Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4204-4214.doi: 10.3864/j.issn.0578-1752.2020.20.009

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Secondary Metabolites in Wheat Kernels on Activities of Three Detoxifying Enzymes and Related Gene Expression in Sitodiplosis mosellena

CHEN Rui1(),GAO He1,ZHANG GuoJun1,ZHU KeYan2,CHENG WeiNing1()   

  1. 1College of Plant Protection, Northwest A&F University/Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
    2Department of Entomology,Texas A&M University,Texas 77843,USA
  • Received:2020-03-07 Accepted:2020-04-22 Online:2020-10-16 Published:2020-10-26
  • Contact: WeiNing CHENG E-mail:ruichen0828@qq.com;cwning@126.com

Abstract:

【Objective】The objective of this study is to clarify the relationship between secondary metabolite contents at grain filling stage of wheat and detoxification enzyme activities of glutathione S-transferase (GST), carboxylesterase (CarE) and cytochrome P450 (CYP450) and related gene expression in Sitodiplosis mosellena, and to explore the role of secondary metabolite in wheat resistance to S. mosellena and the metabolic mechanism.【Method】The numbers of S. mosellana larvae in wheat kernels of four resistant and four susceptible wheat varieties (lines) planted in experimental fields in Zhouzhi County, Shaanxi Province were investigated by dissecting wheat ears in May 2016. Wheat kernels at filling stage from eight varieties (lines) and S. mosellena larvae feeding wheat kernels of eight varieties (lines) were simultaneously collected. The contents of ferulic acid, tannin, total phenol and total flavonoid were determined by colorimetry, vanillin assay, Folin-Ciocalteu assay and sodium nitrite-aluminium nitrite assay, respectively. The activities of GST, CarE and CYP450 and expression levels of GST1, CarE2 and CYP6A1 in collected S. mosellena larvae were determined using enzyme linked immunosorbent assay (ELISA) and qPCR methods, respectively. And then, the relationship between secondary metabolite contents in various wheat varieties (lines) and resistance indictors of wheat to S. mosellena, as well as the interaction of secondary metabolites with detoxification enzyme activity and gene expression in S. mosellena larvae were studied by correlation analysis.【Result】The contents of ferulic acid, tannin, total phenol and total flavonoid of wheat kernel at filling stage of eight wheat varieties (lines) were significantly different. The highest contents were in the resistant variety Kenong 1006 for ferulic acid and tannin, in the resistant variety Jinmai 47 for total phenol, and in the susceptible variety Xinong 88 for total flavonoid. The activities of GST, CarE and CYP450 and expression levels of GST1, CarE2 and CYP6A1 in S. mosellena larvae from eight wheat varieties (lines) were also significantly different. The highest enzyme activities were in larvae from resistant varieties Kenong 1006 and Shaanmai 139 for GST and CarE, respectively, and from the susceptible variety Xiaoyan 6 for CYP450. The expression levels of GST1 and CarE2 were higher in larvae feeding four resistant varieties than those feeding four susceptible varieties, but CYP6A1 expression level had not obvious regularity between larvae feeding resistant and susceptible varieties. Correlation analysis results showed that the ferulic acid content of wheat kernel had significant negative correlation (P<0.05) with the four resistance indicators of wheat to S. mosellena including percentage of infested ears, percentage of infested grains, insect number per ear and estimated loss rate. There was no significant correlation between the contents of tannin, total phenol and total flavonoid and the four resistance indicators. The GST and CarE activities of S. mosellena feeding wheat kernels were significantly positively correlated to the ferulid acid content of wheat kernels, and the CYP450 activity of S. mosellena was significantly negatively correlated to the tannin content (P<0.05). No significant correlation was observed between the total phenol and total flavonoid contents of wheat kernels and the activity of any of the three detoxification enzymes. The expression levels of S. mosellena GST1 and CarE2 were significantly positively correlated with the activities of GST and CarE (P<0.05), respectively, while S. mosellena CYP6A1 expression level was not significantly related with the activity of CYP450.【Conclusion】Ferulic acid is the main secondary metabolite of wheat anti-S. mosellena, and can induce GST and CarE activities of S. mosellena larvae and related gene expression. GST and CarE jointly participate in the detoxification metabolism and adaptation of S. mosellena to wheat secondary metabolites.

Key words: wheat kernel, secondary metabolite, Sitodiplosis mosellena, detoxification enzyme activity, gene expression

Table 1

Primer sequences for qPCR"

引物名称 Primer name 上游引物 Forward primer (5′-3′) 下游引物 Reverse primer (5′-3′)
GST1 ATAACGGCGTGCTAATAG AACGAGAATCCACTTGAG
CarE2 AAATGGCTCGGACTCTTTACG ATGGCTCGGATGCTGACT
CYP6A1 TTACGAAGCGATGATGGA GCAACTGGTGGATACTTTC
GAPDH CCATCAAAGCAAGCAAGA CAGCACGGAGCACAAGAC

Table 2

Damage degree of eight wheat varieties (lines) caused by S. mosellana larvae"

小麦品种(系)
Wheat variety (line)
穗被害率
Percentage of infested ears (%)
粒被害率
Percentage of infested grains (%)
单穗虫口数
Insect number per ear
估计损失率
Estimated loss rate (%)
陕麦139 Shaanmai 139 30.67±0.88f 3.20±0.35e 1.10±0.14f 0.42±0.05f
科农1006 Kenong 1006 50.33±1.76e 3.75±0.41e 2.30±0.27ef 1.11±0.13e
晋麦47 Jinmai 47 59.67±1.76d 5.44±0.41d 3.61±0.32de 1.80±0.15d
陕农33 Shaannong 33 69.67±2.60c 7.11±0.49c 5.07±0.39d 2.43±0.19d
小偃6号Xiaoyan 6 89.33±0.88b 11.51± 0.75b 7.57±0.53c 4.25±0.30c
西农88 Xinong 88 95.33±1.20a 12.13±0.62b 9.94±0.63b 4.97±0.29b
西农822 Xinong 822 92.00±1.53ab 12.90±0.61b 10.91±0.69b 5.02±0.29b
小偃22 Xiaoyan 22 91.33±1.86ab 15.15±0.73a 14.24±0.88a 6.12±0.36a

Table 3

Contents of secondary metabolites in wheat kernels of eight varieties (lines)"

小麦品种(系)
Wheat variety (line)
阿魏酸含量
Ferulic acid content (mg·g-1)
单宁含量
Tannin content (mg·g-1)
总酚含量
Total phenol content (mg·g-1)
总黄酮含量
Total flavonoid content (mg·g-1)
陕麦139 Shaanmai 139 6.23±0.09b 1.69±0.05b 24.64±0.85a 2.19±0.08ef
科农1006 Kenong 1006 6.57±0.10a 2.17±0.04a 23.74± 0.15a 2.94±0.06c
晋麦47 Jinmai 47 6.44±0.02ab 1.66±0.03bc 24.86±1.15a 2.67±0.05cd
陕农33 Shaannong 33 6.33±0.11ab 1.28±0.01d 12.56±0.30c 3.29±0.12b
小偃6号 Xiaoyan 6 5.51±0.16c 1.02±0.06e 23.99±1.34a 1.91±0.05f
西农88 Xinong 88 4.77±0.10d 1.55±0.02c 24.09±1.04a 3.93±0.02a
西农822 Xinong 822 4.61±0.04d 1.12±0.01e 14.55±0.61bc 2.39±0.15de
小偃22 Xiaoyan 22 5.72±0.15c 1.55±0.05c 15.83±1.25b 3.44±0.06b

Table 4

Correlation between resistance indicators of wheat to S. mosellena and contents of secondary metabolites in wheat kernels"

次生物质
Secondary metabolite
穗被害率
Percentage of infested ears
粒被害率
Percentage of infested grains
单穗虫口数
Insect number per ear
估计损失率
Estimated loss rate
r P r P r P r P
阿魏酸 Ferulic acid -0.774 0.024* -0.778 0. 023* -0.726 0.041* -0.774 0.024*
单宁 Tannin -0.620 0.101 -0.597 0.118 -0.477 0.232 -0.550 0.158
总黄酮Total flavonoid 0.332 0.422 0.275 0.509 0.378 0.356 0.337 0.415
总酚 Total phenol -0.392 0.337 -0.438 0.278 -0.495 0.212 -0.426 0.292

Table 5

Detoxification enzyme activities of S. mosellana larvae feeding on eight wheat varieties (lines)"

小麦品种(系)
Wheat variety (line)
GST活性
GST activity (U/mg protein)
CarE 活性
CarE activity (U/mg protein)
CYP450活性
CYP450 activity (U/mg protein)
陕麦139 Shaanmai 139 0.1633±0.0185bcd 0.2284±0.0054a 0.1446±0.0173bc
科农1006 Kenong 1006 0.2144±0.012a 0.1823±0.0103b 0.1124±0.0046c
晋麦47 Jinmai 47 0.1707±0.0242abc 0.1414±0.0087c 0.1248±0.0107c
陕农33 Shaannong 33 0.2038±0.0177ab 0.2116±0.0135a 0.1163±0.0065c
小偃6号 Xiaoyan 6 0.1913±0.0022ab 0.1784±0.0079b 0.1885±0.0038a
西农88 Xinong 88 0.0963±0.0055e 0.1016±0.0071d 0.1304±0.0143c
西农822 Xinong 822 0.1206 ±0.0101de 0.1074±0.0037d 0.1791±0.0217ab
小偃22 Xiaoyan 22 0.1333±0.0064cde 0.1242±0.0038cd 0.1306±0.0001c

Table 6

Correlation between detoxification enzyme activities of S. mosellana larvae and contents of secondary metabolites in wheat kernels"

解毒酶
Detoxification enzyme
阿魏酸Ferulic acid 单宁Tannin 总酚 Total phenol 总黄酮 Total flavonoid
r P r P r P r P
GST 0.805 0.016* 0.229 0.586 0.083 0.845 -0.375 0.361
CarE 0.717 0.045* 0.167 0.693 0.114 0.788 -0.412 0.311
CYP450 -0.608 0.110 -0.742 0.035* -0.003 0.995 -0.682 0.063

Fig. 1

Relative expression level of GST1, CarE2 and CYP6A1 in S. mosellana larvae feeding on eight wheat varieties (lines)"

[1] CHAVALLE S, CENSIER F, GOMEZ G S M, DE PROFT M. Effect of trap type and height in monitoring the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) and its parasitoid, Macroglenes penetrans (Kirby) (Hymenoptera: Pteromalidae). Crop Protection, 2019,116:101-107.
[2] MIAO J, HUANG J R, WU Y Q, GONG Z J, LI H L, ZHANG G Y, DUAN Y, LI T, JIANG Y L. Climate factors associated with the population dynamics of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in central China. Scientific Reports, 2019,9:12361.
pmid: 31451745
[3] 袁锋, 花保祯, 仵均祥, 贺红, 祝传书. 麦红吸浆虫的灾害与成灾规律研究.Ⅱ. 灾害出现的影响因子与控制. 西北农林科技大学学报 (自然科学版), 2003,31(6):43-48.
YUAN F, HUA B Z, WU J X, HE H, ZHU C S. Studies on plagues caused by Sitodiplosis mosellana (Gehin) and their law and control. Ⅱ. Factors affecting plague emergence and their control. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2003,31(6):43-48. (in Chinese)
[4] 武予清, 段爱菊, 张自启, 刘长营, 刘顺通, 蒋月丽, 苗进, 段云, 巩中军, 李彤. 小麦品种的麦红吸浆虫抗性分级方法及抗性评价. 作物学报, 2013,39(12):2171-2176.
WU Y Q, DUAN A J, ZHANG Z Q, LIU C Y, LIU X T, JIANG Y L, MIAO J, DUAN Y, GONG Z J, LI T. Resistance grading method and evaluation in wheat varieties to orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyidae) in China. Acta Agronomica Sinica, 2013,39(12):2171-2176. (in Chinese)
[5] CHAVALLE S, JACQUEMIN G, DE PROFT M. Assessing cultivar resistance to Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) using a phenotyping method under semi-field conditions. Journal of Applied Entomology, 2017,141(9):780-785.
[6] CHENG W N, LEI J X, ROONEY W L, LIU T X, ZHU K Y. High basal defense gene expression determines sorghum resistance to the whorl-feeding insect southwestern corn borer. Insect Science, 2013,20(3):307-317.
pmid: 23955883
[7] WANG Y, CAI Q N, ZHANG Q W, HAN Y. Effect of the secondary substances from wheat on the growth and digestive physiology of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae). European Journal of Entomology, 2006,103(1):255-258.
[8] 林凤敏, 吴敌, 陆宴辉, 张永军, 王沫, 吴孔明. 棉花主要抗虫次生物质与其对绿盲蝽抗性的关系. 植物保护学报, 2011,38(3):202-208.
LIN F M, WU D, LU Y H, ZHANG Y J, WANG M, WU K M. The relationship between the main secondary metabolites and the resistance of cotton to Apolygus lucorum. Journal of Plant Protection, 2011,38(3):202-208. (in Chinese)
[9] 韩宪琪, 李雪娇, 冯淑娟, 成卫宁, 朱克岩. 小麦籽粒营养物质和次生物质含量与其对玉米象抗性的关系. 植物保护学报, 2017,44(5):721-728.
HAN X Q, LI X J, FENG S J, CHENG W N, ZHU K Y. Relationships between the contents of nutrients and secondary metabolites in wheat seeds and their resistance to Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Plant Protection, 2017,44(5):721-728. (in Chinese)
[10] MAINGUET A M, LOUVEAUX A, EL SAYED G, ROLLIN P. Ability of a generalist insect, Schistocerca gregaria, to overcome thioglucoside defense in desert plants: tolerance or adaptation? Entomologia Experimentalis et Applicata, 2000,94(3):309-317.
[11] 陈澄宇, 康志娇, 史雪岩, 高希武. 昆虫对植物次生物质的代谢适应机制及其对昆虫抗药性的意义. 昆虫学报, 2015,58(10):1126-1139.
CHEN C Y, KANG Z J, SHI X Y, GAO X W. Metabolic adaptation mechanisms of insects to plant secondary metabolites and their implications for insecticide resistance of insects. Acta Entomologica Sinica, 2015,58(10):1126-1139. (in Chinese)
[12] 黄敏燕, 李雪峰. 植物次生物质对斜纹夜蛾解毒酶活性的影响. 基因组学与应用生物学, 2018,37(8):3495-3502.
HUANG M Y, LI X F. Effects of plant secondary metabolite on detoxification enzyme activity of Spodoptera litura. Genomics and Applied Biology, 2018,37(8):3495-3502. (in Chinese)
[13] VOGEL H, MUSSER R O, DE LA PAZ CELORIO-MANCERA M. Transcriptome responses in herbivorous insects towards host plant and toxin feeding. Annual Plant Reviews, 2014,47:197-233.
[14] ZHONG H, LI F, CHEN J, ZHANG J, LI F. Comparative transcriptome analysis reveals host-associated differentiation in Chilo suppressalis (Lepidoptera: Crambidae). Scientific Reports, 2017,7:13778.
doi: 10.1038/s41598-017-14137-x pmid: 29062034
[15] ZHANG M, FANG T, PU G, SUN X, ZHOU X, CAI Q. Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.), 2013,107(1):44-49.
[16] CHENG H, TANG F, LI W, XU M. Tannic acid induction of a glutathione S-transferase in Micromelalopha troglodyta (Lepidoptera: Notodontidae) larvae. Journal of Entomological Science, 2015,50(4):350-362.
[17] HUANG X B, MA J C, QIN X H, TU X B, CAO G C, WANG G J, NONG X Q, ZHANG Z H. Biology, physiology and gene expression of grasshopper Oedaleus asiaticus exposed to diet stress from plant secondary compounds. Scientific Reports, 2017,7:8655.
[18] LAMB R J, MCKENZIE R I H, WISE I L, BARKER P S, SMITH M A H, OLFERT O O. Resistance to Sitodiplosis mosellana ( Diptera: Cecidomyiidae) in spring wheat (Gramineae). The Canadian Entomologist, 2000,132(5):591-605.
[19] 屈振刚, 温树敏, 屈赟, 刘桂茹. 小麦品种抗麦红吸浆虫鉴定与抗性分析. 植物遗传资源学报, 2011,12(1):121-124.
QU Z G, WEN S M, QU Y, LIU G R. Evaluation and identification of wheat varieties resistant to Sitodiplosis mosellana. Journal of Plant Genetic Resources, 2011,12(1):121-124. (in Chinese)
[20] 郝亚楠, 张箭, 龙治任, 王越, 成卫宁. 小麦品种(系)对麦红吸浆虫抗性指标筛选与抗性评价. 昆虫学报, 2014,57(11):1321-1327.
HAO Y N, ZHANG J, LONG Z R, WANG Y, CHENG W N. Screening of resistance indicators and evaluation of the resistance of wheat varieties to orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). Acta Entomologica Sinica, 2014,57(11):1321-1327. (in Chinese)
[21] ABDEL-AAL E S M, HUCL P, SOSULSKI F W, GRAF R, GILLOTT C, PIETRZAK L. Screening spring wheat for midge resistance in relation to ferulic acid content. Journal of Agricultural and Food Chemistry, 2001,49(8):3559-3566.
doi: 10.1021/jf010027h pmid: 11513628
[22] 史忠良, 仇松英, 马爱萍, 许钢垣, 武计平, 逯腊虎. 冬小麦对麦红吸浆虫抗性机制研究初报. 华北农学报, 2003,18(1):100-102.
SHI Z L, QIU S Y, MA A P, XU G Y, WU J P, LU L H. Studies on the resistance mechanism of wheat to blossom midge. Acta Agriculturae Boreali-Sinica, 2003,18(1):100-102. (in Chinese)
[23] 王丹, 杜金华. 比色法快速测定小麦及其麦芽中的阿魏酸. 食品与发酵工业, 2011,37(1):146-151.
WANG D, DU J H. Rapid determination of ferulic aciol in wheats and malts by colorimetry. Food and Fermentation Industries, 2011,37(1):146-151. (in Chinese)
[24] MAHBOUBI A, ASGARPANAH J, SADAGHIYANI P N, FAIZI M. Total phenolic and flavonoid content and antibacterial activity of Punica granatum L. var. pleniflora flowers (Golnar) against bacterial strains causing foodborne diseases. BMC Complementary and Alternative Medicine, 2015,15:366.
pmid: 26470879
[25] SHENG Z L, WAN P F, DONG C L, LI Y H. Optimization of total flavonoids content extracted from Flos populi using response surface methodology. Industrial Crops and Products, 2013,43(1):778-786.
[26] 申君, 鲁艳辉, 张淑真, 游红, 李建洪. 亚致死浓度氰氟虫腙对小菜蛾三种解毒酶及P450 mRNA表达量的影响. 应用昆虫学报, 2016,53(2):256-263.
SHEN J, LU Y H, ZHANG S Z, YOU H, LI J H. Effects of sublethal concentrations of metaflumizone on detoxifying enzyme activity, and expression of cytochrome P450 genes, in Plutella xylostella (L.). Chinese Journal of Applied Entomology, 2016,53(2):256-263. (in Chinese)
[27] BRADFORD M M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72(1/2):248-254.
[28] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[29] 胡远, 韩颖, 赵欣, 杨晓琴, 黄永, 罗盘, 蔡青年. 小麦不同抗蚜品种中3种酚酸类化合物的含量变化及其作用评价. 应用与环境生物学报, 2008,14(6):753-756.
HU Y, HAN Y, ZHAO X, YANG X Q, HUANG Y, LUO P, CAI Q N. Dynamics and effect evaluation of three phenolic compound contents in wheat varieties with different resistances to Sitobion avenae. Chinese Journal of Applied and Environmental Biology, 2008,14(6):753-756. (in Chinese)
[30] YANG J, SUN X Q, YAN S Y, PAN W J, ZHANG M X, CAI Q N. Interaction of ferulic acid with glutathione S-transferase and carboxylesterase genes in the brown planthopper, Nilaparvata lugens. Journal of Chemical Ecology, 2017,43(7):693-702.
pmid: 28647840
[31] CABRERA H M, MUÑOZ O, ZÚÑIGA G E, CORCUERA L J, ARGANDOÑA V H. Changes in ferulic acid and lipid content in aphid-infested barley. Phytochemistry, 1995,39(5):1023-1026.
doi: 10.1016/0031-9422(95)00065-F
[32] SU Q, ZHOU Z, ZHANG J, SHI C, ZHANG G, JIN Z, WANG W, LI C. Effect of plant secondary metabolites on common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Entomological Research, 2018,48(1):18-26.
doi: 10.1111/enr.2018.48.issue-1
[33] SHEEHAN D, MEADE G, FOLEY V M, DOWD C A. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 2001,360(1):1-16.
doi: 10.1042/bj3600001
[34] 蔡青年, 张青文, 高希武, 王宇, 周明牂. 小麦体内次生物质对麦蚜的抗性作用研究. 中国农业科学, 2003,36(8):910-915.
CAI Q N, ZHANG Q W, GAO X W, WANG Y, ZHOU M Z. Effects of the secondary substances on wheat resistance to Sitobion avenae (F.). Scientia Agricultura Sinica, 2003,36(8):910-915. (in Chinese)
[35] 成小芳, 张耀文, 张仙红. 抗虫绿豆对绿豆象生长发育及体内几种酶活性的影响. 植物保护学报, 2017,44(3):420-426.
CHENG X F, ZHANG Y W, ZHANG X H. Effects of insect-resistant mung bean on development and activities of several enzymes of Chinese bean weevil Callosobruchus chinensis L. (Coleoptera: Bruchidae). Journal of Plant Protection, 2017,44(3):420-426. (in Chinese)
[36] TAO X Y, XUE Y X, HUANG Y P, CHEN X Y, MAO Y B. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Molecular Ecology, 2012,21(17):4371-4385.
doi: 10.1111/j.1365-294X.2012.05548.x
[37] GIRAUDO M, HILLIOU F, FRICAUX T, AUDANT P, FEYEREISEN R, LE GOFF G. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): Responses to plant allelochemicals and pesticides. Insect Molecular Biology, 2015,24(1):115-128.
[38] 于彩虹, 高希武, 郑炳宗. 2-十三烷酮对棉铃虫细胞色素P450的诱导作用. 昆虫学报, 2002,45(1):1-7.
YU C H, GAO X W, ZHENG B Z. Induction of the cytochrome P450 by 2-tridecanone in Helicoverpa armigera. Acta Entomologica Sinica, 2002,45(1):1-7. (in Chinese)
[39] 陈巨莲, 倪汉祥, 孙京瑞, 程登发. 小麦几种主要次生物质对麦长管蚜几种酶活力的影响. 昆虫学报, 2003,46(2):144-149.
CHEN J L, NI H X, SUN J R, CHENG D F. Effects of major secondary chemicals of wheat plants on enzyme activity in Sitobion avenae. Acta Entomologica Sinica, 2003,46(2):144-149. (in Chinese)
[40] 刘伟, 薛超彬, 张静静, 于金凤, 罗万春. 单宁酸对甜菜夜蛾幼虫生长发育及酚氧化酶活性的抑制作用. 植物资源与环境学报, 2010,19(1):32-37.
LIU W, XUE C B, ZHANG J J, YU J F, LUO W C. Inhibitory effect of tannic acid on growth, development and phenoloxidase activity of Spodoptera exigua larva. Journal of Plant Resources and Environment, 2010,19(1):32-37. (in Chinese)
[41] LIU X N, LIANG P, GAO X W, SHI X Y. Induction of the cytochrome P450 activity by plant allelochemicals in the cotton bollworm, Helicoverpa armigera (Hübner). Pesticide Biochemistry and Physiology, 2006,84(2):127-134.
doi: 10.1016/j.pestbp.2005.06.002
[42] LIU D, YUAN Y, LI M, QIU X. Effects of dietary quercetin on performance and cytochrome P450 expression of the cotton bollworm, Helicoverpa armigera. Bulletin of Entomological Research, 2015,105(6):771-777.
pmid: 26440448
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[4] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[5] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[6] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[7] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[8] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[9] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[10] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[11] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[12] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[13] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[14] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[15] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!