Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (2): 345-356.doi: 10.3864/j.issn.0578-1752.2021.02.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Plastic Film Mulching and Fertilization on the Sequestration of Carbon and Nitrogen from Straw in Soil

WANG ShuYing(),LI XiaoHong,CHENG Na,FU ShiFeng,LI ShuangYi,SUN LiangJie,AN TingTing(),WANG JingKuan   

  1. College of Land and Environment, Shenyang Agricultural University/ Key Laboratory of Northeast Arable Land Conservation, Ministry of Agriculture and Rural Affair/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866
  • Received:2020-05-07 Accepted:2020-08-18 Online:2021-01-16 Published:2021-02-03
  • Contact: TingTing AN E-mail:wsy585313@163.com;atting@syau.edu.cn

Abstract:

【Objective】Crop straws not only contain high content of organic carbon (C), but also are rich in mineral nutrients. Straw returning to field is an important technique for improvement of soil fertility and sustainable development of agriculture in the region of Black Soil in Northeast China. However, the sequestration and characteristics of C and nitrogen (N) from straw in soil under different plastic film mulching and fertilization treatments were not clear. In this study, the contributions of straw C to soil organic C (SOC) and straw N to soil total nitrogen (TN) were quantified to compare the differences of straw C and N in soil among different mulching and fertilization treatments, so as to provide a basis for improvement of soil fertility and protection of Black Soil in Northeast China.【Method】Based on a long-term mulching and fertilization experiment, the 13C15N double-labeled straw was added to the topsoil (0-20 cm) from the different fertilization treatments, including no fertilization (CK), chemical N fertilizer application (N4), and organic manure combined with chemical N fertilizer (M2N2), with/without mulching, and then which were incubated in-situ in the field for 150 days. The contents of SOC and TN and the values of δ13C and δ 15N were measured to analyze the dynamics changes of SOC derived from straw C (13C-SOC), TN derived from straw N (15N-TN) and their ratio with time.【Result】Fertilization, mulching and their interactions significantly influenced the contents of 13C-SOC and 15N-TN (P<0.05). During the whole incubation period, the contribution percentage of13C-SOC to SOC (13C-SOC/SOC) and that of 15N-TN to TN (15N-TN/TN) were 10.48% and 3.18% under M2N2 treatment, respectively; the13C-SOC/SOC and residual percentage of straw C in soil under fertilization (N4 and M2N2) treatments were on average 12.65% and 37.14% under mulching, and averaged 12.08% and 34.50% under no mulching, respectively. On the 150th day of incubation under the same cultivation mode, the 13C-SOC/SOC and residual percentage of straw C in soil were on average 14.33% and 39.40% under N4 treatment and averaged 11.77% and 33.21% in the other fertilization treatments, respectively;15N-TN/TN under CK treatment was with an average of 4.56%, and was 26.00% and 44.53% higher than that in N4 and M2N2 treatments. The residual percentage of straw N was the highest under CK treatment with/without mulching, with an average of 10.03%, which was the lowest under N4 treatment without mulching, with a value of 7.87% on the 150th day of incubation. Regardless of mulching or not, the ratio of 13C-SOC to 15N-TN ranged from 32 to 39 in N4 treatment, but was lower than 30 in the other fertilization treatments. 【Conclusion】The sequestrations of straw C and N in soil were sensitive to mulching and fertilization. The single application of chemical N fertilizer promoted the accumulation of straw C and the renewal of organic C in soil, and the long-term no fertilization played a positive feedback effect on the sequestration of straw N in soil N pool, while the renewal of soil organic C and N in organic manure combined with chemical N fertilizer lagged behind that in the other fertilization treatments.

Key words: 13C15N double-labeling, straw carbon, straw nitrogen, plastic film mulching, fertilization

Table 1

Basic soil properties at 0-20 cm depth in various treatments (in 2019)"

栽培模式
Cultivation mode
施肥处理
Fertilization treatment
土壤总有机碳
Total soil organic carbon (g·kg-1)
δ13C值
δ13C value (‰)
全氮
Total nitrogen (g· kg-1)
δ15N值
δ15N value (‰)
碳氮比
C/N ratio
不覆膜
No mulching
CK 8.78±0.05 e -18.04±0.02 a 1.05±0.02 cd 5.68±0.03 c 8.37±0.11 c
N4 8.52±0.01 f -18.10±0.03 a 1.06±0.02 cd 4.04±0.02 e 8.00±0.17 d
M2N2 13.11±0.02 a -19.65±0.02 e 1.49±0.04 a 6.94±0.04 b 8.80±0.20 b
覆膜
Mulching
CK 9.16±0.03 d -18.26±0.04 b 1.03±0.02 d 5.62±0.01 c 8.88±0.15 b
N4 10.57±0.03 c -19.20±0.03 d 1.11±0.02 c 5.13±0.02 d 9.54±0.10 a
M2N2 12.75±0.04 b -19.12±0.04 c 1.42±0.02 b 14.26±0.05 a 8.96±0.10 b

Table 2

Analysis of variance for the effects of cultivation mode, fertilization and time on the straw carbon and nitrogen sequestration in soil"

因子
Factor
自由度
Degree of freedom
δ13C
F(P)
SOC
F(P)
13C-SOC
F(P)
Fmc
F(P)
Rmc
F(P)
δ15N
F(P)
TN
F(P)
15N-TN
F(P)
Fmn
F(P)
Rmn
F(P)
SOC/TN
F(P)
13C-SOC/15N-TN
F(P)
施肥
Fertilization (F)
2 720
(<0.001)
655
(<0.001)
158
(<0.001)
690
(<0.001)
158
(<0.001)
1111
(<0.001)
481.0
(<0.001)
250.0
(<0.001)
1120
(<0.001)
247.9
(<0.001)
31.7
(<0.001)
125
(<0.001)
时间
Time (T)
1 124
(<0.001)
2.96
(0.098)
96.7
(<0.001)
122
(<0.001)
96.7
(<0.001)
112.0
(<0.001)
0.310
(0.583)
83.20
(<0.001)
111.7
(<0.001)
83.01
(<0.001)
0.45
(0.509)
0.01
(0.926)
栽培模式
Cultivation mode (C)
1 0.22
(0.644)
13.6
(0.001)
6.65
(0.016)
0.06
(0.812)
6.65
(0.016)
58.46
(<0.001)
1.005
(0.326)
33.77
(<0.001)
57.72
(<0.001)
33.55
(<0.001)
10.8
(0.003)
10.5
(0.003)
施肥×时间
F×T
2 126
(<0.001)
23.1
(<0.001)
129
(<0.001)
135
(<0.001)
129
(<0.001)
60.02
(<0.001)
15.34
(<0.001)
54.64
(<0.001)
60.93
(<0.001)
54.19
(<0.001)
9.95
(0.001)
23.9
(<0.001)
施肥×栽培模式
F×C
2 24.5
(<0.001)
30.8
(<0.001)
25.4
(<0.001)
29.7
(<0.001)
25.4
(<0.001)
22.81
(<0.001)
4.051
(0.030)
20.02
(<0.001)
22.62
(<0.001)
20.16
(<0.001)
19.1
(<0.001)
1.10
(0.348)
栽培模式×时间
C×T
1 3.51
(0.073)
1.18
(0.289)
1.52
(0.230)
5.34
(0.0300)
1.52
(0.230)
7.162
(0.013)
60.19
(<0.001)
10.07
(0.004)
7.792
(0.010)
10.05
(0.004)
39.1
(<0.001)
16.6
(<0.001)
施肥×栽培模式×时间 F×C×T 2 5.10
(0.014)
4.50
(0.022)
3.99
(0.032)
3.89
(0.034)
3.98
(0.032)
8.208
(0.002)
12.71
(<0.001)
3.823
(0.036)
8.052
(0.002)
3.878
(0.035)
7.68
(0.003)
3.97
(0.032)

Fig. 1

δ13C value of total organic carbon (a) and δ15N value of total nitrogen (b) in soil added with 13C15N-labeled straw under different mulching and fertilization treatments CK, N4 and M2N2 denote no fertilizer, chemical nitrogen fertilizer, and organic manure combined with chemical nitrogen fertilizer, respectively. Different capital letters show significant differences (P<0.05) among different treatments on the 30th day of incubation; Different lowercase letters show significant differences (P<0.05) among different treatments on the 150th day of incubation; *Show the significant differences (P<0.05) between different incubation time in the same treatment. The same as below"

Fig. 2

Contents of total organic carbon (a) and total nitrogen (b) in soil added with 13C15N-labeled straw under different mulching and fertilization treatments"

Fig. 3

13C content in total soil organic carbon (a) and 15N content in total nitrogen (b) under different mulching and fertilization treatments"

Table 3

Contribution percentage of straw carbon to total soil organic carbon and straw nitrogen to soil total nitrogen under different mulching and fertilization treatments"

栽培模式
Cultivation mode
施肥处理
Fertilization treatment
秸秆碳的贡献率
Contribution percentage of straw carbon to total
soil organic carbon (%)
秸秆氮的贡献率
Contribution percentage of straw nitrogen to
total nitrogen (%)
30 d 150 d 30 d 150 d
不覆膜
No mulching
CK 16.91±0.28 A* 13.91±0.07 a 5.27±0.06 B* 4.70±0.08 a
N4 13.90±0.13 B 14.34±0.16 a 3.47±0.12 D 3.38±0.09 d
M2N2 10.13±0.19 D 9.95±0.04 d 3.12±0.01 E 3.03±0.04 e
覆膜
Mulching
CK 16.44±0.33 A* 12.27±0.34 b 5.53±0.09 A* 4.43±0.01 b
N4 14.43±0.29 B 14.32±0.18 a 4.03±0.07 C 3.86±0.00 c
M2N2 10.88±0.26 C 10.96±0.14 c 3.30±0.03 DE 3.28±0.09 d

Table 4

Residue percentage of straw carbon and nitrogen in soil under different mulching and fertilization treatments"

栽培模式
Cultivation mode
施肥处理
Fertilization treatment
秸秆碳的残留率
Residual percentage of straw carbon (%)
秸秆氮的残留率
Residual percentage of straw nitrogen (%)
30 d 150 d 30 d 150 d
不覆膜
No mulching
CK 45.35±1.32 A* 35.82±0.52 c 12.24±0.20 A* 10.13±0.23 a
N4 37.21±0.30 C 37.84±0.65 b 9.09±0.27 B* 7.87±0.24 e
M2N2 31.52±0.39 D 31.45±0.60 e 8.48±0.05 C 8.50±0.16 d
覆膜
Mulching
CK 44.58±0.79 A* 31.43±0.58 e 11.93±0.26 A* 9.92±0.18 ab
N4 40.15±1.11 B 40.96±0.14 a 9.53±0.07 B 9.58±0.15 bc
M2N2 33.34±0.96 D 34.12±0.58 d 9.06±0.25 B 9.41±0.02 c

Fig. 4

The percentage of soil organic carbon (SOC) to total nitrogen (TN) (a) and the percentage of straw derived-SOC (13C-SOC) to straw derived-TN (15N-TN) (b) in soil added with 13C15N-labeled straw under different mulching and fertilization treatments"

[1] HUANG Y, SUN W J, ZHANG W, YU Y Q. Changes in soil organic carbon of terrestrial ecosystems in China: A mini-review. Science China (Life Sciences), 2010,53(7):766-775. DOI: 10.1007/s11427-010-4022-4.
[2] 李海波, 韩晓增, 王风. 长期施肥条件下土壤碳氮循环过程研究进展. 土壤通报, 2007,38(2):384-388. DOI: 10.19336/j.cnki.trtb.2007.02.037.
LI H B, HAN X Z, WANG F. Review of soil carbon and nitrogen cycling under long-term fertilization. Chinese Journal of Soil Science, 2007,38(2):384-388. DOI: 10.19336/j.cnki.trtb.2007.02.037. (in Chinese)
[3] 张春华, 王宗明, 居为民, 任春颖. 松嫩平原玉米带土壤碳氮比的时空变异特征. 环境科学, 2011,32(5):1407-1414. DOI: 10.13227/j.hjkx.2011.05.014.
ZHANG C H, WANG Z M, JU W M, REN C Y. Spatial and temporal variability of soil C/N ratio in Songnen Plain maize belt. Environmental Science, 2011,32(5):1407-1414. DOI: 10.13227/j.hjkx.2011.05.014. (in Chinese)
[4] 韩秉进, 张旭东, 隋跃宇, 解宏图, 赵军, 刘焕军. 东北黑土农田养分时空演变分析. 土壤通报, 2007,38(2):238-241. DOI: 10.19336/j.cnki.trtb.2007.02.007.
HAN B J, ZHANG X D, SUI Y Y, JIE H T, ZHAO J, LIU H J. Spatial-temporal evolution analysis of Black Soil farmland nutrients in Northeast China. Chinese Journal of Soil Science, 2007,38(2):238-241. DOI: 10.19336/j.cnki.trtb.2007.02.007. (in Chinese)
[5] 韩晓增, 李娜. 中国东北黑土地研究进展与展望. 地理科学, 2018,38(7):1032-1041. DOI: 10.13249/j.cnki.sgs.2018.07.004.
HAN X Z, LI N. Research progress and prospects of Black Soil in Northeast China. Scientia Geographica Sinica, 2018,38(7):1032-1041. DOI: 10.13249/j.cnki.sgs.2018.07.004. (in Chinese)
[6] 刘顺国, 付时丰, 汪景宽, 王洪禄, 于树. 长期地膜覆盖对棕壤水分含量和储量动态变化影响. 沈阳农业大学学报, 2006,37(5):725-728.
LIU S G, FU S F, WANG J K, WANG H L, YU S. Effect of long-term covering with plastic film on dynamic changes of soil water in Brown Earth. Journal of Shenyang Agricultural University, 2006,37(5):725-728. (in Chinese)
[7] 李尚中, 王勇, 樊廷录, 王立明, 赵刚, 唐小明, 党翼, 王磊, 张建军. 旱作地膜不同覆膜方式的水温及增产效应. 中国农业科学, 2010,43(5):922-931. DOI: 10.3864/j.issn.0578-1752.2010.05.005.
LI S Z, WANG Y, FAN T L, WANG L M, ZHAO G, TANG X M, DANG Y, WANG L, ZHANG J J. Effects of different plastic film mulching modes on soil moisture, temperature and yield of dryland maize. Scientia Agricultura Sinica, 2010,43(5):922-931. DOI: 10.3864/j.issn.0578-1752.2010.05.005. (in Chinese)
[8] AN T T, SCHAEFFER S, ZHUANG J, RADOSEVICH M, LI S Y, LI H, PEI J B, WANG J K. Dynamics and distribution of 13C-labeled straw carbon by microorganisms as affected by soil fertility levels in the Black Soil region of Northeast China. Biology and Fertility of Soils, 2015,51:605-613. DOI: 10.1007/s00374-015-1006-3.
[9] 张黛静, 王艳杰, 陈倩青, 杨雪倩, 宗洁静, 李春喜. 不同耕作方式与增施有机肥对麦田土壤有机碳库及小麦产量的影响. 江苏农业科学, 2019,47(11):128-133. DOI: 10.15889/j.issn.1002-1302.2019.11.028.
ZHANG D J, WANG Y J, CHENG Q Q, YANG X Q, ZONG J J, LI C X. Effects of different tillage methods and application of organic fertilizer on soil organic carbon pool and wheat yield in wheat field. Jiangsu Agricultural Sciences, 2019,47(11):128-133. DOI: 10.15889/j.issn.1002–1302.2019.11.028. (in Chinese)
[10] 裴久渤. 玉米秸秆碳在东北旱田土壤中的转化与固定[D]. 沈阳: 沈阳农业大学, 2015.
PEI J B. Transformation and fixation of maize straw carbon in the dryland soils of Northeast China[D]. Shenyang: Shenyang Agricultural University, 2015. (in Chinese)
[11] POIRIER V, ANGERS D A, ROCHETTE P, WHALEN J K. Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil. Biology and Fertility of Soils, 2013,49(5):527-535. DOI: 10.1007/s00374-013-0794-6.
[12] JIN X X, AN T T, GALL A R, LI S Y, FILLEY T, WANG J K. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma, 2018,313:154-162. DOI: 10.1016/j.geoderma.2017.10.036.
[13] 解丽娟. 长期施肥下我国典型农田土壤有机碳与全氮分布特征[D]. 北京: 中国农业科学院, 2011.
XIE L J. Distribution characteristics of soil organic carbon and total nitrogen under long-term fertilization in typical arable land soil of China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[14] 张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019,52(10):1746-1760. DOI: 10.3864/j.issn.0578-1752.2019.10.008.
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019,52(10):1746-1760. DOI: 10.3864/j.issn. 0578-1752.2019.10.008. (in Chinese)
[15] 徐虎, 张敬业, 蔡岸冬, 王小利, 张文菊. 外源有机物料碳氮在红壤团聚体中的残留特征. 中国农业科学, 2015,48(23):4660-4668. DOI: 10.3864/j.issn.0578-1752.2015.23.007.
XU H, ZHANG J Y, CAI A D, WANG X L, ZHANG W J. Residual characteristics of carbon and nitrogen from amendments in different size aggregates of Red Soil. Scientia Agricultura Sinica, 2015,48(23):4660-4668. DOI: 10.3864/j.issn.0578-1752.2015.23.007. (in Chinese)
[16] 王士超, 闫志浩, 王瑾瑜, 槐圣昌, 武红亮, 邢婷婷, 叶洪龄, 卢昌艾. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响. 中国农业科学, 2020,53(4):782-794. DOI: 10.3864/j.issn.0578-1752.2020.04.010.
WANG S C, YAN Z H, WANG J Y, HUAI S C, WU H L, XING T T, YE H L, LU C A. Nitrogen fertilizer and Its combination with straw affect soil labile carbon and nitrogen fractions in paddy fields. Scientia Agricultura Sinica, 2020,53(4):782-794. DOI: 10.3864/j.issn.0578-1752.2020.04.010. (in Chinese)
[17] 闫德智, 王德建, 张刚, 查书平. 15N 标记秸秆在太湖地区水稻土上的氮素矿化特征研究. 土壤学报, 2012,49(1):77-85.
YAN D Z, WANG D J, ZHANG G, CHA S P. Nitrogen mineralization of applied 15N labeled straw in paddy soils in the Taihu lake region. Acta Pedologica Sinica, 2012,49(1):77-85. (in Chinese)
[18] 徐英德, 丁雪丽, 李双异, 孙良杰, 高晓丹, 谢柠桧, 金鑫鑫, 白树彬, 孙海岩, 汪景宽. 不同肥力棕壤全氮和微生物量氮对外源玉米残体氮的响应. 生态学报, 2017,37(20):6818-6826. DOI: 10.5846/stxb201608031602.
XU Y D, DING X L, LI S Y, SUN L J, GAO X D, XIE N H, JIN X X, BAI S B, SUN H Y, WANG J K. Effect of maize-derived nitrogen supplementation on the total and microbial biomass nitrogen of brown earths with different fertility levels. Acta Ecologica Sinica, 2017,37(20):6818-6826. DOI: 10.5846/stxb201608031602. (in Chinese)
[19] 汪景宽, 张继宏, 须湘成, 张旭东, 祝凤春. 地膜覆盖对土壤肥力影响的研究. 沈阳农业大学学报, 1992,23:32-37.
WANG J K, ZHANG J H, XU X C, ZHANG X D, ZHU F C. Effect of mulching on soil fertility. Journal of Shenyang Agricultural University, 1992,23:32-37. (in Chinese)
[20] 王秀芬, 陈百明, 毕继业. 基于县域的地膜覆盖粮食增产潜力分析. 农业工程学报, 2005,21(11):146-149.
WANG X F, CHEN B M, BI J Y. Analysis of potential of grain yield increase under film-mulching condition on a county scale. Transactions of the CSAE, 2005,21(11):146-149. (in Chinese)
[21] LI F M, SONG Q H, JJEMBA P K, SHI Y C. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biology and Biochemistry, 2004,36(11):1893-1902. DOI: 10.1016/j.soilbio.2004.04.040.
[22] ZHOU L M, JIN S L, LIU C A, XIONG Y C, SI J T, LI X G, GAN Y T, LI F M. Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions: opportunities and challenges in a semiarid agroecosystem. Field Crops Research, 2012,126, 181-188. DOI: 10.1016/j.fcr.2011.10.010.
[23] 汪景宽, 王铁宇, 张旭东, 关连珠, 王秋兵, 胡洪祥, 赵永存. 黑土土壤质量演变初探Ⅰ: 不同开垦年限黑土主要质量指标演变规律. 沈阳农业大学学报, 2002,33(1):43-47.
WANG J K, WANG T Y, ZHANG X D, GUAN L Z, WANG Q B, HU H X, ZHAO Y C. An approach to the changes of Black Soil quality (I) Changes of the indices of Black Soil with the year(s) of reclamation. Journal of Shenyang Agricultural University, 2002,33(1):43-47. (in Chinese)
[24] 薛菁芳. 棕壤有机质组分及转化的研究13C和15N双标记法[D]. 沈阳: 沈阳农业大学, 2007.
XUE J F. Studies on organic matter composition and transformation in Brown Soil by 13C and 15N double labeling[D]. Shenyang: Shenyang Agricultural University, 2007. (in Chinese)
[25] 李世朋, 蔡祖聪, 杨浩, 汪景宽. 长期定位施肥与地膜覆盖对土壤肥力和生物学性质的影响. 生态学报, 2009,29(5):2490-2498.
LI S P, CAI Z C, YANG H, WANG J K. Effects of long-term fertilization and plastic film covering on some soil fertility and microbial properties. Acta Ecologica Sinica, 2009,29(5):2489-2498. (in Chinese)
[26] CONRAD R, KLOSE M, YUAN Q, LU Y H, CHIDTHAISONG A. Sable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter. Soil Biology and Biochemistry, 2012,49:193-199. DOI: 10.1016/j.soilbio.2012.02.030.
doi: 10.1016/j.soilbio.2012.02.030
[27] BLAUD A, LERCH T Z, CHEVALLIER T, NUNAN N, CHENU C, BRAUMAN A. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Applied Soil Ecology, 2012,53:1-9. DOI: 10.1016/j.apsoil.2011.11.005.
doi: 10.1016/j.apsoil.2011.11.005
[28] 潘根兴, 周萍, 李恋卿, 张旭辉. 固碳土壤学的核心科学问题与研究进展. 土壤学报, 2007,44(2):327-337.
PAN G X, ZHOU P, LI L Q, ZHANG X H. Core issues and research progresses of soil science of C sequestration. Acta Pedologica Sinica, 2007,44(2):327-337. (in Chinese)
[29] 史康婕, 周怀平, 解文艳, 杨振兴, 程曼. 长期施肥下褐土易氧化有机碳及有机碳库的变化特征. 中国生态农业学报, 2017,25(4):542-552. DOI: 10.13930/j.cnki.cjea.160688.
SHI K J, ZHOU H P, XIE W Y, YANG Z X, CHENG M. Characteristics of readily oxidizable organic carbon and soil organic carbon pool under long-term fertilization in cinnamon soils. Chinese Journal of Eco-Agriculture, 2017,25(4):542-552. DOI: 10.13930/j. cnki.cjea.160688. (in Chinese)
[30] 梁斌, 赵伟, 杨学云, 周建斌. 氮肥及其与秸秆配施在不同肥力土壤的固持及供应. 中国农业科学, 2012,45(9):1750-1757. DOI: 10.3864/j.issn.0578-1752.2012.09.010.
LIANG B, ZHAO W, YANG X Y, ZHOU J B. Nitrogen retention and supply after addition of N fertilizer and its combination with straw in the soils with different fertilities. Scientia Agricultura Sinica, 2012,45(9):1750-1757. DOI: 10.3864/j.issn.0578-1752.2012.09.010. (in Chinese)
[31] 马想, 徐明岗, 赵慧丽, 段英华. 我国典型农田土壤中有机物料腐解特征及驱动因子. 中国农业科学, 2019,52(9):1564-1573. DOI: 10.3864/j.issn.0578-1752.2019.09.008.
MA X, XU M G, ZHAO H L, DUAN Y H. Decomposition characteristics and driving factors of organic materials in typical farmland soils in China. Scientia Agricultura Sinica, 2019,52(9):1564-1573. DOI: 10.3864/j.issn.0578-1752.2019.09.008. (in Chinese)
[32] 王金达, 刘淑霞, 刘景双, 于君宝. 用δ13C方法研究黑土添加有机物料后有机碳的变化规律. 土壤通报, 2005,36(3):333-336. DOI: 10.19336/j.cnki.trtb.2005.03.011.
WANG J D, LIU S X, LIU J S, YU J B. Dynamic change of soil organic carbon in Black soils by δ13C method. Chinese Journal of Soil Science, 2005,36(3):333-336. DOI: 10.19336/j.cnki.trtb.2005.03.011. (in Chinese)
[33] MARSCHNER P, UMAR S, BAUMANN K. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biology and Biochemistry, 2011,43(2):445-451. DOI: 10.1016/j.soilbio.2010.11.015.
doi: 10.1016/j.soilbio.2010.11.015
[34] 程娜, 李双异, 安婷婷, 朱平, 葛壮, 刘旭, 张维俊, 郭昆, 汪景宽. 不同施肥处理土壤覆膜后秸秆碳对土壤有机碳的贡献. 水土保持学报, 2020,34(2):195-200. DOI: 10.13870/j.cnki.stbcxb.2020.02.028.
CHENG N, LI S Y, AN T T, ZHU P, GE Z, LIU X, ZHANG W J, GUO K, WANG J K. Contribution of straw carbon to soil organic carbon in different fertilization treatments with plastic film mulching. Journal of Soil and Water Conservation, 2020,34(2):195-200. DOI: 10.13870/j.cnki.stbcxb.2020.02.028. (in Chinese)
[35] 杨艳华, 苏瑶, 何振超, 喻曼, 陈喜靖, 沈阿林. 还田秸秆碳在土壤中的转化分配及对土壤有机碳库影响的研究进展. 应用生态学报, 2019,30(2):668-676. DOI: 10.13287/j.1001–9332.201902.026.
pmid: 30915820
YANG Y H, SU Y, HE Z C, YU M, CHEN X J, SHEN A L. Transformation and distribution of straw-carbon in soil and the effects on soil organic carbon pool. Chinese Journal of Applied Ecology, 2019,30(2):668-676. DOI: 10.13287/j.1001–9332.201902.026. (in Chinese)
pmid: 30915820
[36] 王金洲. 秸秆还田的土壤有机碳周转特征[D]. 北京: 中国农业大学, 2015.
WANG J Z. Soil organic carbon turnover under straw return[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[37] ZHENG L H, PEI J B, JIN X X, SEAN S, AN T T, WANG J K. Impact of plastic film mulching and fertilizers on the distribution of straw derived nitrogen in a soil-plant system based on 15N-labeling . Geoderma, 2018,317:15-22. DOI: 10.1016/j.geoderma.2017.12.020.
[38] 陈兴丽, 周建斌, 刘建亮, 高忠霞, 杨学云. 不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响. 应用生态学报, 2009,20(2):1-6.
CHEN X L, ZHOU J B, LIU J L, GAO Z X, YANG X Y. Effects of fertilization on carbon/nitrogen ratio of maize straw and its mineralization in soil. Chinese Journal of Applied Ecology, 2009,20(2):1-6. (in Chinese)
[39] LEMKE R L, VANDENBYGAART A J, CAMPBELL C A, LAFOND G P, GRANT B. Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agriculture, Ecosystems and Environment, 2010,135(1-2):42-51. DOI: 10.1016/j.agee.2009.08.010.
[40] SCHIPPER L A, SPARLING G P. Accumulation of soil organic C and change in C:N ratio after establishment of pastures on reverted scrubland in New Zealand. Biogeochemistry, 2011,104, 49-58. DOI: 10.1007/s10533-009-9367-z.
[41] LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304, 1623-1627.
doi: 10.1126/science.1097396 pmid: 15192216
[42] 陈林, 杨新国, 翟德苹, 宋乃平, 杨明秀, 候静. 柠条秸秆和地膜覆盖对土壤水分和玉米产量的影响. 农业工程学报, 2015,31(2):108-116. DOI: 10.3969/j.issn.1002-6819.2015.02.016.
CHEN L, YANG X G, ZHAI D P, SONG N P, YANG M X, HOU J. Effects of mulching with Caragana powder and plastic film on soil water and maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(2):108-116. DOI: 10.3969/j.issn. 1002-6819.2015.02.016. (in Chinese)
[43] HAI L, LI X G, LIU X E, JIANG X J, GUO R Y, JING G B, RENGEL Z, LI F M. Plastic mulch increase soil nitrogen mineralization in a semiarid environment. Agronomy Journal, 2015,107:921-930. DOI: 10.2134/agronj14.0538.
doi: 10.2134/agronj14.0538
[44] ZHANG H Y, LIU Q J, YU X X, LU G, WU Y Z. Effects of plastic mulch duration on nitrogen mineralization and leaching in peanut (Arachis hypogaea) cultivated land in the Yimeng Mountainous Area, China. Agriculture, Ecosystems and Environment, 2012,158:164-171. DOI: 10.1016/j.agee.2012.06.009.
doi: 10.1016/j.agee.2012.06.009
[45] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010,327(5968):1008-10. DOI: 10.1126/science.1182570.
doi: 10.1126/science.1182570 pmid: 20150447
[46] 沈新磊, 黄思光, 王俊, 凌莉, 李世清, 李凤民. 半干旱农田生态系统地膜覆盖模式和施氮对小麦产量和氮效率的效应. 西北农林科技大学学报(自然科学版), 2003,31(1):1-13. DOI: 10.13207/j.cnki.jnwafu.2003.01.002.
SHEN X L, HUANG S G, WANG J, LING L, LI S Q, LI F M. Effects of plastic film mulching models and nitrogen fertilizer on wheat yield and nitrogen efficiency. Journal of Northwest A & F University (Natural Science Edition), 2003,31(1):1-13. DOI: 10.13207/j.cnki.jnwafu.2003.01.002. (in Chinese)
[47] 汪景宽, 张旭东, 张继宏, 须湘成, 范冬梅, 祝凤春. 覆膜对有机物料的腐解及土壤有机质特性的影响. 植物营养与肥料科学, 1995,1(3-4):22-28.
WANG J K, ZHANG X D, ZHANG J H, XU X C, FAN D M, ZHU F C. Effects of covering with plastic film on decomposition of organic materials and characteristics of soil organic matter. Plant Nutrition and Fertilizer Science, 1995,1(3-4):22-28. (in Chinese)
[48] 吕殿青, 张树兰, 杨学云. 外加碳、氮对土壤氮矿化、固定与激发效应的影响. 植物营养与肥料学报, 2007,13(2):223-229.
LǗ D Q, ZHANG S L, YANG X Y. Effect of supplying C and N on the mineralization, immobilization and priming effect of soil nitrogen. Plant Nutrition and Fertilizer Science, 2007,13(2):223-229. (in Chinese)
[1] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[2] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[3] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[4] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[5] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[6] ZHANG JinRui,REN SiYang,DAI JiZhao,DING Fan,XIAO MouLiang,LIU XueJun,YAN ChangRong,GE TiDa,WANG JingKuan,LIU Qin,WANG Kai,ZHANG FuSuo. Influence of Plastic Film on Agricultural Production and Its Pollution Control [J]. Scientia Agricultura Sinica, 2022, 55(20): 3983-3996.
[7] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[8] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[9] WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
[10] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[11] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
[12] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[13] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[14] YIN Wen,GUO Yao,FAN Hong,FAN ZhiLong,HU FaLong,YU AiZhong,ZHAO Cai,CHAI Qiang. Effects of Different Plastic Film Mulching and Using Patterns on Soil Water Use of Maize in Arid Irrigated Area of Northwestern China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4750-4760.
[15] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!