Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3214-3224.doi: 10.3864/j.issn.0578-1752.2020.16.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of Broomcorn Millet Varieties Tolerant to Low Nitrogen Stress and the Comprehensive Evaluation of Their Agronomic Traits

CHEN Ling(),WANG JunJie,WANG HaiGang,CAO XiaoNing,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun()   

  1. Center for Agricultural Genetic Resources Research, Shanxi Agricultural University (Institute of Crop Germplasm Resources,Shanxi Academy of Agricultural Sciences)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031
  • Received:2019-07-24 Accepted:2019-11-20 Online:2020-08-16 Published:2020-08-27
  • Contact: ZhiJun QIAO E-mail:chenling832013@163.com;qiaozhijun@sxagri.ac.cn

Abstract:

【Objective】The objective of this study is to find out the evaluation methods of low-nitrogen-tolerant broomcorn millet varieties, to screen the genotypes and identification indexes, and to provide a theoretical basis for the breeding of the low-nitrogen-tolerant varieties and understanding the physiological mechanism of the tolerance to low nitrogen stress.【Method】In the field experiment, 100 broomcorn millet varieties from domestic and foreign places were used for the treatment of low nitrogen stress (0 pure nitrogen) and normal nitrogen application (150 kg·hm-2 pure nitrogen). Eleven indexes, including nine major agronomic traits (the plant height, stem diameter, number of main-stem nodes, panicle length, straw weight, panicle weight per plant, grain weight per plant, 1000-grain weight and leaf area), nitrogen content and nitrogen absorption were measured for two consecutive years. The low-nitrogen-tolerant index of each indicator was assessed by the method of membership function, and their comprehensive ability of low nitrogen tolerance was evaluated by principal component analysis, regression analysis and cluster analysis.【Result】There were significant differences in all eleven indexes, including plant height, stem diameter, number of main -stem nodes, panicle length, straw weight, panicle weight per plant, grain weight per plant, 1000-grain weight, leaf area, nitrogen content and nitrogen absorption of the tested varieties at different nitrogen levels. Under low nitrogen stress, the growth, biomass accumulation and nitrogen absorption of broomcorn millet were inhibited. The value of each agronomic trait decreased significantly, and the range of variation was reduced. The order of reduction range was that leaf area > straw weight > grain weight per plant > panicle weight per plant > stem diameter > number of main-stem nodes > panicle length > 1000-grain weight > plant height. The nitrogen content and the nitrogen absorption of different broomcorn millet seeds decreased and the decrease range of nitrogen absorption decrease was higher than that of nitrogen content. Under low nitrogen stress, the variation coefficients of plant height, stem diameter, number of main-stem nodes, panicle length, straw weight, panicle weight per plant and grain weight per plant in different broomcorn millet varieties were higher than those of normal nitrogen application levels. Under different nitrogen levels, the variation coefficient of nitrogen absorption in different broomcorn millet seeds was higher than that of nitrogen content. The variation coefficient of nitrogen absorption under low nitrogen stress was higher than that of normal nitrogen application. The principal component analysis was carried out on the low nitrogen tolerance index of 11 indicators, and the five principal components were selected. The cumulative variance contribution rate was 75.83%. The correlation between the low nitrogen tolerance index and the comprehensive evaluation value on the low nitrogen tolerance (D) of seven indicators (the plant height, panicle length, straw weight, panicle weight per plant, grain weight per plant, leaf area, nitrogen absorption) was highly significant. Among them, the correlation of panicle weight per plant, grain weight per plant and nitrogen absorption was higher, with the correlation coefficients 0.858, 0.812 and 0.812, respectively. According to the D-value, 100 varieties of broomcorn millet were classified into three types: Low nitrogen tolerance, intermediate and low nitrogen susceptible.【Conclusion】Through the analysis of the comprehensive characteristics of each trait index, it is concluded that the panicle weight per plant, straw weight, and nitrogen absorption can be used as the first choice for the evaluation of the ability of low nitrogen tolerance. Four varieties of Yumi 3, 2058, Yushu 1 and Yanshu 7 have the strongest tolerance to nitrogen-deficiency.

Key words: broomcorn millet, tolerance to low nitrogen stress, screening index, comprehensive evaluation

Table 1

Analysis of variance of F values of agronomic traits and N content in broomcorn millet varieties in 2017 and 2018"

变异来源
Source of variation
自由度
DF
株高
Plant height
(cm)
茎粗
Stem diameter (cm)
主茎节数
Number of main-stem nodes
穗长
Panicle length
(cm)
草重
Straw weight
(g)
单株穗重
Panicle weight per plant
(g)
单株粒重
Grain weight per plant
(g)
千粒重
1000-grain
weight
(g)
叶面积
Leaf area
(cm2)
氮含量
N content
(%)
氮素吸收
N absorption (g/plant)
品种 Variety 99 66.351** 9.306** 5.871** 26.045** 20.522** 13.967** 32.053** 90.525** 8.760** 3.526** 53.195**
氮水平 N level 1 548.835** 156.044** 94.846** 116.326** 57.198** 120.483** 193.874** 9.286* 254.216** 13.336** 108.061**
年度 Year 1 604.433** 8.235* 7.923* 495.393** 113.788** 43.833** 68.045** 71.738** 13.256** 171.373** 322.841**
品种×氮水平 V×N 99 3.882** 0.774 0.996 1.557** 7.102** 5.802** 10.891** 1.136 3.028** 2.204** 20.466**
品种×年度 V×Y 99 7.210** 0.002 0.010 3.006** 8.107** 8.755 19.005** 1.151 3.345** 2.238** 37.244**
氮水平×年度 N×Y 1 432.984** 0.641 1.172 8.699* 36.478** 1.172 0.366 73.540** 1.454 146.356** 35.192**
品种×氮水平×年度 V×N×Y 99 4.572** 0.000 0.000 2.096** 8.208** 6.462** 11.925** 1.157 2.862** 2.666** 21.435**

Table 2

Effect of low-N stress on agronomic traits in different broomcorn millet varieties"

参数
Parameter
处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (cm)
主茎节数
Number of main-stem nodes
穗长
Panicle length (cm)
草重
Straw weight (g)
单株穗重
Panicle weight per plant (g)
单株粒重
Grain weight per plant (g)
千粒重
1000-grain weight (g)
叶面积
Leaf area (cm2)
年度均值
Annual mean
2017 N+Normal-N 167.11±28.62 5.85±0.95 5.40±0.74 36.11±7.72 15.99±6.80 9.75±4.62 6.78±3.26 7.29±1.24 680.52±316.56
N-Low-N 163.88±31.38 5.09±0.84 4.90±0.74 32.44±7.45 11.69±5.21 8.58±3.42 5.83±3.05 7.15±1.21 426.76±206.57
2018 N+Normal-N 171.80±33.77 6.09±0.99 5.85±0.80 46.43±10.64 15.90±10.66 12.58±6.81 8.99±4.61 7.90±1.34 861.16±469.04
N-Low-N 171.78±16.21 5.51±0.91 5.10±0.77 45.91±12.18 13.94±8.56 10.53±6.38 7.32±4.92 7.43±1.68 713.97±341.02
2年均值
Mean of 2-year
N+Normal-N 169.46±25.13 5.97±0.97 5.62±0.77 41.27±7.68 15.95±6.73 11.16±4.14 7.89±3.30 7.59±1.29 770.84±276.36
N-Low-N 167.83±28.18 5.30±0.88 5.00±0.76 39.18±7.56 12.82±5.87 9.56±4.24 6.58±3.39 7.29±1.35 570.37±195.66
范围
Range
N+Normal-N 85.67—220.16 3.43—8.20 3.78-8.60 20.67—58.00 3.90—41.12 3.50—20.45 0.32—14.85 4.01—9.64 223.25—2124.47
N-Low-N 84.67—220.00 3.36—8.15 2.85—6.89 19.33—54.50 2.15—30.78 2.22—22.70 0.32—16.38 4.18—9.90 202.64—1127.14
变异系数 CV (%) N+Normal-N 14.83 16.25 13.71 18.61 42.22 37.11 41.82 33.89 35.85
N-Low-N 16.79 16.57 15.14 19.30 45.77 44.45 51.50 18.54 34.30

Table 3

Effect of low-N stress on plant N content and N absorption in different grain of broomcorn millet varieties"

参数Parameter 处理Treatment 氮含量N content (%) 氮素吸收N absorption (g/plant)
年度均值
Annual mean
2017 N+Normal-N 2.28±0.26 16.90±6.97
N-Low-N 2.12±0.18 13.71±6.82
2018 N+Normal-N 2.10±0.27 17.07±7.25
N-Low-N 1.97±0.23 14.61±7.78
2年均值
Mean of 2-year
N+Normal-N 2.18±0.18 16.99±6.71
N-Low-N 2.04±0.15 14.16±6.90
范围Range N+Normal-N 1.91—2.81 0.80—32.05
N-Low-N 1.75—2.49 0.80—34.27
变异系数CV (%) N+Normal-N 8.29 39.51
N-Low-N 7.47 48.74

Table 4

Weighted coefficients, eigenvalues, variance contribution, cumulative variance contribution of first five principal components based on 11 index"

指标
Index
主成分Principal component
因子1 Factor 1 因子2 Factor 2 因子3 Factor 3 因子4 Factor 4 因子5 Factor5
株高Plant height 0.233 0.273 -0.028 -0.483 0.441
穗长Panicle length 0.217 0.435 -0.311 -0.375 0.063
草重Straw weight 0.327 -0.079 0.290 0.226 0.206
单株穗重Panicle weight per plant 0.493 0.0005 0.096 0.169 -0.029
单株粒重Grain weight per plant 0.497 0.010 -0.039 0.154 -0.101
千粒重1000-grain weight -0.142 0.272 0.421 0.428 0.498
叶面积Leaf area 0.084 0.218 0.544 -0.292 -0.321
主茎节数Number of main-stem nodes -0.053 0.452 -0.175 0.337 -0.541
茎粗Stem diameter -0.098 0.503 -0.322 0.314 0.243
氮含量N content -0.126 0.389 0.448 -0.137 -0.188
氮吸收量N absorption 0.497 0.010 -0.039 0.154 -0.101
特征值Eigenvalues 3.654 1.440 1.292 1.006 0.950
方差贡献率Variance contribution (%) 33.219 13.089 11.742 9.143 8.632
累积方差贡献率Cumulative variance contribution (%) 33.219 46.308 58.050 67.193 75.825

Table 5

Correlations of the comprehensive value (D) for low-N tolerance with index in broomcorn millet"

指标 Index 相关系数 Correlation coefficient PP value
株高 Plant height 0.461 0.0001
穗长 Panicle length 0.377 0.0001
草重 Straw weight 0.666 0.0001
单株穗重 Panicle weight per plant 0.858 0.0001
单株粒重 Grain weight per plant 0.812 0.0001
千粒重 1000-grain weight 0.197 0.0497
叶面积 Leaf area 0.282 0.0045
主茎节数 Number of main-stem nodes 0.037 0.7119
茎粗 Stem diameter 0.073 0.4719
氮含量 N content 0.044 0.6627
氮吸收量 N absorption 0.812 0.0001

Fig. 1

Dendrogram of different broomcorn millet varieties based on low-N tolerance"

[1] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-923.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008,45(5):915-923. (in Chinese)
[2] 黄高宝, 张恩和, 胡恒觉. 不同玉米品种氮素营养效率差异的生态生理机制. 植物营养与肥料学报, 2001,7(3):293-297.
doi: 10.11674/zwyf.2001.0308
HUANG G B, ZHANG E H, HU H J. Eco-physiological mechanism on nitrogen use efficiency difference of corn varieties. Journal of Plant Nutrition and Fertilizer, 2001,7(3):293-297. (in Chinese)
doi: 10.11674/zwyf.2001.0308
[3] 巨晓棠, 张福锁. 关于氮肥利用率的思考. 生态环境, 2003,12(2):192-197.
JU X T, ZHANG F S. Thinking about nitrogen recovery rate. Ecology and Environment, 2003,12(2):192-197. (in Chinese)
[4] PENG S B, BURESH R J, HUANG J L, YANG J C, ZOU Y B, ZHONG X H, WANG G H, ZHANG F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice system in China. Field Crops Research, 2005,96(1):37-47.
[5] XING G X, ZHU Z L. An assessment of N loss from agricultural fields to the environment in China. Nutrients Cycling in Agroecosystem, 2000,57(1):67-73.
[6] 柴岩. 糜子. 北京: 中国农业出版社, 1999.
CHAI Y. Millet. Beijing: China Agriculture Press, 1999. (in Chinese)
[7] 张美俊, 乔治军, 杨武德, 陈凌, 冯美臣. 糜子氮、磷、钾肥的效应及优化研究. 植物营养与肥料学报, 2013,19(2):347-353.
ZHANG M J, QIAO Z J, YANG W D, CHEN L, FENG M C. Effect of N, P and K fertilizer application and optimum rate for yield of millet. Journal of Plant Nutrition and Fertilizer, 2013,19(2):347-353. (in Chinese)
[8] 乔治军. 糜子产业发展现状与思路. 作物杂志, 2013(5):25-27.
QIAO Z J. Present situation and developing thought of broomcorn millet industry. Crops, 2013(5):25-27. (in Chinese)
[9] 李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014,22(10):1190-1199.
LI Q, LUO Y H, TAN J, KONG F L, YANG S M, YUAN J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivar at seeding stage. Chinese Journal of Eco- Agriculture, 2014,22(10):1190-1199. (in Chinese)
[10] 钟思荣, 龚丝雨, 张世川, 陈仁霄, 刘齐元, 翟小清. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报, 2018,32(8):1656-1663.
ZHONG S R, GONG S Y, ZHANG S C, CHEN R X, LIU Q Y, ZHAI X Q. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants. Journal of Nuclear Agricultural Sciences, 2018,32(8):1656-1663. (in Chinese)
[11] KANT S, BI Y M, ROTHSTEIN S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, 2011,62(4):1490-1509.
[12] 张定一, 张永清, 杨武德, 苗果园. 不同基因小麦对低氮胁迫的生物学响应. 作物学报, 2006,32(9):1349-1354.
ZHANG D Y, ZHANG Y Q, YANG W D, MIAO G Y. Biological response of roots in different spring wheat genotypes to low nitrogen stress. Acta Agronomica Sinica, 2006,32(9):1349-1354. (in Chinese)
[13] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011,44(22):4570-4582.
DONG G C, WANG Y, YU X F, ZHOU J, PENG B, LI J Q, TIAN H, ZHANG Y, YUAN Q M, WANG Y L. Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration. Scientia Agricultura Sinica, 2011,44(22):4570-4582. (in Chinese)
[14] 张兴华, 薛吉全, 刘万锋, 李凤艳, 张仁和. 不同玉米品种耐低氮能力鉴定与评价. 西北农业学报, 2010,19(8):65-68.
ZHANG X H, XUE J Q, LIU W F, LI F Y, ZHANG R H. Screening and identification of low nitrogen tolerance in different maize hybrids. Acta Agriculturae Boreali-occidentalis Sinica, 2010,19(8):65-68. (in Chinese)
[15] 杨睿, 伍晓明, 安蓉, 李亚军, 张玉莹, 陈碧云, 高亚军. 不同基因型油菜氮素利用效率的差异及其与农艺性状和氮营养性状的关系. 植物营养与肥料学报, 2013,19(3):586-596.
YANG R, WU X M, AN R, LI Y J, ZHANG Y Y, CHEN B Y, GAO Y J. Differences of nitrogen use efficiency of rapeseed (Brassica napus L.) genotypes and their relations to agronomic and nitrogen characteristics. Journal of Plant Nutrition and Fertilizer, 2013,19(3):586-596. (in Chinese)
[16] 赵春波, 宋述尧, 赵靖, 张雪梅, 张越, 张松婷. 北方地区不同黄瓜品种氮素吸收与利用效率的差异. 中国农业科学, 2015,48(8):1569-1578.
ZHAO C B, SONG S Y, ZHAO J, ZHANG X M, ZHANG Y, ZHANG S T. Variation in nitrogen uptake and utilization efficiency of different cucumber varieties in Northern China. Scientia Agricultura Sinica, 2015,48(8):1569-1578. (in Chinese)
[17] 钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017,43(7):993-1002.
ZHONG S R, CHEN R X, TAO Y, GONG S Y, HE K X, ZHANG Q M, ZHANG S C, LIU Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agronmica Sinica, 2017,43(7):993-1002. (in Chinese)
[18] SINGH U, LADHA J K, CASTILLO E G, PUNZALAN G, TIROL-PADRE A, DUQUEZA M. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Research, 1998,58(1):35-53.
doi: 10.1016/S0378-4290(98)00084-7
[19] MUCHOW R C. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment: III.Grain yield and nitrogen accumulation. Field Crops Research, 1988,18(1):31-43.
[20] LADHA J K, KIRK G J D, BENNETT J, PENG S, REDDY C K, REDDY P M, SINGH U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Research, 1998,56(1):41-71.
doi: 10.1016/S0378-4290(97)00123-8
[21] 刘宗华, 卫晓轶, 胡彦民, 谭晓军, 汤继华. 低氮胁迫对不同基因型玉米生物产量和氮吸收率动态变化的影响. 玉米科学, 2010,18(5):53-59.
LIU Z H, WEI X Y, HU Y M, TAN X J, TANG J H. Dynamic variation of biomass and nitrogen absorption ratio of different genotypes in maize under low nitrogen stress. Journal of Maize Sciences, 2010,18(5):53-59. (in Chinese)
[22] 张美俊, 乔治军, 杨武德, 冯美臣, 肖璐洁, 王冠, 段云. 不同糜子品种对低氮胁迫的生物学响应. 植物营养与肥料学报, 2014,20(3):661-669.
doi: 10.11674/zwyf.2014.0318
ZHANG M J, QIAO Z J, YANG W D, FENG M C, XIAO L J, WANG G, DUAN Y. Biological response of different cultivars of millet to low nitrogen stress. Journal of Plant Nutrition and Fertilizer, 2014,20(3):661-669. (in Chinese)
doi: 10.11674/zwyf.2014.0318
[23] 陈二影, 杨延兵, 秦岭, 张华文, 刘宾, 王海莲, 陈桂玲, 于淑婷, 管延安. 谷子苗期氮高效品种筛选及相关特性分析. 中国农业科学, 2016,49(17):3287-3297.
doi: 10.3864/j.issn.0578-1752.2016.17.004
CHEN E Y, YANG Y B, QIN L, ZHANG H W, LIU B, WANG H L, CHEN G L, YU S T, GUAN Y A. Evaluation of nitrogen efficient cultivars of foxtail millet and analysis of the related characters at seedling stage. Scientia Agricultura Sinica, 2016,49(17):3287-3297. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.17.004
[24] 张楚, 张永清, 路之娟, 刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标. 作物学报, 2017,43(8):1205-1215.
ZHANG C, ZHANG Y Q, LU Z J, LIU L Q. ScreeningFagopyrum tararicum genotypes tolerant to low nitrogen stress at seedling stage and its evaluating indices. Acta Agronmica Sinica, 2017,43(8):1205-1215. (in Chinese)
[25] 张楚, 张永清, 路之娟, 刘丽琴, 杨春婷. 低氮胁迫对不同苦荞品种苗期生长和根系生理特征的影响. 西北植物学报, 2017,37(7):1331-1339.
ZHANG C, ZHANG Y Q, LU Z J, LIU L Q, YANG C T. Effect of low nitrogen stress on the seedling growth and root physiological traits of Fagopyrum tataricum cultivars with different low-N treatments. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(7):1331-1339. (in Chinese)
[26] 裴雪霞, 王姣爱, 党建友, 张定一. 耐低氮小麦基因型筛选指标的研究. 植物养与肥料学报, 2007,13(2):93-98.
PEI X X, WANG J A, DANG J Y, ZHANG D Y. An approach to the screening index for low nitrogen tolerant wheat genotype. Journal of Plant Nutrition and Fertilizer, 2007,13(2):93-98. (in Chinese)
[27] 刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱, 白文斌. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018,51(1):3074-3083.
LIU P, WU A L, WANG J S, NAN J K, DONG E W, JIAO X Y, PING J A, BAI W B. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency. Scientia Agricultura Sinica, 2018,51(1):3074-3083. (in Chinese)
[28] 顾炽明, 韩配配, 胡琼, 李银水, 廖祥生, 张志华, 谢立华, 胡小加, 秦璐, 廖星. 甘蓝型油菜苗期氮效率评价. 中国油料作物学报, 2018,40(6):119-128.
GU C M, HAN P P, HU Q, LI Y S, LIAO X S, ZHANG Z H, XIE L H, HU X J, QIN L, LIAO X. Nitrogen efficiency evaluation in rapeseed (Brassica napus L.) at seedling stage. Chinese Journal of Oil Crop Sciences, 2018,40(6):119-128. (in Chinese)
[29] 殷春渊, 张庆, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 马群, 杭杰, 张胜飞. 不同产量类型水稻基因型氮素吸收、利用效率的差异. 中国农业科学, 2010,43(1):39-50.
YIN C Y, ZHANG Q, WEI H Y, ZHANG H C, DAI Q G, HUO Z Y, XU K, MA Q, HANG J, ZHANG S F. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. Scientia Agricultura Sinica, 2010,43(1):39-50. (in Chinese)
[30] 曹桂兰, 张媛媛, 朴钟泽, 韩龙植. 水稻不同基因型耐低氮能力差异评价. 植物遗传资源学报, 2006,7(3):316-320.
CAO G L, ZHANG Y Y, PIAO Z Z, HAN L Z. Evaluation of tolerance to low N-fertilized level for rice type. Journal of Plant Genetic Resources, 2006,7(3):316-320. (in Chinese)
[31] 黄永兰, 黎毛毛, 芦明, 万建林, 龙起樟, 王会民, 唐秀英, 范志洁. 氮高效水稻种质资源筛选及相关特性分析. 植物遗传资源学报, 2015,16(1):87-93
HUANG Y L, LI M M, LU M, WAN J L, LONG Q Z, WANG H M, TANG X Y, FAN Z J. Selection of rice germplasm with high nitrogen utilization efficiency and its analysis of the related characters. Journal of Plant Genetic Resources, 2015,16(1):87-93. (in Chinese)
[32] 赵化田, 王瑞芳, 许云峰, 安调过. 小麦苗期耐低氮基因型的筛选与评价. 中国生态农业学报, 2011,19(5):1199-1204.
ZHAO H T, WANG R F, XU Y F, AN D G. Screening and evaluating low nitrogen tolerant wheat genotype at seedling stage. Chinese Journal of Eco-Agriculture, 2011,19(5):1199-1204. (in Chinese)
[33] 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析. 作物杂志, 2018(4):42-47.
WEI M H, XIE H F, XING L, SONG H, WANG S J, WANG S Y, LIU H P, FU N, LIU J R. Comprehensive evaluation of yield and agronomic characters of foxtail millet germplasms from North China. Crops, 2018(4):42-47. (in Chinese)
[34] SATTELMACHER B, GERENDAS J, THOMS K. Interaction between root growth and mineral nutrition. Environmental and Experimental Botany, 1993,33(1):63-73.
doi: 10.1016/0098-8472(93)90056-L
[35] 孙海国, 张福锁, 杨军芳. 不同供磷水平小麦苗期根系特征与其相对产量的关系. 华北农学报, 2001,16(3):98-104.
doi: 10.3321/j.issn:1000-7091.2001.03.019
SUN H G, ZHANG F S, YANG J F. Characteristics of root system of wheat seedlings and their relative grainyield. Acta Agriculturae Boreali-Sinica, 2001,16(3):98-104. (in Chinese)
doi: 10.3321/j.issn:1000-7091.2001.03.019
[36] 春亮, 陈范骏, 米国华, 张福锁. 玉米苗期根系对氮胁迫反应的配合力分析. 植物营养与肥料学报, 2005,11(6):750-756.
doi: 10.11674/zwyf.2005.0607
CHUN L, CHEN F J, MI G H, ZHANG F S. Response of rootmorphology to low nitrogen stress in maize seedling. Journal of Plant Nutrition and Fertilizer, 2005,11(6):750-756. (in Chinese)
doi: 10.11674/zwyf.2005.0607
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[4] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[5] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[8] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[9] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[10] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[11] ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
[12] LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
[13] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[14] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[15] ZHANG LongYan,CHENG GongMin,WEI HengLing,WANG HanTao,LU JianHua,MA ZhiYing,YU ShuXun. Chilling Tolerance Identification and Response to Cold Stress of Gossypium hirsutum Varieties (Lines) During Germination Stage [J]. Scientia Agricultura Sinica, 2021, 54(1): 19-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!