敏, 董石峰, 白雪, 尹璐, 侯非凡, 尹雪斌. 响应面法优化超声波辅助提取黑小麦花色苷的工艺研究. 食品研究与开发, 2020, 41(4): 69-76.
LU P F, GAO Z Q, SUN M, ZHAO J M, DONG S F, BAI X, YIN L, HOU F F, YIN X B. Optimization of ultrasonic assisted extraction of anthocyanins from black wheat by response surface methodology. Food Research and Development, 2020, 41(4): 69-76. (in Chinese)
[28] 薛宏坤, 刘成海, 刘钗, 徐浩, 秦庆雨, 沈柳杨, 郑先哲. 响应面法和遗传算法-神经网络模型优化微波萃取蓝莓中花青素工艺. 食品科学, 2018, 39(16): 280-288.
XUE H K, LIU C H, LIU C, XU H, QIN Q Y, SHEN L Y, ZHENG X Z. A comparative study of the optimization of microwave extraction of anthocyanins from blueberry by response surface methodology and genetic algorithm-artificial neural network. Food Science, 2018, 39(16): 280-288. (in Chinese)
[29] 郭树琴, 吴胜举, 牛春玲, 刘亚慧, 李岱. 超声提取绿茶茶多酚研究. 陕西师范大学学报(自然科学版), 2009, 37(1): 36-38.
GUO S Q, WU S J, NIU C L, LIU Y H, LI D. Study on extraction process of tea-polyphenols substance from green tee by ultrasound wave. Journal of Shaanxi Normal University (Natural Science Edition), 2009, 37(1): 36-38. (in Chinese)
[30] 谢雨婷, 李明智, 蒋海伟, 郑时莲, 邓泽元, 李红艳. 超声波辅助提取紫茄皮花色苷工艺及其稳定性研究. 食品工业, 2015, 36(11): 43-48.
XIE Y T, LI M Z, JIANG H W, ZHENG S L, DENG Z Y, LI H Y. Response surface methodology for optimization of ultrasonic-assisted extraction and the stability of anthocyanins from eggplant-peel. The Food Industry, 2015, 36(11): 43-48. (in Chinese)
[31] 张黎明, 徐玮. 超声波辅助薯蓣总皂苷苷键裂解工艺研究. 天然产物研究与开发, 2007, 19(2): 286-289.
ZHANG L M, XU W. Research on ultrasonic cracking glycoside bond of dioscin from Dioscorea nipponica makino. Natural Product Research and Development, 2007, 19(2): 286-289. (in Chinese)
[32] 于海鑫, 张秀玲, 高诗涵, 吴国美. 紫苏叶花色苷微波辅助提取工艺优化及其抗氧化活性. 食品工业, 2019(10): 51-55.
YU H X, ZHANG X L, GAO S H, WU G M. Optimization of microwave-assisted extraction of anthocyanin from peril a leaves and its antioxidant activity. The Food Industry, 2019(10): 51-55. (in Chinese)
[33] 张团结. 油茶籽粕中茶皂素提取及纯化工艺研究[D]. 南昌: 江西理工大学, 2016.
ZHANG T J. Study on extraction and purification technology of tea saponin from Camellia oleifera seed meal[D]. Nanchang: Jiangxi University of Science and Technology, 2016. (in Chinese)
[34] LI P C, XUE H K, XIAO M, TANG J T, YU H S, SU Y Q, CAI X. Ultrasonic-assisted aqueous two-phase extraction and properties of water-soluble polysaccharides from malus hupehensis. Molecules, 2021, 26(8): 2213.
doi: 10.3390/molecules26082213
[35] SHAKER H S, BAGHBANBASHI M, AHSAIE F G, PAZUKI G. Study of curcumin partitioning in polymer-salt aqueous two phase systems. Journal of Molecular Liquids, 2020, 303: 112629.
doi: 10.1016/j.molliq.2020.112629
[36] NG H S, KEE P E, YIM H S, TAN J S, CHOW Y H, LAN J C W. Characterization of alcohol/salt aqueous two-phase system for optimal separation of Gallic acids. Journal of Bioscience and Bioengineering, 2021, 131(5): 537-542.
doi: 10.1016/j.jbiosc.2021.01.004
[37] JIANG B, WANG L L, ZHU M H, WU S, WANG X J, LI D M, LIU C H, FENG Z B, TIAN B. Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT, 2021, 147: 111617.
doi: 10.1016/j.lwt.2021.111617
[38] 高晓燕. 几种天然产物的双水相体系萃取研究[D]. 徐州: 中国矿业大学, 2019.
GAO X Y. Study on extraction of several natural products by aqueous two-phase system[D]. Xuzhou: China University of Mining and Technology, 2019.
[39] JONG W Y L, SHOW P L, LING T C, TAN Y S. Recovery of lignin peroxidase from submerged liquid fermentation of amauroderma rugosum (Blume & T. Nees) torrend using polyethylene glycol/salt aqueous two-phase system. Journal of Bioscience and Bioengineering, 2017, 124(1): 91-98.
doi: 10.1016/j.jbiosc.2017.02.008
[40] 辜鹏. 无机盐/低分子有机物双水相体系的研究及其应用[D]. 湘潭: 湘潭大学, 2008.
GU P. Study on inorganic salt and low molecular weight organnics formed aqueous two-phase system and its applications[D]. Xiangtan: Xiangtan University, 2008. (in Chinese)
[41] 李洋. 微波-超声耦合双水相提取、树脂纯化茶多酚工艺研究[D]. 赣州: 江西理工大学, 2018.
LI Y. Extraction and purification of tea polyphenols by an aqueous two-phase system combined with microwave-ultrasoni[D]. Ganzhou: Jiangxi University of Science and Technology, 2018. (in Chinese)
[1] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[2] ZHANG QingAn,XU BoWen,CHEN BoYu,ZHANG BaoShan,CHENG Shuang. Changes of Wine Flavor Properties from the Decreased Higher Alcohols Induced by Ultrasound Irradiation [J]. Scientia Agricultura Sinica, 2021, 54(8): 1772-1786.
[3] GU MingHui,YANG ZeSha,MA Ping,GE XinYu,LIU YongFeng. Application of Ultrasound-Assisted Thawing in the Role of Maintaining Physicochemical Properties and Reducing Protein Loss in Mutton During Multiple Freeze-Thaw Cycles [J]. Scientia Agricultura Sinica, 2021, 54(18): 3970-3983.
[4] ZHAO Ying-Ying, ZOU Yu-Feng, WANG Peng, CHEN Lin, LI Ke, XU Xing-Lian. Effect of Pre-Emulsified Emulsion Treated with Ultrasound on Qualities of Low-Fat Frankfurter-Style Sausages [J]. Scientia Agricultura Sinica, 2014, 47(13): 2634-2642.
[5] LI Zhen, HA Yi-Ming, LI An, LI Wei-Ming, WANG Feng, LI Qing-Peng. Optimization of Ultrasound-Assisted Extraction Technology of Polyphenols from Apple Pomace by Response Surface Methodology [J]. Scientia Agricultura Sinica, 2013, 46(21): 4569-4577.
[6] WANG Hong-rong,CHEN Xu-wei,WANG Meng-zhi. Effect of Yucca schidigera Saponin and Tea Saponin Mixture on the Rumen Fermentation and Its Fibrolytic Bacterial Activity in the Rusitec Substrates with Different Concentrate to Forage Ratio [J]. Scientia Agricultura Sinica, 2011, 44(8): 1710-1719 .
[7] WU Xiao-xia,LI Jian-ke,ZHANG Yan-yu
. Ultrasound-Assisted Extraction and Antioxidation Stability of Silkworm Pupa Oil#br# [J]. Scientia Agricultura Sinica, 2010, 43(8): 1677-1687 .
[8] ,,. Optimization of Cultivation Conditions for Exopolysaccharide and Mycelial Biomass by Clitocybe sp. Using Box-Behnken Design [J]. Scientia Agricultura Sinica, 2005, 38(03): 634-638 .
[9] ,. Effect of Ultrasonic Treatment on the Extracting Activity of Kid Rennet [J]. Scientia Agricultura Sinica, 2004, 37(10): 1555-1559 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!