Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (1): 19-33.doi: 10.3864/j.issn.0578-1752.2021.01.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Chilling Tolerance Identification and Response to Cold Stress of Gossypium hirsutum Varieties (Lines) During Germination Stage

ZHANG LongYan1,2(),CHENG GongMin2,WEI HengLing2,WANG HanTao2,LU JianHua2,MA ZhiYing1(),YU ShuXun2()   

  1. 1Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, Hebei
    2Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2020-04-22 Accepted:2020-06-21 Online:2021-01-01 Published:2021-01-13
  • Contact: ZhiYing MA,ShuXun YU E-mail:15614991132@163.com;mzhy@hebau.edu.cn;ysx195311@163.com

Abstract:

【Objective】In this study, the purpose was to study the response of cotton seeds to chilling stress, and to identify the chilling tolerance of different test varieties during the germination period in Gossypium hirsutum. We were also committed to analyzing the cold-tolerance characteristics of tolerant and sensitive varieties at the physiological levels, and to provide a reference for further research on the molecular mechanism of cold tolerance during the germination period. 【Method】Fifty-three upland cotton varieties were used to determine the imbibition rate and relative imbibition rate under chilling stress. In addition, we also measured the cold tolerance indexes such as germination index, vigor index, mean germination time, average germination speed, germination potential, germination rate, seed germination coefficient, radicle fresh weigh, radicle dry weight, embryo fresh weight, embryo dry weight, productive efficiency and material growth rate under chilling stress. We used correlation analysis, principal component analysis, membership function analysis and cluster analysis to comprehensively evaluate the 15 morphological indexes in the imbibition and germination stage. We also measured the changes in antioxidant enzyme activities, osmotic adjustment substance concentration and the expression of antioxidant enzyme genes between different cold-tolerant varieties under chilling stress. 【Result】Under chilling stress, the relative water absorption and water absorption rate of cotton seeds showed a downward trend, and the cold tolerance indexes of 53 cotton varieties showed significant differences. There was a strong correlation between imbibition rate and relative imbibition rate during the imbibition stage, and their correlations with other germination indicators were not significant or negatively correlated. In addition, the correlation analysis also found that indicators such as radicle fresh or dry weigh, vigor index, average germination speed and mean germination time could better reflect the cold tolerance of different varieties. Principal component analysis showed that three principal components could be obtained through simplification, with contribution rates of 55.17%, 18.27% and 8.79%, respectively. The results of membership function and clustering analysis showed that the 53 varieties could be divided into four categories according to comprehensive evaluation value: high tolerant (5 varieties), tolerant (13 varieties), null-tolerant (26 varieties) and sensitive (9 varieties), of which Xinluzhong4 and Zhong103026 are the most resistant and sensitive variety to cold stress, respectively. After chilling treatment, the activity of SOD, POD and CAT in the seeds of Xinluzhong4 could be restored to the level close to or exceeding the control in a short time, the soluble protein concentration in Xinluzhong4 was significantly higher than that in Zhong103026. Gene expression analysis showed that the expression of GhPrx53 and GhCSD1 tended to be consistent with the changes of POD and SOD enzyme activity, respectively. 【Conclusion】The identification indexes of cold tolerance in upland cotton at the germination stage are diversified. The radicle fresh weight, radicle dry weight and vigor index can be used as positive indicators for cold tolerance, while the mean germination time and average germination speed can be used as negative indicator for cold tolerance during the germination period. Soluble protein concentration and the enzyme activities of POD, SOD and CAT can be used as physiological indicators for cold tolerance identification during cotton germination.

Key words: Gossypium hirsutum L., germinating stage, chilling tolerance, comprehensive evaluation, physiological characteristics

Fig. 1

The relative water absorption and water absorption rate for different cottons during seed germination under different temperature environments"

Table 1

Differences in chilling-tolerance indices of different cottons at germination stage"

指标
Indices
极小值
Minimum
极大值
Maximum
均值
Average
标准差
Standard deviation
偏度
Skewness
峰度
Kurtosis
变异系数
Coefficient variation
吸胀速率IR(%) 0.070 0.619 0.279 0.147 0.480 -0.859 0.527
相对吸胀速率RIR 0.244 1.003 0.588 0.147 0.044 0.246 0.250
芽鲜重RFW (g) 0.310 4.060 2.061 0.791 -0.005 0.555 0.384
胚鲜重EFW (g) 13.110 24.173 16.308 2.121 1.526 3.721 0.130
芽干重RDW (g) 0.094 0.646 0.367 0.108 -0.167 0.950 0.294
胚干重EDW (g) 5.890 11.927 7.904 1.117 1.548 3.766 0.141
物质增长率MGR 0.007 0.239 0.109 0.058 0.218 -0.823 0.533
物质效率PE 0.038 0.345 0.185 0.063 0.021 0.491 0.339
平均发芽速度AGS 5.102 10.552 7.465 1.413 0.495 -0.580 0.189
发芽指数GI 2.342 19.985 13.201 4.014 -0.834 0.430 0.304
活力指数VI 0.860 78.310 29.845 16.441 0.542 1.176 0.551
平均发芽时间MGT (d) 4.989 10.180 7.169 1.277 0.486 -0.380 0.178
发芽势GP(%) 0.003 0.823 0.146 0.181 1.951 3.851 1.235
发芽率GR(%) 0.033 0.997 0.585 0.308 -0.337 -1.267 0.525
萌发指数SGC 0.068 1.721 0.851 0.430 -0.044 -0.843 0.505

Table 2

Coefficients and contribution of comprehensive indexes at germination stage"

项目Items 指标 Indices CI1 CI2 CI3
特征向量
Eigenvector
VI 0.335 0.053 0.060
SGC 0.333 -0.129 -0.042
AGS -0.333 0.141 0.011
GI 0.331 -0.141 -0.016
MGT -0.330 0.132 0.014
GR 0.321 -0.151 -0.024
RFW 0.315 0.107 0.079
RDW 0.284 0.186 0.086
MGR 0.258 -0.150 -0.031
GP 0.238 -0.066 -0.020
EDW 0.117 0.516 0.171
EFW 0.132 0.490 0.109
IR -0.077 -0.365 0.481
RIR -0.054 -0.298 0.632
PE -0.028 -0.315 -0.553
特征根Eigenvalue 2.877 1.656 1.148
贡献率Contribution (%) 55.169 18.274 8.786
累计贡献率Cumulative contribution (%) 55.169 73.443 82.229

Table 3

Value of each comprehensive index (CI), index weight, μ(X), and comprehensive evaluation value (D value)"

品种(系)
Variety (line)
CI1 CI2 CI3 μ(X1) μ(X2) μ(X3) D
D value
综合排名
Comprehensive ranking
综合评价
Comprehensive evaluation
中040712 Zhong040712 0.645 -1.917 0.663 0.538 0.174 0.616 0.465 29
中061832 Zhong061832 -1.544 -2.223 0.636 0.366 0.134 0.611 0.340 43
中071239 Zhong071239 -1.015 -2.422 1.587 0.407 0.108 0.795 0.382 39
PB12-1-10 3.693 -1.882 1.264 0.777 0.178 0.733 0.639 6
PB12-1-7 3.174 -0.289 -0.699 0.736 0.386 0.351 0.617 7
PB12-1-8 0.366 0.328 -0.442 0.516 0.466 0.401 0.493 23
中1476 Zhong1476 1.993 -2.235 -1.035 0.644 0.132 0.286 0.492 24
中152201 Zhong152201 -3.498 0.583 -0.271 0.212 0.499 0.435 0.300 46
SQ152201 -2.271 -0.341 -0.690 0.309 0.379 0.353 0.329 44
中152214 Zhong152214 1.316 -1.567 -0.148 0.591 0.219 0.458 0.494 22
中6426 Zhong6426 2.328 -2.238 0.120 0.670 0.132 0.510 0.533 16
N82 0.130 -3.250 -1.337 0.497 0.000 0.228 0.358 41
朝阳棉1号 Chaoyangmian11 0.478 -0.190 -1.151 0.525 0.399 0.264 0.469 27
邯2490 Han2490 -1.115 0.500 -0.958 0.400 0.488 0.301 0.409 36
邯559 Han559 1.504 -1.850 -1.276 0.605 0.182 0.239 0.472 26
黑山棉1号 Heishanmian1 1.541 2.037 -0.892 0.608 0.689 0.314 0.595 9
表3 Continued table 3
品种(系)
Variety (line)
CI1 CI2 CI3 μ(X1) μ(X2) μ(X3) D
D value
综合排名
Comprehensive ranking
综合评价
Comprehensive evaluation
晋棉5号 Jinmian5 2.201 -0.306 -2.273 0.660 0.384 0.046 0.533 17
陕70 Shaan70 -5.035 0.800 1.251 0.092 0.528 0.730 0.257 50
石早1号 Shizao1 -2.019 -0.925 0.937 0.329 0.303 0.669 0.359 40
夏25 Xia25 0.182 -0.366 -0.353 0.501 0.376 0.419 0.465 30
中棉所14 Zhongmiansuo14 6.010 1.108 0.047 0.959 0.568 0.496 0.823 2
中棉所37 Zhongmiansuo37 1.295 -1.462 1.378 0.589 0.233 0.755 0.527 18
中棉所64 Zhongmiansuo64 1.365 -3.114 0.603 0.594 0.018 0.604 0.467 28
中103026 Zhong103026 -6.204 -0.195 1.237 0.000 0.398 0.727 0.166 53
中103030 Zhong103030 2.081 0.266 -1.258 0.651 0.458 0.243 0.564 11
中103032 Zhong103032 -1.058 0.600 0.737 0.404 0.502 0.630 0.450 32
中109056 Zhong109056 -5.323 -0.425 0.689 0.069 0.368 0.621 0.195 51
中298 Zhong298 1.025 0.677 0.302 0.568 0.511 0.546 0.553 13
春北保 Chunbeibao -0.751 -0.668 1.300 0.428 0.336 0.740 0.441 33
邯7860 Han7860 -2.864 -1.177 1.216 0.262 0.270 0.723 0.313 45
辽棉23号 Liaomian23 -0.588 0.001 -0.217 0.441 0.423 0.445 0.438 34
中679 Zhong679 0.252 -0.264 2.641 0.507 0.389 1.000 0.533 15
垦0074 Ken0074 -0.384 0.028 1.968 0.457 0.427 0.869 0.494 21
川01 Chuan01 -5.080 0.769 -2.509 0.088 0.524 0.000 0.176 52
T扩 T kuo -4.419 0.930 -0.135 0.140 0.544 0.461 0.264 49
新陆中60号 Xinluzhong60 -2.208 2.584 -1.660 0.314 0.760 0.165 0.397 37
新陆早32号 Xinluzao32 2.866 -0.463 -0.770 0.712 0.363 0.338 0.595 10
新陆早38号 Xinluzao38 -2.692 1.622 -1.599 0.276 0.635 0.177 0.345 42
新陆早40号 Xinluzao40 1.938 -1.438 -0.998 0.639 0.236 0.293 0.513 19
新陆中4号 Xinluzhong4 6.532 3.814 0.495 1.000 0.920 0.583 0.938 1
新陆中6号 Xinluzhong6 2.158 3.161 2.115 0.657 0.835 0.898 0.722 5
新陆中9号 Xinluzhong9 3.166 4.427 0.561 0.736 1.000 0.596 0.780 4
新陆中14号 Xinluzhong14 -1.512 1.615 -0.224 0.368 0.634 0.444 0.435 35
新陆中15号 Xinluzhong15 -2.626 1.562 0.754 0.281 0.627 0.634 0.395 38
新陆中19号 Xinluzhong19 0.089 1.371 -0.547 0.494 0.602 0.381 0.506 20
新陆中20号 Xinluzhong20 1.085 1.736 1.165 0.572 0.649 0.714 0.605 8
新陆中28号 Xinluzhong28 -3.514 0.256 -1.047 0.211 0.457 0.284 0.274 48
新陆中32号 Xinluzhong32 5.675 0.913 0.987 0.933 0.542 0.679 0.819 3
新陆中34号 Xinluzhong34 -4.543 2.111 -0.090 0.130 0.698 0.470 0.293 47
惠和36 Huihe36 1.807 0.056 -0.577 0.629 0.431 0.375 0.558 12
新陆早60号 Xinluzao60 2.227 -0.500 -1.185 0.662 0.358 0.257 0.551 14
惠远717 Huiyuan717 0.263 -0.795 0.867 0.508 0.320 0.656 0.482 25
锦棉2号 Jinmian2 0.877 -1.352 -1.179 0.556 0.247 0.258 0.456 31
权重Weight 6.532 4.427 2.641

Fig. 2

Cluster map of chilling tolerance of 53 cotton varieties"

Fig. 3

Cluster heatmap of correlation coefficients between different chilling-tolerance indexes at germination stage D value: Comprehensive evaluation value of chilling tolerance; Prematurity: Comprehensive evaluation value of precocity"

Fig. 4

Physiological changes in different seed organs of different cold-tolerant cotton varieties during germination in cold **: Significant difference between chilling-tolerant and chilling-sensitive varieties for physiological indicators at the level of P<0.01. The same as below"

Fig. 5

The relative expression of antioxidant enzyme genes in different cold-tolerant varieties in cold stress"

[1] DING Y L, SHI Y T, YANG S H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist, 2019,222(4):1690-1704.
doi: 10.1111/nph.2019.222.issue-4
[2] 姜艳丽, 尹晓斐, 薛金爱, 杨艳兵, 王计平, 皇甫张龙. 6个棉花品种幼苗对低温胁迫的响应. 激光生物学报, 2013,22(6):557-563.
JIANG Y L, YIN X F, XUE J A, YANG Y B, WANG J P, HUANGFU Z L. Responses to cold stress of six cotton varieties in initial growth stage. Acta Laser Biology Siniga, 2013,22(6):557-563. (in Chinese)
[3] 王俊娟, 阴祖军, 王德龙, 王帅, 樊伟丽, 郭丽雪, 叶武威. 棉花耐低温研究进展. 中国棉花, 2016,43(12):1-6.
doi: 10.11963/issn.1000-632X.201612001
WANG J J, YIN Z J, WANG D L, WANG S, FAN W L, GUO L X, YE W W. Research progresses on low temperature resistance of cotton. China Cotton, 2016,43(12):1-6. (in Chinese)
doi: 10.11963/issn.1000-632X.201612001
[4] ANJUM Z, ASIA K. Chilling effect on germination and seedling vigour of some cultivated species of Gossypium. Asian Journal of Plant Sciences, 2003,181(3):297-299.
[5] WANG D, LIU J L, LI C G, KANG H X, WANG Y, TAN X Q, LIU M B, DENG Y F, WANG Z L, LIU Y, ZHANG D Y, XIAO Y H, WANG G L. Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice (NY), 2016,9(1):61.
[6] PARRA-LONDONO S, FIEDLER K, KAVKA M, SAMANS B, WIECKHORST S, ZACHARIAS A, UPTMOOR R. Genetic dissection of early-season cold tolerance in sorghum: genome-wide association studies for seedling emergence and survival under field and controlled environment conditions. Theoretical and Applied Genetics, 2018,131(3):581-595.
pmid: 29147737
[7] VALLE R G. Anatomy and microchemistry of the cotton seed. Botanical Gazette, 1932,93(3):259-277.
doi: 10.1086/334257
[8] HOLDSWORTH M J, BENTSINK L, SOPPE W J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist, 2008,179(1):33-54.
doi: 10.1111/nph.2008.179.issue-1
[9] WEITBRECHT K, MÜLLER K, LEUBNER-METZGER G. First of the mark: Early seed germination. Journal of Experimental Botany, 2011,62(10):3289-3309.
pmid: 21430292
[10] HUANG J, ZHANG J H, LI W Z, HU W, DUAN L C, FENG Y, QIU F Z, YUE B. Genome-wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize. Journal of Integrative Plant Biology, 2013,55(8):735-744.
pmid: 23551400
[11] 张玲, 朱蓉慧, 刘勇, 杨明凤, 朱惠芝. 棉花种子萌发和出苗温度指标研究. 中国棉花, 2019,46(5):24-26, 38.
doi: 10.11963/1000-632X.zlymf.20190429
ZHANG L, ZHU R H, LIU Y, YANG M F, ZHU H Z. Study on the germination and emergence temperature of cotton seed. China Cotton, 2019,46(5):24-26, 38. (in Chinese)
doi: 10.11963/1000-632X.zlymf.20190429
[12] 王钰静, 谢磊, 李志博, 魏亦农, 林海荣. 低温胁迫对北疆棉花种子萌发的影响及其耐冷性差异评价. 种子, 2014,33(5):74-77.
WANG Y J, XIE L, LI Z B, WEI Y N, LIN H R. Effects of low temperature stress to germination of cotton seeds and evaluation of their cold resistance in northern Xinjiang. Seed, 2014,33(5):74-77. (in Chinese)
[13] 陈昊, 徐日荣, 陈湘瑜, 张玉梅, 胡润芳, 蓝新隆, 唐兆秀, 林国强. 花生种子萌发吸胀阶段冷害抗性的鉴定及耐冷种质的筛选. 植物遗传资源学报, 2020,21(1):192-200.
CHEN H, XU R R, CHEN X Y, ZHANG Y M, HU R F, LAN X L, TANG Z X, LIN G Q. Identification of imbibitional chilling injury resistance for peanut and screening of imbibitional chilling-tolerance germplasm. Journal of Plant Genetic Resources, 2020,21(1):192-200. (in Chinese)
[14] 李霞, 李连禄, 王美云, 李立公, 彭金凤, 赵明. 玉米不同基因型对低温吸胀的响应及幼苗生长分析. 玉米科学, 2008,16(2):60-65, 70.
LI X, LI L L, WANG M Y, LI L G, PENG J F, ZHAO M. Response of maize different genotypes to imbibitional chilling injury and seedlings growth analysis. Journal of Maize Sciences, 2008,16(2):60-65, 70. (in Chinese)
[15] SCHLÄPPI M R, JACKSON A K, EIZENGA G C, WANG A J, CHU C C, SHI Y, SHIMOYAMA N, BOYKIN D L. Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA mini-core collection. Frontiers in Plant Science, 2017,8:957.
doi: 10.3389/fpls.2017.00957 pmid: 28642772
[16] 高利英. 黄淮棉区棉花品种萌发期对低温的响应及耐性评价[D]. 泰安: 山东农业大学, 2017.
GAO L Y. The evaluation and response of low temperature tolerance of cotton varieties in Huanghuai Area during seed germination[D]. Taian: Shandong Agricultural University, 2017. (in Chinese)
[17] 王俊娟. 棉花抗冷性鉴定及相关基因的表达研究[D]. 北京: 中国农业科学院, 2016.
WANG J J. Identification of the chilling resistance of cotton and the expression of cold resistance related genes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[18] 武辉, 侯丽丽, 周艳飞, 范志超, 石俊毅, 阿丽艳·肉孜, 张巨松. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012,45(9):1703-1713.
doi: 10.3864/j.issn.0578-1752.2012.09.005
WU H, HOU L L, ZHOU Y F, FAN Z C, SHI J Y, ALIYAN R Z, ZHANG J S. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes. Scientia Agricultura Sinica, 2012,45(9):1703-1713. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.09.005
[19] 李志博, 曹连莆, 魏亦农, 雷锡琼, 周川. 荒漠绿洲区棉花幼苗耐寒生理特性及其评价指标分析. 棉花学报, 2010,22(6):568-573.
LI Z B, CAO L P, WEI Y N, LEI X Q, ZHOU C. Analysis of physiological characteristics and evaluation indexes of cold-tolerance in cotton seedlings of desert-oasis region. Cotton Science, 2010,22(6):568-573. (in Chinese)
[20] 夏军, 时晓娟, 郝先哲, 李楠楠, 田雨, 李军宏, 罗宏海. 低温对不同基因型棉种萌发过程中酶活性及激素含量的影响. 植物生理学报, 2019,55(9):1291-1305.
XIA J, SHI X J, HAO X Z, LI N N, TIAN Y, LI J H, LUO H H. Effects of low temperature on enzyme activity and hormone content in germination of different genotypes of cotton seeds. Plant Physiology Journal, 2019,55(9):1291-1305. (in Chinese)
[21] 高利英, 邓永胜, 韩宗福, 孔凡金, 申贵芳, 王景会, 王宗文, 段冰, 李汝忠. 耐低温萌发棉花品种种子萌发期生理特性分析. 华北农学报, 2018,33(S1):146-153.
GAO L Y, DENG Y S, HAN Z F, KONG F J, SHEN G F, WANG J H, WANG Z W, DUAN B, LI R Z. Analysis of physiological characteristics in seed germination of cotton varieties to low temperature stress. Acta Agriculturae Boreali-Sinica, 2018,33(S1):146-153. (in Chinese)
[22] 高利英, 邓永胜, 韩宗福, 孔凡金, 申贵芳, 李汝忠, 尹燕枰. 黄淮棉区棉花品种种子萌发期低温耐受性评价. 棉花学报, 2018,30(6):455-463.
GAO L Y, DENG Y S, HAN Z F, KONG F J, SHEN G F, LI R Z, YIN Y P. Evaluation of the low-temperature tolerance of cotton varieties in the Huang-Huai Region during seed germination. Cotton Science, 2018,30(6):455-463. (in Chinese)
[23] 王宁, 冯克云, 南宏宇, 张鹏忠, 谢捷. 甘肃河西走廊棉区棉花萌发期和苗期耐盐性鉴定与评价. 干旱地区农业研究, 2018,36(1):148-155.
WANG N, FENG K Y, NAN H Y, ZHANG P Z, XIE J. Salt tolerance identification and evaluation of cotton at its germination and seedling stages in Hexi area of Gansu. Agricultural Research in the arid areas, 2018,36(1):148-155. (in Chinese)
[24] 张国伟, 路海玲, 张雷, 陈兵林, 周治国. 棉花萌发期和苗期耐盐性评价及耐盐指标筛选. 应用生态学报, 2011,22(8):2045-2053.
pmid: 22097366
ZHANG G W, LU H L, ZHANG L, CHEN B L, ZHOU Z G. Salt tolerance evaluation of cotton (Gossypium hirsutum) at its germinating and seedling stages and selection of related indices. Chinese Journal of Applied Ecology, 2011,22(8):2045-2053. (in Chinese)
pmid: 22097366
[25] 刘长利, 王文全, 魏胜利. 干旱胁迫对甘草种子吸胀萌发的影响. 中草药, 2004(12):85-88.
LIU C L, WANG W Q, WEI S L. Influence of drought stress on imbibition germination of Glycyrrhiza uralensis seed. Chinese Traditional and Herbal Drugs, 2004(12):85-88. (in Chinese)
[26] 徐建伟, 张晨, 曾晓燕, 张小均, 李志博, 魏亦农. 近十年新疆北疆主栽棉花种子低温萌发能力差异评价. 新疆农业科学, 2017,54(9):1569-1578.
XU J W, ZHANG C, ZENG X Y, ZHANG X J, LI Z B, WEI Y N. Evaluation of seed germination of main-cultivated cotton under low temperature in northern Xinjiang in recent ten years. Xinjiang Agricultural Sciences, 2017,54(9):1569-1578. (in Chinese)
[27] 郑昀晔, 曹栋栋, 张胜, 关亚静, 胡晋. 多胺对玉米种子吸胀期间耐冷性和种子发芽能力的影响. 作物学报, 2008,34(2):261-267.
ZHENG Y Y, CAO D D, ZHANG S, GUAN Y J, HU J. Effect of polyamines on chilling tolerance in seed imbibition and seed germination in maize. Acta Agronomica Sinica, 2008,34(2):261-267. (in Chinese)
[28] 李志博, 魏亦农. 北疆主栽棉花种子对渗透胁迫的响应及其萌发力差异评价. 种子, 2010,29(7):1-4.
LI Z B, WEI Y N. Germination response and drought-resistance evaluation of cotton seed to osmotic stress in northern Xinjiang. Seed, 2010,29(7):1-4. (in Chinese)
[29] 王兰芬, 武晶, 景蕊莲, 程须珍, 王述民. 绿豆种质资源苗期抗旱性鉴定. 作物学报, 2015,41(1):145-153.
WANG L F, WU J, JING R L, CHENG X Z, WANG S M. Drought resistance identification of mungbean germplasm resources at seeding stage. Acta Agronomica Sinica, 2015,41(1):145-153. (in Chinese)
[30] 王俊娟, 王德龙, 阴祖军, 王帅, 樊伟丽, 陆许可, 穆敏, 郭丽雪, 叶武威, 喻树迅. 陆地棉萌发至幼苗期抗冷性的鉴定. 中国农业科学, 2016,49(17):3332-3346.
WANG J J, WANG D L, YIN Z J, WANG S, FAN W L, LU X K, MU M, GUO L X, YE W W, YU S X. Identification of the chilling resistance from germination stage to seedling stage in upland cotton. Scientia Agricultura Sinica, 2016,49(17):3332-3346. (in Chinese)
[31] 张晓聪, 雍洪军, 张焕欣, 翁建峰, 郝转芳, 慈晓科, 李明顺, 张德贵, 张世煌, 李新海. 玉米芽期和苗期耐冷性研究进展. 作物杂志, 2012(6):8-14.
ZHANG X C, YONG H J, ZHANG H X, WENG J F, HAO Z F, CI X K, LI M S, ZHANG D G, ZHANG S H, LI X H. Cold tolerance at germination and seedling stages in maize. Crops, 2012(6):8-14. (in Chinese)
[32] SHEN Q, ZHANG S, LIU S, CHEN J, MA H, CUI Z, ZHANG X, GE C, LIU R, LI Y. Comparative transcriptome analysis provides insights into the seed germination in cotton in response to chilling stress. International Journal of Molecular Sciences, 2020,21(6):2067.
[33] LIU Y, HOU L, LI Q. Effects of different mechanical treatments on Quercus variabilis, Q. wutaishanica and Q. robur ac-orn germination. Forest-Biogeosciences and Forestry, 2015,8(7):728-734.
[34] 王艳树, 李凤山, 张玉霞, 谭巍巍, 张玉旭, 董美茹. PEG胁迫对蓖麻种子吸胀萌发的影响. 内蒙古民族大学学报(自然科学版), 2007(3):302-306.
WANG Y S, LI F S, ZHANG Y X, TAN W W, ZHANG Y X, DONG M R. Effect of PEG Stress on imbibition and germination for Ricinus communis Linn. Journal of Inner Mongolia University for Nationalities, 2007(3):302-306. (in Chinese)
[35] 黄贺, 闫蕾, 吕艳, 丁晓雨, 蔡俊松, 程勇, 张学昆, 邹锡玲. 甘蓝型油菜发芽期低温耐性的评价与材料筛选. 中国油料作物学报, 2019,41(5):723-734.
HUANG H, YAN L, LÜ Y, DING X Y, CAI J S, CHENG Y, ZHANG X K, ZOU X L. Screening and evaluation of low temperature tolerance of rapeseed (Brassica napus L.) at germination stage. Chinese Journal of Oil Crop Sciences, 2019,41(5):723-734. (in Chinese)
[36] 王冀川, 李志军, 徐雅丽, 于军, 赵素珍, 段黄金, 黄琪. 低温胁迫对海岛棉幼苗生理生化特性的影响. 中国棉花, 2001,18(5):13-14.
WANG J C, LI Z J, XU Y L, YU J, ZHAO S Z, DUAN H J, HUANG Q. Effects of low temperature stress on physiological and biochemical characteristics of island cotton seedlings. China Cotton, 2001,18(5):13-14. (in Chinese)
[37] 王俊娟, 叶武威, 樊保香. 陆地棉不同生长阶段抗冷性初报. 中国棉花, 2006(4):8-9.
WANG J J, YE W W, FAN B X. Preliminary report on cold resistance of Upland Cotton in different growth stages. China Cotton, 2006(4):8-9. (in Chinese)
[38] 李志博, 华显伟, 魏亦农, 曹连莆. 叶绿素荧光动力学O-J-I-P参数在棉花幼苗耐冷性评价上的应用. 棉花学报, 2010,22(2):132-137.
LI Z B, HUA X W, WEI Y N, CAO L P. Cold tolerance evaluation of cotton seedling using some parameters of chlorophylla fluorescence kenitics O-J-I-P. Cotton Science, 2010,22(2):132-137. (in Chinese)
[39] 卫秀英, 鲁玉贞, 单长卷. 不同棉花品种的抗低温性研究. 安徽农业科学, 2006(12):2786-2787.
WEI X Y, LU Y Z, SHAN C J. Study on the responses of the different cotton variety seedlings to low temperature. Journal of Anhui Agricultural Sciences, 2006(12):2786-2787. (in Chinese)
[40] 李星星, 严青青, 王立红, 魏鑫, 张巨松. 不同棉花品种生长特性分析及耐寒性鉴定. 南京农业大学学报, 2017,40(4):584-591.
LI X X, YAN Q Q, WANG L H, WEI X, ZHANG J S. Growth analysis and identification of cold resistance of different varieties of cotton. Journal of Nanjing Agricultural University, 2017,40(4):584-591. (in Chinese)
[41] 尹晓斐. 低温胁迫对棉花生理特性的影响及关键酶基因表达分析[D]. 晋中: 山西农业大学, 2013.
YIN X F. Effect of low temperature stress on physiological characteristics in cotton (Gossypium spp.) and expression analysis of key enzymes genes[D]. Jinzhong: Shanxi Agricultural University, 2013. (in Chinese)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[4] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[5] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[6] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[7] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[8] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[9] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[10] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[11] ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
[12] LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
[13] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[14] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[15] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!