Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (2): 379-391.doi: 10.3864/j.issn.0578-1752.2021.02.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress

LIU Qiang(),LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao()   

  1. College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety/Jiangsu Key Laboratory of Quality Control and Further Processing of Cereals and Oil, Nanjing 210023
  • Received:2020-05-27 Accepted:2020-08-18 Online:2021-01-16 Published:2021-02-03
  • Contact: Chao DING E-mail:qiangliu@nufe.edu.cn;cding@nufe.edu.cn

Abstract:

【Objective】 Changes of flavor fingerprinting in brown rice during high temperature short-term storage were investigated to establish a novel non-destructive detection methods for quality prediction of brown rice.【Method】 The brown rice with moisture content of 17.0 % (wet basis) was stored for 0, 5, 10, 15, 20 and 25 days under 40℃ temperature with relative humidity of 70%. Brown rice flavor compounds were collected by using headspace solid phase extraction method and its fingerprinting characteristics determined via gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS). Dynamic principal component analysis (dPCA) model based on GC-IMS datasets was constructed.【Result】 Total of 42 volatile organic compounds were identified and quantitated based on GC-MS datasets. Aldehydes, alcohols and esters were the major compounds in flavor of fresh brown rice. After high temperature 15 days of storage, the contents of hexanal increased (P < 0.05) to (185.18±15.71) μg·kg-1 from initial contents of (81.09±0.53) μg·kg-1, and then sharply decreased to (12.89±0.72) μg·kg-1 aat 25 days of storage. Volatile organic compounds, including benzyl alcohol, 1-octene-3-ol and styrene, were successfully identified during storage stage. Based on GC-IMS analysis, ethyl acetate could be selected as the potential volatile markers to evaluate the freshness of brown rice. Good discriminated results were obtained for classifying different storage period of brown rice under via dPCA algorithm based on GC-IMS datasets. GC-IMS could better qualitatively analyze the volatile alcohols and ketones compounds than GC-MS. 【Conclusion】 GC-MS and GC-IMS detection method with dPCA discrimination analysis could obtain reliable flavor fingerprinting, achieve outstanding evaluation performance, and provide technical support for qualitative and quantitative monitoring the freshness of brown rice during high temperature storage.

Key words: brown rice, gas chromatography-mass spectrometry (GC-MS), gas phase ion migration spectrum (GC-IMS), volatile organic compounds, flavor fingerprint

Table 1

Varieties and contents of volatile organic compounds in brown rice during high temperature storage"

种类
Category
名称
Name
储藏时间 Storage time (d)
0 5 10 15 20 25
醛类 Aldehydes 正己醛 Hexanal 81.09±0.53b 71.28±1.84c 74.48±10.69bc 185.18±15.71a 59.67±9.07d 12.89±0.72e
苯甲醛 Benzaldehyde 136.92±28.06d 225.64±8.43b 176.47±5.96c 256.75±19.55a 126.52±17.77d 173.18±34.83cd
庚醛 Heptanal 18.14±0.28
反-2-辛烯醛 E-2-Octenal 21.82±0.86a 22.91±1.85a
反-2-十二烯醛 E-2-Dodecenal 15.34±2.13
醇类 Alcohols 己醇 Etnanol 115.10±20.88ab 109.93±3.36b 97.56±17.80ab 160.09±45.77a 121.80±19.14ab
苯甲醇 Benzyl Alcohol 63.06±3.20b 109.33±2.84a 44.75±11.25c 124.43±45.33a
1-辛烯-3-醇 1-Octen-3-ol 17.56±0.93c 125.97±20.45a 63.11±3.38b
正十三烷-1-醇 n-Tridecan-1-ol 1.99±0.19
酯类 Esters 丙位己内酯 4-Hexanolide 3.41±1.06
丙位壬内酯 γ-Nonanolactone 7.61±1.29
甲酸辛酯 Octyl Formate 17.58±0.78
酮类 Ketones 苯乙酮 Acetophenone 4.01±2.29
烃类 Hydrocarbons 十二烷 Dodecane 13.88±6.73c 19.22±1.22b 14.50±2.25c 24.09±7.28ab 24.43±1.50a 3.23±0.93d
葵环戊烷 Anemone 2.14±0.50b 5.42±0.19a
正十四烷 Tetradecane 7.90±1.25c 10.48±0.12b 14.75±3.56ab 9.38±2.95bc 18.25±0.91a 4.15±0.55d
长叶烯 d-Longifolene 13.16±3.92a 8.26±0.53b 15.87±0.11a 7.58±3.32b 14.29±2.89a 16.46±2.22a
环十四烷 Cyclotetradecane 6.43±1.98b 6.35±0.29b 7.74±2.25b 12.04±2.71a
8-己基十五烷 8-Hexylpentadecane 1.67±0.43b 2.87±0.79a
苯乙烯 Styrene 14.83±0.28a 6.97±5.34b 3.21±0.10b
3,7-二甲基葵烷 3,7-Dimethyldecane 5.62±0.22
3,8-二甲基葵烷 3,8-Dimethyldecane 11.67±1.1+
壬基环丙烷 Nonylcyclopropane 10.37±0.69a 3.91±0.01b
二十烷 Eicosane 4.19±1.70
7-己基二十二烷 7-Hexyldocosane 1.44±0.59
1-十一烯 1-Undecene 7.25±0.69
十五烷 Pentadecane 1.10±0.20
十六烷 Hexadecane 10.01±4.79
十一烷 Undecane 15.38±6.81
1-戊烯 1-Pentene 2.73±0.68
9-甲基壬烷 9-Methylnonane 14.41±1.95
三十四烷 Tetradecane 3.70±1.94
其他 Others 氯乙酸十一酯 Undecyl Chloroacetate 6.12±5.12
邻二氯苯 1,2-Dichlorobenzene 4.29±1.61
1,3-二氯苯 1,3-Dichlorobenzene 4.95±0.01
三氟乙酸十六烷
Hexadecyl Trifluoroacetate
4.87±1.10
(甲氧基乙基)-基硫脲
4 - (Methoxyethyl) - Thiourea
1.19±0.05
酚类 Phenols 2,4-二叔丁基苯酚2,4-Di-Tert-Butylphenol 20.32±4.62e 40.07±2.57cd 36.42±4.30d 51.38±9.86c 212.01±12.56a 88.62±3.51b
2-叔丁基苯酚 o-Tert-Butyl Phenol 18.55±3.90
3-叔丁基苯酚 3-Tert-Butylphenol 8.91±1.80b 22.98±0.91a
4-叔丁基苯酚 4-Tert-Butylphenol 8.00±0.99
杂环 Heterocyclic 2,6-二叔丁基苯醌2,6-Di-Tert-Butyl-p-Benzoquinone 11.41±2.93c 11.36±0.86c 25.86±4.22b 38.80±6.99a 44.20±2.97a 21.00±2.43b

Fig. 1

Total contents of volatile organic compounds in brown rice Different letters on the bar chart in same type indicate significant differences (P<0.05)"

Fig. 2

Gas phase ion migration spectrogram of the samples Color scale from blue to red represents the signal intensity from -0.25 to 0.850; The different number represents the peak of identified compound based on GC-IMS database"

Fig. 3

Difference diagram of gas phase ion migration spectrogram of the sample a: Initial comparative signals in 0 d; b: The differential signals in 5th d; c: The differential signals in 10th d; d: The differential signals in 15th d; e: The differential signals in 20th d; f: the differential signals in 25th d"

Fig. 4

Aroma fingerprinting of volatile organic compounds selected from the GC-IMS The independent pixel represents the GC-IMS characteristic absorption peak. The color scale from blue to red represent the signal intensity from low to high, and black means the background"

Table 2

Compounds and relative contents corresponding to characteristic peaks of samples (%)"

序号Sequence 化合物
Compound
储藏时间 Storage time (d)
0 5 10 15 20 25
1 乙醇Etnanol 8.79±0.30 9.15±0.24 9.12±0.08 9.51±0.28 12.09±0.21 13.19±0.14
2 3-甲基-3-丁烯-1-醇3-Methyl-3-buten-1-ol 2.21±0.09 2.39±0.05 2.62±0.09 2.77±0.16 3.54±0.06 4.49±0.21
3 2-甲基丁醇2-Methybutanol 1.17±0.05 1.27±0.03 1.45±0.04 1.53±0.03 1.92±0.05 2.39±0.06
4 戊醇1-Pentanol 2.80±0.15 2.89±0.10 2.80±0.08 1.80±0.07 1.42±0.06 1.26±0.10
5 3-甲基-1-戊醇3-Methyl-1-Pentanol 0.36±0.02 0.38±0.04 0.40±0.01 0.35±0.10 0.36±0.02 0.43±0.04
6 2-己醇2-Hexanol 2.77±0.07 3.09±0.10 3.19±0.12 3.50±0.10 4.66±0.02 5.15±0.11
7 叶醇Z-3-Hexen-1-ol 0.52±0.02 0.60±0.05 0.61±0.02 0.46±0.02 0.37±0.03 0.34±0.05
8 己醇1-Hexanol 0.44±0.04 0.42±0.05 0.44±0.01 0.43±0.03 0.44±0.05 0.48±0.05
9 甲基丙醇2-Methylpropanol 0.62±0.04 0.58±0.04 0.62±0.04 0.81±0.03 1.04±0.04 0.87±0.12
10 1-辛烯-3-醇1-Octen-3-ol 3.04±0.19 3.03±0.09 2.49±0.10 4.93±0.04 5.79±0.20 6.63±0.37
11 2-己基己醇2-Ethylhexanol 1.91±0.12 2.22±0.07 2.35±0.16 1.39±0.11 0.94±0.03 0.89±0.05
12 壬醇1-Nonanol 0.46±0.04 0.50±0.04 0.52±0.02 0.55±0.04 0.62±0.05 0.72±0.07
13 丁醇1-Butanol 0.60±0.03 0.64±0.02 0.70±0.03 1.02±0.06 0.92±0.05 1.02±0.07
14 2-甲基丙醇2-Methylpropanol 0.54±0.03 0.53±0.04 0.57±0.05 0.82±0.03 0.85±0.03 0.78±0.16
15 2-丁酮2-Butanone 2.87±0.06 3.07±0.08 3.03±0.08 1.99±0.11 2.05±0.03 2.31±0.24
16 2-戊酮2-Bentanone 2.80±0.04 3.01±0.04 2.97±0.18 2.84±0.08 3.09±0.04 2.86±0.29
17 2-己酮2-Bexanone 0.72±0.07 0.73±0.06 0.73±0.04 0.66±0.04 0.57±0.00 0.45±0.04
18 2-庚酮2-Beptanone 1.68±0.10 1.74±0.11 1.70±0.03 1.00±0.05 0.82±0.17 0.85±0.18
19 甲基己基甲酮2-Octanone 2.79±0.15 2.72±0.11 2.63±0.05 2.46±0.17 2.61±0.11 3.19±0.17
20 2-己酮2-Hexanone 0.25±0.03 0.32±0.04 0.28±0.02 0.34±0.04 0.47±0.03 0.62±0.10
21 丙酮Acetone 18.61±0.76 18.66±0.59 19.99±0.44 21.30±0.57 23.81±0.13 26.10±1.78
22 正己醛Hexanal 14.50±0.45 14.53±0.57 14.63±0.13 12.79±0.06 8.28±0.49 3.72±0.25
23 苯甲醛Benzaldehyde 7.91±0.21 7.90±0.25 7.66±0.29 9.19±0.02 10.51±0.21 8.95±0.58
24 辛醛Octanal 3.87±0.22 4.02±0.39 4.39±0.11 2.62±0.22 1.46±0.04 1.11±0.05
25 正壬醛n-Nonanal 5.23±3.37 3.25±0.41 3.02±0.07 3.49±0.08 3.51±0.36 3.69±0.43
26 戊醛Pentanal 0.88±0.07 0.79±0.14 0.80±0.06 0.48±0.04 0.21±0.04 0.14±0.01
27 反-2-辛烯醛E-2-Octenal 0.84±0.06 0.74±0.04 0.61±0.03 0.48±0.06 0.35±0.04 0.44±0.11
28 庚醛Heptanal 2.23±0.06 2.15±0.26 2.23±0.04 1.19±0.05 0.58±0.05 0.51±0.04
29 苯乙醛Phenylacetaldehyde 0.38±0.01 0.39±0.04 0.39±0.05 0.28±0.02 0.23±0.02 0.23±0.02
30 丁内酯Butyrolactone 0.13±0.03 0.15±0.01 0.12±0.01 0.11±0.02 0.14±0.03 0.13±0.02
31 乙酸丙酯Propyl acetate 0.49±0.08 0.36±0.06 0.27±0.03 0.20±0.02 0.20±0.01 0.14±0.03
32 2-戊基呋喃2-Pentylfuran 0.93±0.02 0.97±0.08 1.10±0.05 0.85±0.01 0.78±0.07 0.78±0.03
33 邻苯甲酚o-Cresol 6.49±0.29 6.62±0.54 5.32±0.19 7.66±0.18 5.26±0.39 5.02±0.55
34 对氯苯氧异丁酸p-Chlorophenoxyisobutyric acid 0.19±0.04 0.19±0.04 0.23±0.02 0.18±0.00 0.14±0.01 0.14±0.02

Fig. 5

Dynamic principal component analysis (dPCA) of the sample"

Table 3

Comparison of qualitative substance differences with two detection methods"

序号 Sequence 物质
Substance
GC-MS GC-IMS
1 正己醛Hexanal + +
2 苯甲醛Benzaldehyde + +
3 庚醛Heptanal + +
4 反-2-辛烯醛E-2-Octenal + +
5 反-2-十二烯醛E-2-Dodecenal + -
6 辛醛Octanal - +
7 正壬醛n-Nonanal - +
8 戊醛Pentanal - +
9 苯乙醛Phenylacetaldehyde - +
10 乙醇Etnanol - +
11 3-甲基-3-丁烯-1-醇3-Methyl-3-buten-1-ol - +
12 2-甲基丁醇2-Methybutanol - +
13 戊醇1-Pentanol - +
14 3-甲基-1-戊醇3-Methyl-1-Pentanol - +
15 2-己醇2-Hexanol - +
16 叶醇Z-3-Hexen-1-ol - +
17 己醇1-Hexanol + +
18 甲基丙醇2-Methylpropanol - +
19 1-辛烯-3-醇1-Octen-3-ol + +
20 2-己基己醇2-Ethylhexanol - +
21 壬醇1-Nonanol - +
22 丁醇1-Butanol - +
23 2-甲基丙醇2-Methylpropanol - +
24 正十三烷-1-醇n-Tridecan-1-ol + -
25 2-甲基丙醇2-Methylpropanol - +
26 2-丁酮2-Butanone - +
27 2-戊酮2-Bentanone - +
28 2-己酮2-Bexanone - +
29 2-庚酮2-Beptanone - +
30 甲基己基甲酮2-Octanone - +
31 2-己酮2-Hexanone - +
32 丙酮Acetone - +
33 苯乙酮Acetophenone + -
[1] 吴绍洪, 刘路路, 刘燕华, 高江波, 戴尔阜, 冯爱青. “一带一路”陆域地理格局与环境变化风险. 地理学报, 2018,73(7):1214-1225.
WU S H, LIU L L, LIU Y H, GAO J B, DAI E F, FENG A Q. Geographical patterns and environmental change risks in terrestrial areas of the Belt and Road. Acta Geographica Sinica, 2018,73(7):1214-1225. (in Chinese)
[2] MAHATHEERANONT S, KEAWSA-ARD S, DUMRI K. Quantification of the rice aroma compound, 2-acetyl-1-pyrroline, in Uncooked Khao Dawk Mali 105 brown rice. Journal of Agricultural and Food Chemistry, 2001,49(2):773-779.
doi: 10.1021/jf000885y pmid: 11262027
[3] SHI Y, WANG L L, FANG Y, WANG H P, TAO H L, PEI F, LI P, XU B C, HU Q H. A comprehensive analysis of aroma compounds and microstructure changes in brown rice during roasting process. LWT-Food Science and Technology, 2018,98:613-621.
doi: 10.1016/j.lwt.2018.09.018
[4] 宋伟, 刘璐, 支永海, 陈瑞. 电子鼻判别不同储藏条件下糙米品质的研究. 食品科学, 2010,31(24):360-365.
doi: 10.7506/spkx1002-6630-201024079
SONG W, LIU L, ZHI Y H, CHEN R. Discriminating the quality of brown rice stored at different conditions by electronic nose. Food Science, 2010,31(24):360-365. (in Chinese)
doi: 10.7506/spkx1002-6630-201024079
[5] 王立峰, 王红玲, 姚轶俊, 张怡一, 陈静宜, 汪海峰, 石嘉怿, 鞠兴荣. 不同包装方式对大米储藏品质及挥发性成分的影响. 中国农业科学, 2017,50(13):2576-2591.
doi: 10.3864/j.issn.0578-1752.2017.13.016
WANG L F, WANG H L, YAO Y J, ZHANG Y Y, CHEN J Y, WANG H F, SHI J Y, JU X R. Effects of different packages on edible quality and volatile components of rice during storage. Scientia Agricultura Sinica, 2017,50(13):2576-2591. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.13.016
[6] 林家永, 高艳娜, 吴胜芳, 王松雪. 顶空固相微萃取-气质联用法分析稻谷挥发性成分. 食品科学, 2009,30(20):277-282.
doi: 10.7506/spkx1002-6300-200920059
LIN J Y, GAO Y N, WU S F, WANG X S. Headspace solid phase microextraction coupled to gc-ms for analyzing volatile components in paddy. Food Science, 2009,30(20):277-282. (in Chinese)
doi: 10.7506/spkx1002-6300-200920059
[7] 严松, 林颢. 基于嗅觉可视化技术和气相色谱-质谱联用鉴别霉变小麦. 食品科学, 2019,40(2):283-288.
YAN S, LIN H. GC-MS of volatile organic compounds for identification of moldy wheat based on olfactory visualization. Food Science, 2019,40(2):283-288. (in Chinese)
[8] 姜雯翔, 赵黎平, 史晓媛, 陈沁滨, 韩永斌. HS-SPME-GC-MS分析发芽糙米储藏过程中挥发性成分的变化. 中国粮油学报, 2013,28(10):123-128.
JIANG W X, ZHAO L P, SHI X Y, CHEN Q B, HAN Y B. Analysis of volatile compounds changes in germinated brown rice during storage by headspace solid phase micro-extraction and gas chromatography-mass spectrometry. Journal of the Chinese Cereals and Oil Association, 2013,28(10):123-128. (in Chinese)
[9] 康文翠, 林颢, 满忠秀. 基于GC-MS与多变量分析方法的不同储藏期大米挥发特征气味的分析. 中国粮油学报, 2018,33(5):94-101.
KANG W C, LIN H, MAN Z X. Analysis for volatile gases of rice with different storage periods based on gc-ms and multivariate analysis method. Journal of the Chinese Cereals and Oil Association, 2018,33(5):94-101. (in Chinese)
[10] WANG S Q, CHEN H T, SUN B G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chemistry, 2020,315:126158.
doi: 10.1016/j.foodchem.2019.126158 pmid: 32014672
[11] 谷航, 陈通, 陈明杰, 陆道礼, 陈斌. 气相-离子迁移谱联用技术评定大米霉变程度的应用研究. 中国粮油学报, 2019,34(9):118-124.
GU H, CHEN T, CHEN M J, LU D L, CHEN B. Application of gas chromatography-ion migration spectrometry (GC-IMS) to evaluate the degree of mildew in rice. Journal of the Chinese Cereals and Oil Association, 2019,34(9):118-124. (in Chinese)
[12] LI M Q, YANG R W, ZHANG H, WANG S L, CHEN D, LIN S Y. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chemistry, 2019,290:32-39.
doi: 10.1016/j.foodchem.2019.03.124 pmid: 31000053
[13] NATALIE GERHARDT, MARKUS BIRKENMEIER, SEBASTIAN SCHWOLOW, SASCHA ROHN, PHILIPP WELLER. Volatile- compound fingerprinting by headspace-gas-chromatography ion- mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey. Analytical Chemistry, 2018,90(3):1777-1785.
doi: 10.1021/acs.analchem.7b03748 pmid: 29298045
[14] LIU K L, LI Y, CHEN F S, FANG Y. Lipid oxidation of brown rice stored at different temperatures. International Journal of Food Science & Technology, 2017,52(1):188-195.
[15] 王熠瑶, 张烝彦, 孙俊, 常亚飞, 吕飞, 丁玉庭, 周绪霞. 基于GC-IMS技术分析糙米储藏过程中风味物质变化. 食品与发酵工业, 2020,46(6):250-255.
WANG Y Y, ZHANG Z Y, SUN J, CHANG Y F, LYU F, DING Y T, ZHOU X X. Analysis of flavor changes of brown rice during storage based on gas chromatography-ion mobility spectrometry. Food and Fermentation Industries, 2020,46(6):250-255. (in Chinese)
[16] CHEN J H, LIU K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 2002,57(1):63-75.
[17] 王辉, 田寒友, 李文采, 邹昊, 刘飞, 白京, 李家鹏, 陈文华, 乔晓玲. 基于顶空气相色谱-离子迁移谱技术的冷冻猪肉贮藏时间快速判别方法. 食品科学, 2019,40(2):269-274.
WANG H, TIAN H Y, LI W C, ZOU H, LIU F, BAI J, LI J P, CHEN W H, QIAO X L. Fast discrimination of frozen pork stored for different periods using Headspace-Gas Chromatography-Ion Mobility Spectroscopy (HS-GC-IMS). Food Science, 2019,40(2):269-274. (in Chinese)
[18] CHEN H, SIEBENMORGEN T J, GRIFFIN K. Quality characteristics of long-grain rice milled in two commercial systems. Cereal Chemistry, 1998,75(4):560-565.
[19] TAUSZ M, JIMÉNEZ M S, GRILLE D. Antioxidative defence and photoprotection in pine needles under field conditions. A multivariate approach to evaluate patterns of physiological responses at natural sites. Physiologia Plantarum, 1998,104(4):760-764.
doi: 10.1034/j.1399-3054.1998.1040435.x
[20] MOTTRAM D S. Flavour formation in meat and meat products: A review. Food Chemistry, 1998,62(4):415-424.
[21] FRANKEL E N. Lipid oxidation: mechanisms, products and biological significance. Journal of the American Oil Chemists’ Society, 1984,61(12):1908-1917.
[22] ZHAO C J, XIE J Q, LI L, CAO C J. Comparative transcriptomic analysis in paddy rice under storage and identification of differentially regulated genes in response to high temperature and humidity. Journal of Agricultural and Food Chemistry, 2017,65(37):8145-8153.
doi: 10.1021/acs.jafc.7b03901
[23] ZHOU Z K, ROBARDS K, HELLIWELL S, BLANCHARD C. Effect of rice storage on pasting properties of rice flour. Food Research International, 2003,36(6):625-634.
doi: 10.1016/S0963-9969(03)00013-9
[24] CHOI S, KIM H, KIM Y, KIM B S, BEUCHAT L R, RYU J H. Fate of Bacillus cereus and naturally occurring microbiota on milled rice as affected by temperature and relative humidity. Food Microbiology, 2014,38:122-127.
doi: 10.1016/j.fm.2013.08.016
[25] JELEŃ H H, MAJCHER M, DZIADAS M. Microextraction techniques in the analysis of food flavor compounds: A review. Analytica Chimica Acta, 2012,738:13-26.
doi: 10.1016/j.aca.2012.06.006
[26] CHEN J L, YAN S J, FENG Z S, XIAO L X, HU X S. Changes in the volatile compounds and chemical and physical properties of Yali pear (Pyrus bertschneideri Reld) during storage. Food Chemistry, 2006,97(2):248-255.
[27] 胡吟. 稻谷加速陈化期间脂质变化的研究[D]. 长沙: 中南林业科技大学, 2018.
HU Y. Study on the changes of lipid during accelerated aging of rice[D]. Changsha: Central South University of Forestry Science and Technology, 2018. (in Chinese)
[28] LIM D K, MO C, LEE D K, LONG N P, LIM J, KWON S W. Non- destructive profiling of volatile organic compounds using HS-SPME/ GC-MS and its application for the geographical discrimination of white rice. Journal of Food and Drug Analysis, 2018,26(1):260-267.
doi: 10.1016/j.jfda.2017.04.005 pmid: 29389563
[29] ROWAN D D, LANE H P, ALLEN J M, FIELDER S, HUNT M B. Biosynthesis of 2-methylbutyl, 2-methyl-2-butenyl, and 2-methylbutanoate esters in Red Delicious and Granny Smith apples using deuterium- labeled substrates. Journal of Agricultural and Food Chemistry, 1996,44(10):3276-3285.
[30] PETERSEN M A, POLL L, LARSEN L M. Changes in flavor- affecting aroma compounds during potato storage are not associated with lipoxygenase activity. American Journal of Potato Research, 2003,80(6):397-402.
[31] GRIGLIONE A, LIBERTO E, CORDERO C, BRESSANELLO D, CAGLIERO C, RUBIOLO P, BICCHI C, SGORBINI B. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality. Food Chemistry, 2015,172:305-313.
doi: 10.1016/j.foodchem.2014.09.082 pmid: 25442558
[32] PAN L Q, ZHANG W, ZHU N, MAO S B, TU K. Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography-mass spectrometry. Food Research International, 2014,62:162-168.
[33] 陈银基, 蒋伟鑫, 曹俊, 戴炳业, 董文. 温湿度动态变化过程中不同含水量稻谷的储运特性. 中国农业科学, 2016,49(1):163-175.
CHEN Y J, JIANG W X, CAO J, DAI B Y, DONG W. Storage and transportation characteristic of different moisture paddy rice dealt with dynamic temperature and humidity. Scientia Agricultura Sinica, 2016,49(1):163-175. (in Chinese)
[34] LIN C J, LI C Y, LIN S K, YANG F H, HUANG J J, LIU Y H, LUR H S, LIN C J. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 2010,58(19):10545-10552.
doi: 10.1021/jf101575j pmid: 20839801
[1] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[2] CHEN YanFang,ZHANG MingWei,ZHANG Yan,DENG YuanYuan,WEI ZhenCheng,TANG XiaoJun,LIU Guang,LI Ping. Effects of Germination and Extrusion on Volatile Flavor Compounds in Brown Rice [J]. Scientia Agricultura Sinica, 2021, 54(1): 190-202.
[3] CHEN JingShi,HUANG YuYang,XIANG Jie,GUO QingHua,LI ShiGui,GU JinGang. Carbon Source Metabolism of Trichoderma afroharzianum with High-Yield of Antifungal Volatile Organic Compounds [J]. Scientia Agricultura Sinica, 2020, 53(22): 4601-4612.
[4] WANG EnZhao,FAN FenLiang,LI YanLing,LIU XiongDuo,LU YuQiu,SONG ALin. Noncontact Inhibitory of Volatile Organic Compounds from Rice Root Bacteria on Rhizopus microsporus [J]. Scientia Agricultura Sinica, 2020, 53(10): 1986-1996.
[5] Jing WANG, JianMin CAO, DeXin CHEN, Jun QIU, XiaoQiang WANG, Chao FENG, WenJing WANG. Antimicrobial Effect and Components Analysis of Volatile Organic Compounds from Bacillus pumilus AR03 [J]. Scientia Agricultura Sinica, 2018, 51(10): 1908-1919.
[6] FANG Yong,WANG Hong-pan, YANG Wen-jian, PEI Fei, LIU Jun-fei, TANG Xiao-zhi,MA Ning, HU Qiu-hui. Extrusion Process of Germinated Brown Rice Compounded of Flammulina velutipes and Extrudant Quality Properties [J]. Scientia Agricultura Sinica, 2016, 49(4): 727-738.
[7] ZHANG Na, WANG Guo-xiang, Abacar Jose Daniel, LIU Zheng-hui, DING Cheng-qiang,TANG She, LI Gang-hua, WANG Shao-hua, DING Yan-feng. Determination of Phenolic Acids in Rice by Ultra-High Performance Liquid Chromatography [J]. Scientia Agricultura Sinica, 2015, 48(9): 1718-1726.
[8] ZHANG Dong-yuan, DENG Yuan-yuan, ZHANG Ming-wei, MA Yong-xuan, ZHANG Yan, WEI Zhen-cheng, ZHANG Rui-fen, LIU Lei, TANG Xiao-jun,TI Hui-hui. Effect of Germination-Extrusion-Amylase Assisted Processing on Quality Properties of Brown Rice Powder [J]. Scientia Agricultura Sinica, 2015, 48(4): 759-.
[9] ZHANG Lu, ZHANG Xi-zhou, LI Ting-xuan, JI Lin, ZHENG Tao. Cd Uptake and Distribution Characteristics of Cd Pollution-Safe Rice Materials [J]. Scientia Agricultura Sinica, 2015, 48(1): 174-184.
[10] TANG Xiao-Zhi, HU Zhan-Qiang, ZHOU Jian-Min, FANG Yong, SHEN Xin-Chun, HU Qiu-Hui. Influence of Brown Rice Flour on Wheat Dough Rheological Properties and Cookie Quality Characteristics [J]. Scientia Agricultura Sinica, 2014, 47(8): 1567-1576.
[11] CHEN Yin-Ji-1, CHEN Xia-1, JIANG Wei-Xin-1, DONG Wen-2, CHEN Zhao-Bo-2, DAI Bing-Ye-2. Effect of 60Co Gamma Irradiation on Quality and Microstructure of Storage Brown Rice [J]. Scientia Agricultura Sinica, 2014, 47(11): 2214-2223.
[12] ,,,,. Establishment of Math Models of NIRS Analysis for Protein Contents in Seed and It′s Application in Rice Breeding [J]. Scientia Agricultura Sinica, 2006, 39(04): 836-841 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!