Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (1): 34-45.doi: 10.3864/j.issn.0578-1752.2021.01.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis on the Characteristics of Soluble Sugar Components in Sweetpotato Storage Root and Its Relationship with Taste

SHEN ShengFa(),XIANG Chao,WU LieHong(),LI Bing,LUO ZhiGao   

  1. Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
  • Received:2020-05-21 Accepted:2020-07-06 Online:2021-01-01 Published:2021-01-13
  • Contact: LieHong WU E-mail:3398809937@qq.com;zwsgsz@mail.zaas.cn

Abstract:

【Objective】The soluble sugar content in sweetpotato storage root is an important indicator of edible quality and processing performance. The study on the characteristics of soluble sugar components and their relationship with edible quality can help to understand the changes of soluble sugar components and their influence on taste during processing, providing a basis for the selection of varieties for table use and processing, and breeding and utilization of germplasm resources for special use. 【Method】 The content of soluble sugar components in raw and steamed storage roots of 102 sweetpotato germplasm were determined by high performance liquid chromatography with evaporative light scattering detector (HPLC-ELSD). The characteristics were analyzed according to dry matter content types, and correlation and stepwise linear regression were used to analyze the relationship between soluble sugar components and taste and their contribution to edible quality. 【Result】 There were four soluble sugars of fructose, glucose, sucrose and maltose in both raw and steamed storage roots. In the raw storage root, the sucrose content was the highest, with an average content of 25.79 mg·(g·FW)- 1, accounting for 45.31% of the soluble sugar. The fructose and glucose content were similar and closely related, and the fitting equation for fructose content (y) and glucose content (x) was y = 0.807x + 1.275. The maltose content was the lowest, with an average content of 6.79 mg·(g·FW)-1, which only accounts for 11.92% of the soluble sugar. The content of soluble sugar in raw storage root mainly depended on the fructose and glucose content. Generally, the varieties with low dry matter content had higher content of soluble sugar and fructose in raw storage root, and the biochemical sweetness was better. During the process of steaming, the changes of soluble sugar content were mainly due to the production of a large number of maltose, which increased from 0.96-24.67 mg·(g·FW)-1 of raw root to 14.80-136.16 mg·(g·FW)-1. The content of soluble sugar in steamed storage root was determined by the maltose content, and the variety types with medium or high dry matter content had higher content of soluble sugar and maltose. The improvement of taste quality mainly attributed to the increasing soluble sugar content during the process of steaming. Maltose, fructose and sucrose were the important factors affecting the taste quality, and maltose contributed nearly 50% to the increase of taste quality, particularly to the flavor and texture. Fructose content contributed the most to the viscosity while sucrose contributed more to the texture than fructose. 【Conclusion】 The content of soluble sugar and fructose in raw storage root was an important indicator to evaluate the sweetness of raw sweetpotato. The content of soluble sugar and maltose in steamed storage root was an important indicator to evaluate the edible quality of sweetpotato. Maltose, fructose and sucrose were the important soluble sugar components that determined the edible quality and processing performance of sweetpotato. In this study, 11 sweetpotato germplasm with specific soluble sugar in storage root was selected.

Key words: sweetpotato, germplasm resource, soluble sugar component, edible quality, correlation

Fig. 1

Distribution of dry matter content of the test group"

Table 1

The content of soluble sugar components in raw and steamed storage roots of different dry matter content types"

类型
Type
项目
Item
生薯Raw (mg·(g·FW)-1) 熟薯Steamed (mg·(g·FW)-1)
Fru Glu Suc Mal Sol Fru Glu Suc Mal Sol
试验群体
Test group
最小值Min 1.82 1.58 6.49 0.92 34.27 1.88 1.09 7.24 14.80 56.70
最大值Max 26.05 30.46 59.21 24.67 82.99 25.14 27.09 60.23 136.16 172.95
平均值Mean 11.58 12.76 25.79 6.79 56.91 10.09 10.75 26.38 63.85 111.07
变异系数CV(%) 50.46 55.35 37.93 61.08 15.50 53.99 57.73 38.36 43.80 21.92
比例Proportion (%) 20.34 22.43 45.31 11.92 100.00 9.08 9.68 23.75 57.49 100.00
低干物率
Low dry matter
content
最小值Min 9.75 10.05 7.90 0.92 45.18 8.30 8.35 8.35 14.80 56.70
最大值Max 26.05 30.46 59.21 10.13 82.99 25.14 27.09 60.23 82.03 138.44
平均值Mean 16.86 18.63 23.17 4.00 62.67 14.87 15.79 24.08 46.35 101.08
变异系数CV(%) 23.87 28.01 44.81 53.85 11.57 29.48 31.49 44.51 36.34 16.55
比例Proportion (%) 26.91 29.73 36.98 6.38 100.00 14.71 15.62 23.82 45.85 100.00
中干物率
Medium dry
matter content
最小值Min 1.82 1.58 12.41 3.00 38.55 1.92 1.42 11.64 28.15 65.33
最大值Max 19.60 26.28 41.05 14.12 71.26 17.78 21.43 44.68 121.62 162.76
平均值Mean 11.29 12.85 25.29 7.26 56.69 9.82 10.91 25.56 70.70 117.00
变异系数CV(%) 38.63 44.42 29.53 45.51 13.61 39.83 44.94 29.63 37.49 21.43
比例Proportion (%) 19.92 22.66 44.61 12.81 100.00 8.39 9.33 21.85 60.43 100.00
高干物率
High dry
matter content
最小值Min 2.33 2.33 6.49 2.48 34.27 1.88 1.09 7.24 18.93 66.53
最大值Max 15.32 21.22 43.34 24.67 64.99 12.53 16.86 47.21 136.16 172.95
平均值Mean 6.75 7.14 28.60 9.11 51.60 5.73 5.87 29.10 75.88 116.59
变异系数CV(%) 49.04 59.71 34.12 49.29 14.21 49.53 61.58 35.46 38.18 22.99
比例Proportion (%) 13.08 13.83 55.42 17.66 100.00 4.91 5.04 24.96 65.09 100.00

Fig. 2

The content difference of soluble sugar components between before and after steaming at group level Different letters indicated significant difference (P<0.05)"

Table 2

Content increment of soluble sugar components after steaming"

组分
Component
增量Increment (mg·(g·FW)-1) 正向增量Positive increment
最小值
Min
最大值
Max
平均值
Mean
含量占比
Proportion of content (%)
品种数
No. of variety
品种数占比
Proportion of variety No. (%)
Fru -4.95 1.86 -1.46 -1.40 15 14.71
Glu -6.42 2.04 -1.97 -1.90 8 7.84
Suc -6.03 8.80 0.64 0.51 60 58.82
Mal 5.21 122.41 57.51 49.41 102 100.00
Sol -3.46 123.94 54.73 46.62 101 99.02

Table 3

Correlation coefficient between soluble sugar components, dry matter content, and taste"

品质性状
Quality trait
生薯Raw 熟薯Steamed 干物率
Dry matter
content
食味Taste
Fru Glu Suc Mal Sol Bcs Fru Glu Suc Mal Sol Bcs Swe Vis Tex Fra Fib
生薯
Raw
Glu 0.976**
Suc -0.624** -0.623**
Mal -0.517** -0.507** 0.155
Sol 0.509** 0.518** 0.269** -0.107
Bcs 0.742** 0.732** 0.049 -0.437** 0.927**
熟薯
Steamed
Fru 0.974** 0.947** -0.592** -0.504** 0.509** 0.734**
Glu 0.960** 0.978** -0.607** -0.510** 0.507** 0.722** 0.975**
Suc -0.584** -0.589** 0.953** 0.188 0.287** 0.065* -0.535** -0.560**
Mal -0.393** -0.353** -0.099 0.540** -0.399** -0.538** -0.394** -0.351** -0.097
Sol -0.232* -0.189 -0.005 0.456** -0.096 -0.243* -0.203* -0.162 0.042 0.931**
Bcs 0.346** 0.362** 0.037 0.017 0.568** 0.517** 0.422** 0.426** 0.154 0.331** 0.647**
干物率
Dry matter content
-0.810** -0.774** 0.280** 0.599** -0.565** -0.769** -0.787** -0.764** 0.265** 0.541** 0.361** -0.267**
食味
Taste
Swe -0.080 -0.053 0.170 0.308** 0.238* 0.093 -0.070 -0.039 0.135 0.563** 0.677** 0.567** 0.101
Vis 0.317** 0.328** -0.177 -0.037 0.259** 0.279** 0.301** 0.332** -0.235* 0.392** 0.504** 0.541** -0.274** 0.684**
Tex -0.235* -0.213* 0.187 0.366** 0.052 -0.100 -0.226* -0.197* 0.144 0.643** 0.698** 0.445** 0.251* 0.827** 0.673**
Fra -0.141 -0.108 0.084 0.298** 0.053 -0.065 -0.128 -0.092 0.045 0.649** 0.712** 0.486** 0.193 0.875** 0.654** 0.817 **
Fib 0.138 0.131 -0.078 -0.018 0.101 0.115 0.143 0.130 -0.073 0.235* 0.304** 0.327** -0.044 0.464** 0.380** 0.416** 0.537**
Tts -0.014 0.008 0.077 0.247* 0.199* 0.091 -0.014 0.017 0.029 0.604** 0.707** 0.576** 0.060 0.957** 0.785** 0.855** 0.917** 0.543**

Table 4

Correlation coefficient between dry matter content and soluble sugar and taste in different dry matter content types"

类型 熟薯Steamed 食味Taste
Type Fru Glu Suc Mal Sol Swe Vis Tex Fra Tts
低干物率和中干物率 -0.661** -0.617** 0.23 0.626** 0.496** 0.306* 0.231 0.557** 0.429** 0.324**
Low and medium dry matter content
高干物率 High dry matter content -0.372* -0.385* 0.019 0.277 0.216 -0.006 -0.203 -0.111 -0.03 -0.025

Table 5

Contribution rate of soluble sugar increment to taste after steaming"

食味指标
Taste index
最优标准化回归方程
Optimal standardized regression equation
偏相关系数Partial correlation coefficient 贡献率Contribution rate(%)
x1 x2 x1 x2
Tts y = 76.817+1.567x1+2.418x2 0.548** 0.707** 39.32 60.68
Swe y = 76.606+1.418x1+2.016x2 0.564** 0.692** 41.29 58.71
Vis y = 75.762+2.444x1+3.000x2 0.459** 0.531** 44.89 55.11
Tex y = 77.319+1.240x1+2.599x2 0.445** 0.718** 32.30 67.70
Fra y = 77.378+1.134x1+2.341x2 0.423** 0.689** 32.63 67.37

Table 6

Contribution rate of soluble sugar increment to taste in steamed storage root"

食味指标
Taste index
最优标准化回归方程
Optimal standardized regression equation
偏相关系数Partial correlation coefficient 贡献率Contribution rate (%)
Fru (x1) Suc (x3) Mal (x4) Fru (x1) Suc (x3) Mal (x4)
Tts y = 77.053+1.676x1+1.206x3+2.644x4 0.494** 0.398** 0.716** 30.33 21.82 47.85
Swe y = 76.796+1.276x1+1.161x3+2.118x4 0.432** 0.419** 0.672** 28.01 25.49 46.50
Vis y = 76.198+3.961x1+1.259x3+3.818x4 0.626** 0.261** 0.662** 43.83 13.93 42.24
Tex y = 77.527+1.192x1+1.359x3+2.762x4 0.374** 0.438** 0.730** 22.44 25.58 51.99
Fra y = 77.548+1.055x1+0.893x3+2.436x4 0.330** 0.300** 0.678** 24.06 20.37 55.57

Table 7

The content of main soluble sugar components and taste in 11 special germplasm"

种质名称
Germplasm name
干物率
Dry matter content (%)
生薯Raw 熟薯Steamed 食味
Taste
Fru
(mg·(g·FW)-1)
Suc
(mg·(g·FW)-1)
Sol
(mg·(g·FW)-1)
Bcs Mal
(mg·(g·FW)-1)
Sol
(mg·(g·FW)-1)
Bcs
雪梨番薯
Xuelifanshu
19.24 26.05 12.13 68.63 78.71 28.17 93.04 85.46 75.3
南瓜番薯
Nanguafanshu
21.02 24.31 17.57 68.70 78.44 16.63 86.77 87.35 77.3
浙薯81
Zheshu 81
22.81 10.04 59.21 82.99 85.55 25.68 103.45 90.21 76.7
蜜东
Midong
27.77 11.87 17.80 47.40 48.95 121.62 157.55 81.64 81.3
金瓜番薯
Jinguafanshu
26.45 12.52 33.42 67.18 67.86 82.46 146.50 98.04 81.7
心香
Xinxiang
31.56 11.15 24.30 53.08 54.52 97.76 144.83 85.51 83.3
梓桐黄心
Zitonghuangxin
35.25 8.68 15.48 41.23 39.90 129.71 160.32 79.46 83.0
浙薯13
Zheshu 13
38.42 4.01 27.43 49.01 41.93 136.16 172.95 86.43 82.7
杭州番薯
Hangzhoufanshu
34.54 4.09 43.34 64.52 57.66 18.93 70.81 60.07 72.0
苋菜番薯
Xiancaifanshu
31.30 4.89 40.90 56.99 55.22 21.76 66.53 54.07 73.3
武义白心
Wuyibaixin
30.52 11.29 6.49 34.72 35.38 64.65 87.00 49.31 72.3
[1] ZHU F, XIE Q. Structure of New Zealand sweetpotato starch. Carbohydrate Polymers, 2018(188):181-187.
[2] SHIKUKU K M, OKELLO J J, WAMBUGU S, SINDI K, LOW J W, MCEWAN M. Nutrition and food security impacts of quality seeds of biofortified orange-fleshed sweetpotato: Quasi-experimental evidence from Tanzania. World Development, 2019,124:e104646.
[3] LOW J W, THIELE G. Understanding innovation: The development and scaling of orange-fleshed sweetpotato in major African food systems. Agricultural Systems, 2020,179:e102770.
[4] BECHOFF A, DUFOUR D, DHUIQUE-MAYER C, MAROUAE C, REYNES M, WESTBY A. Effect of hot air, solar and sun drying treatments on provitamin A retention in orange-flfleshed sweetpotato. Journal of Food Engineering, 2019,92(2):164-171.
doi: 10.1016/j.jfoodeng.2008.10.034
[5] HUMMEL M, TALSMA E F, DER HONING A V, GAMA A C, VAN VUGT D, BROUWER I D, SPILLANE C, MARIJKE H, ELISE T, ATI V H, ARTHUR C G, DANIEL V V, INGE D B, CHARLES S. Sensory and cultural acceptability tradeoffs with nutritional content of biofortified orange-fleshed sweetpotato varieties among households with children in Malawi. PLoS ONE, 2018,13(10):e0204754.
doi: 10.1371/journal.pone.0204754 pmid: 30335772
[6] KATAYAMA K, KOBAYSHI A, SAKAI T, KURANOUCHI T, Kai Y. Recent progress in sweetpotato breeding and cultivars for diverse applications in Japan. Breeding Science, 2017,67(1):3-14.
doi: 10.1270/jsbbs.16129 pmid: 28465663
[7] HUANG A S, TANUDJAJA L, LUM D. Content of Alpha-, Beta-carotene and dietary fiber in 18 sweetpotato varieties grown in Hawaii. Journal of Food Composition and Analysis, 1999,12(2):147-151.
doi: 10.1006/jfca.1999.0819
[8] 沈升法, 吴列洪, 李兵. 紫肉甘薯部分营养成分与食味的关联分析. 中国农业科学, 2015,48(3):555-564.
doi: 10.3864/j.issn.0578-1752.2015.03.15
SHEN S F, WU L H, LI B. Association analysis between part nutritional compositions and taste of purple-fleshed sweetpotato. Scientia Agricultura Sinica, 2015,48(3):555-564. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.03.15
[9] NABUBUYA A, NAMUTEBI A, BYARUHANGA Y B, NARVHUS J, WICKLUND T. Influence of development, postharvest handling, and storage conditions on the carbohydrate components of sweetpotato (Ipomea batatas Lam.) roots. Food Science & Nutrition, 2017,5(6):1088-1097.
doi: 10.1002/fsn3.496 pmid: 29188036
[10] WEI S Y, LU G Q, CAO H P. Effects of cooking methods on starch and sugar composition of sweetpotato storage roots. PLoS ONE, 2017,12(8):e0182604.
doi: 10.1371/journal.pone.0182604 pmid: 28827808
[11] 吴列洪, 沈升法, 李兵. 甘薯甜度与薯块蒸煮前后糖分的相关性研究. 中国粮油学报, 2012,27(9):25-28.
WU L H, SHEN S F, LI B. Study on the correlation between sweetness and sugar of sweet potato before and after steaming. Journal of the Chinese Cereals and Oils Association, 2012,27(9):25-28. (in Chinese)
[12] PICHA D H. HPLC determination of sugars in raw and baked sweetpotatoes. Journal of Food Science, 1985,50(4):1189-1210.
doi: 10.1111/jfds.1985.50.issue-4
[13] MORRISON T A, PRESSEY R, KAYS S J. Changes in alpha- and beta-amylase during storage of sweetpotato lines with varying starch hydrolysis potential. Journal of the American Society for Horticultural Science, 1993,118(2):236-242.
doi: 10.21273/JASHS.118.2.236
[14] LA BONTE D R, PICHA D H, JOHNSON H A. Carbohydrate-related changes in sweetpotato storage roots during development. Journal of the American Society for Horticultural Science, 2000,125(2):200-204.
doi: 10.21273/JASHS.125.2.200
[15] HUANG Y H, PICHA D H, KILIKI A W, JOHNSON C E. Changes in invertase activities and reducing sugar content in sweetpotato stored at different temperatures. Journal of Agricultural and Food Chemistry, 1999,47(12):4927-4931.
doi: 10.1021/jf9902191 pmid: 10606553
[16] HUANG C L, LIAO W C, CHAN C F, LAI Y C. Storage performance of Taiwanese sweet potato cultivars. Journal of Food Science and Technology, 2014,51(12):4019-4025.
doi: 10.1007/s13197-013-0960-8 pmid: 25477675
[17] YOOYONGWECH S, SAMPHUMPHUNG T, TISARAM R, THEERAWJTAYA C, CHAUM S. Physiological, morphological changes and storage root yield of sweetpotato [Ipomoea batatas (L.) Lam.] under PEG-induced water stress. Notulae Botanicae Horti Agrobotanici Cluj-napoca, 2017,45(1):164-171.
doi: 10.15835/nbha45110651
[18] LI X, YANG H Q, LU G Q. Low-temperature conditioning combined with cold storage inducing rapid sweetening of sweetpotato tuberous roots (Ipomoea batatas (L.) Lam) while inhibiting chilling injury. Postharvest Biology and Technology, 2018,142:1-9.
doi: 10.1016/j.postharvbio.2018.04.002
[19] DE ARAUJOA N O, VERASB M L, SANTOSA M N, DE ARAUJOB F F, TELLOB J P, FINGER F L. Sucrose degradation pathways in old-induced sweetening and its impact on the non- enzymatic darkening in sweet potato root. Food Chemistry, 2020,312:e125904.
[20] GRABOWSKI J A, TRUONG V D, DAUBERT C R. Nutritional and rheological characterization of spray dried sweetpotato powder. Food Science and Technology, 2008,41(2):206-216.
[21] LAI Y C, HUANG C L, CHAN C F, LIEN C Y, LIAO W C. Studies of sugar composition and starch morphology of baked sweet potatoes (Ipomoea batatas (L.) Lam). Journal of Food Science and Technology, 2013,50(6):1193-1199.
doi: 10.1007/s13197-011-0453-6 pmid: 24426034
[22] 张文婷, 陆秋艳. 亚热带水果中糖组分的测定及分析. 营养学报, 2019,41(3):308-312.
ZHANG W T, LU Q Y. Determination and analysis of sugars in subtropical fruits. Acta Nutrimenta Sinica, 2019,41(3):308-312. (in Chinese)
[23] CHAN C F, CHIANG C M, LAI Y C, HUANG C L, KAO S C, LIAO W C. Changes in sugar composition during baking and their effects on sensory attributes of baked sweet potatoes. Journal of Food Science and Technology, 2014,51(12):4072-4077.
doi: 10.1007/s13197-012-0900-z pmid: 25477683
[24] 占雷雷, 朱国鹏, 刘永华. 4种蔗糖分解酶在甘薯块根品质形成中的作用. 热带作物学报, 2019,40(9):1723-1728.
ZHAN L L, ZHU G P, LIU Y H. Differential roles of four sucrose-degrading enzymes in the formation of qualities of the storage roots of sweetpotato. Chinese Journal of Tropical Crops, 2019,40(9):1723-1728. (in Chinese)
[25] REES D, OIRSCHOT Q, AKED J. The role of carbohydrates in wound-healing of sweetpotato roots at low humidity. Postharvest Biology and Technology, 2008,50(1):79-86.
doi: 10.1016/j.postharvbio.2008.03.019
[26] YAN H, LI Q, ZHANG Y G, WANG X, LIU Y J, KOU M, TANG W, MA D F. Effects of soil environment on traits of purple-fleshed sweetpotato. Agricultrual Science & Technology, 2017,18(3):516-520, 523.
[27] 陈金斌. HPLC- ELSD法检测蜂蜜饮料中4种可溶性糖含量. 食品研究与开发, 2016,37(24):140-143.
CHEN J B. Determination of 4 kinds soluble sugar in honey drink by HPLC-ELSD. Food Research and Development, 2016,37(24):140-143. (in Chinese)
[28] 张英, 石雪萍, 张卫明. HPLC-ELSD法与 HPLC-RID法检测蜂蜜中糖分的比较. 中国野生植物资源, 2009,28(1):43-47.
ZHANG Y, SHI X P, ZHANG W M. Comparison of HPLC-ELSD and HPLC-RID methods in detecting the sugar of honey. Chinese Wild Plant Resources, 2009,28(1):43-47. (in Chinese)
[29] 张娟, 于有伟, 张丽. 加工方法及提取因素对甘薯中可溶性糖含量影响的研究. 食品工业科技, 2013,34(21):254-258, 261.
ZHANG J, YU Y W, ZHANG L. The influential research of processing method and extraction factors on the soluble sugar content of sweet potato. Science and Technology of Food Industry, 2013,34(21):254-258, 261. (in Chinese)
[30] 卞科, 刘孝沾. 甘薯中可溶性糖的 HPLC 法测定及其在加工中的变化研究. 河南工业大学学报(自然科学版), 2012,33(1):1-5.
BIAN K, LIU X Z. Determination of soluble sugars in sweet potato by HPLC and its changes during processing. Journal of Henan University of Technology (Natural Science Edition), 2012,33(1):1-5. (in Chinese)
[31] SATO A, TRUONG V D, JOHANNINGSMEIER S D, REYNOLDS R, PECOTA K V, YENCHO G C. Chemical constituents of sweetpotato genotypes in relation to textural characteristics of processed French fries. Journal of Food Science, 2018,83(1):60-73.
doi: 10.1111/1750-3841.13978 pmid: 29178339
[32] LEBOT V. Rapid quantitative determination of maltose and total sugars in sweet potato (Ipomoea batatas L. [Lam.]) varieties using HPTLC. Journal of Food Science and Technology, 2017,54(3):718-726.
doi: 10.1007/s13197-017-2510-2 pmid: 28298685
[33] SUN J B, SEVERSON R F, KAYS S J. Effect of heating temperature and microwave pretreatment on the formation of sugars and volatiles in Jewel sweetpotato. Journal of Food Quality, 1994,17(6):447-456.
doi: 10.1111/jfq.1994.17.issue-6
[34] 韩磊, 唐金鑫, 吴亚飞, 王宗濂. 含糖类物料的喷雾干燥. 林产化学与工业, 2006,26(2):117-121.
HAN L, TANG J X, WU Y F, WANG Z L. Spray drying of substances containing sugars. Chemistry and Industry of Forest Products, 2006,26(2):117-121. (in Chinese)
[35] 周张涛, 袁博, 王志荣, 田华, 何东平. 不同还原糖对浓香葵花籽油风味的影响. 食品工业, 2019,40(7):20-23.
ZHOU Z T, YUAN B, WANG Z R, TIAN H, HE D P. Effect of different reducing sugars on mail lard reaction flavor of fragrant sunflower seed oil and process optimization. The Food Industry, 2019,40(7):20-23. (in Chinese)
[36] 刘俊辉, 张建勋, 宗永立. 食品香味释放. 化学通报, 2010,23(12):1099-1105.
LIU J H, ZHANG J X, ZONG Y L. Progress of flavor release from foods. Chemistry Online, 2010,23(12):1099-1105. (in Chinese)
[1] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[4] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[5] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[6] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[7] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[8] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[9] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[10] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[11] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[12] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[13] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[14] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[15] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!