Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3225-3234.doi: 10.3864/j.issn.0578-1752.2020.16.003
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WAN HuaFang(),WEI Shuai(
),FENG YuXia,QIAN Wei(
)
[1] | NAGAHARU U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan Journal of Botany, 1935,7:389-452. |
[2] |
CHALHOUB B, DENOEUD F, LIU S Y, PARKIN I A P, TANG H B, WANG X Y, CHIQUET J, BELCRAM H, TONG C B, SAMANS B, CORRÉA M, DA SILVA C, JUST J, FALENTIN C, KOH C S, LE CLAINCHE I, BERNARD M, BENTO P, NOEL B, LABADIE K, ALBERTI A, CHARLES M, ARNAUD D, GUO H, DAVIAUDC ALAMERY S, JABBARI K, ZHAO M X, EDGER P P, CHELAIFA H, TACK D, LASSALLE G, MESTIRI I, SCHNEL N, LE PASLIER M C, FAN G Y, RENAULT V, BAYER P E, GOLICZ A A, MANOLI S, LEE T H, THI D V H, CHALABI S, HU Q, FAN C C, TOLLENAERE R, LU Y H, BATTAIL C, SHEN J X, SIDEBOTTOM C H D, WANG X F, CANAGUIER A, CHAUVEAU A, BÉRARD A, DENIOT G, GUAN M, LIU Z S, SUN F M, LIM Y P, LYONS E, TOWN C D, BANCROFT I, WANG X W, MENG J L, MA J X, PIRES J C, KING G J, BRUNEL D, DELOURME R, RENARD M, AURY J M, ADAMS K L, BATLEY J, SNOWDON R J, TOST J, EDWARDS D, ZHOU Y M, HUA W, SHARPE A G, PATERSON A H, GUAN C Y, WINCKER P. Early allopolyploid evolution in the post- Neolithic Brassica napus oilseed genome. Science, 2014,345(6199):950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[3] | PRAKASH S, WU X, BHAT SR. History, evolution and domestication of Brassica crops. Plant Breeding Reviews, 2012,35:19-84. |
[4] |
VALLIYODAN B, NGUYEN H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 2006,9(2):189-195.
pmid: 16483835 |
[5] |
TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world. Science, 2010,327:818-822.
pmid: 20150489 |
[6] |
白鹏, 冉春燕, 谢小玉. 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响. 中国农业科学, 2014,47(18):3566-3776.
doi: 10.3864/j.issn.0578-1752.2014.18.005 |
BAI P, RAN C Y, XIE X Y. Influence of drought stress on physiological characteristics and agronomic traits at bud stage of rapeseed (Brassica napus L.). Scientia Agricultural Sinica, 2014,47(18):3566-3776. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.18.005 |
|
[7] |
BECILER H C, ENGQVIST G M, ILARLSSON B. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theoretical and Applied Genetics, 1995,91(1):62-67.
pmid: 24169668 |
[8] |
ALLENDER C, KING G. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biology, 2010,10:54-62.
pmid: 20350303 |
[9] |
MEI J Q, LI Q F, QIAN L W, FU Y, LI J N, FRAUEN M, QIAN W. Genetic investigation of the origination of allopolyploid with virtually synthesized lines: application to the C subgenome of Brassica napus. Heredity, 2011,106(6):955-961.
pmid: 21102622 |
[10] |
BUS A, KÖRBER N, SNOWDON R J, STICH B. Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theoretical and Applied Genetics, 2011,123:1413-1423.
pmid: 21847624 |
[11] |
QIAN W, MENG J L, LI M T, FRAUEN M, SASS O, NOACIL J, JUNG C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed(B. napus L.) with emphasis on the evolution of Chinese rapeseed. Theoretical and Applied Genetics, 2006,113:49-54.
pmid: 16604336 |
[12] | GIRILE A, SCHIERHOLT A, BECILER H C. Extending the rapeseed gene pool with resynthesized Brassica napus I: Genetic diversity. Genetic Resources and Crop Evolution, 2012,59:1441-1447. |
[13] |
GIRILE A, SCHIERHOLT A, BECILER H C. Extending the rapeseed gene pool with resynthesized Brassica napns II: Heterosis. Theoretical and Applied Genetics, 2012,124(6):1017-1026.
doi: 10.1007/s00122-011-1765-7 |
[14] |
FU D H, QIAN W, ZOU J, MENG J L. Genetic dissection of inter- subgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica, 2012,184:151-164.
doi: 10.1007/s10681-011-0533-8 |
[15] |
ZOU J, HU D D, MASON A S, SHEN X Q, WANG X H, WANG N, GRANDKE F, WANG M, CHAN S H, SNOWDON R J, MENG J L. Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. Plant Biotechnology Journal, 2018,16(2):507-519.
pmid: 28703467 |
[16] | QIAN L W, QIAN W, SNOWDON R J. Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genomics, 2014,15(1):1170-1186. |
[17] | TALEBI R, HAGHNAZARI A, TABATABAEI I. Assessment of genetic variation within international collection of Brassica rapa genotypes using inter simple sequence repeat DNA markers. Biharean Biologist, 2010,4(2):145-153. |
[18] |
ZHAO J J, WANG X W, DENG B, LOU P, WU J, SUN R F, XU Z Y, VROMANS J, KOORNNEEF M, BONNEMA G. Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theoretical and Applied Genetics, 2005,110(7):1301-1314.
doi: 10.1007/s00122-005-1967-y pmid: 15806345 |
[19] |
GUO Y M, CHEN S, LI Z Y, COWLING W A. Centre of origin and centres of diversity in an ancient crop,Brassica rapa (turnip rape). Journal of Heredity, 2014,105(4):555-565.
pmid: 24714366 |
[20] | 何余堂, 陈宝元, 傅廷栋, 李殿荣, 涂金星. 白菜型油菜在中国的起源与进化. 遗传学报, 2003,30(11):1003-1012. |
HE Y T, CHEN B Y, FU T D, LI D R, TU J X. Origin and evolution of Brassica campestris L. in China. Acta Genetica Sinica, 2003,30(11):1003-1012. (in Chinese) | |
[21] |
GUO Y M, TURNER N C, CHEN S, NELSON M N SIDDIQUE K H M, COWLING W A. Genotypic variation for tolerance to transient drought during the reproductive phase of Brassica rapa. Journal of Agronomy and Crop Science, 2015,201(4):267-279.
doi: 10.1111/jac.12107 |
[22] | CHEN S, ZOU J, COWLING W A, MENG J L. Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop and Pasture Science, 2010,61(6):483-492. |
[23] | GUO Y M, SAMANS B, CHEN S, KIBRET K B, HATZIG S, TURNER N C, NELSON M N, COWLING W A, SNOWDON R J. Drought-tolerant Brassica rapa shows rapid expression of gene networks for general stress responses and programmed cell death under simulated drought Stress. Plant Molecular Biology Report, 2017,35(4):416-430. |
[24] | 周庆红, 周灿, 范淑英. 远缘杂交在芸薹属作物育种中的应用研究进展. 北方园艺, 2015(2):165-170. |
ZHOU Q H, ZHOU C, FAN S Y. Research advance in application of distant hybridization on breeding of Brassica crops. Northern Horticulture, 2015(2):165-170. (in Chinese) | |
[25] | RIPLEY V L, BEVERSDORF W D. Development of self- incompatible Brassica napus:(I) Introgression of S alleles from Brassica oleracea through interspecific hybridization. Plant Breeding, 2010,122(1):1-5. |
[26] | 岳芳, 汪雷, 陈燕桂, 忻晓霞, 李勤菲, 梅家琴, 熊志勇, 钱伟. 利用异源六倍体(ArArAnAnCnCn)与甘蓝种间杂交合成甘蓝型油菜的新方法. 作物学报, 2019,45(2):188-195. |
YUE F, WANG L, CHEN Y G, JIN X X, LI Q F, MEI J Q, XIONG Z Y, QIAN W. A new method for the synthesis of Brassica napus by using inter-species hexaploid (ArArAnAnCnCn) and B. oleracea. Acta Agronomica Sinica, 2019,45(2):188-195. (in Chinese) | |
[27] | 钱伟, 李勤菲, 梅家琴, 付东辉, 李加纳. 一种利用白菜型油菜拓宽甘蓝型油菜遗传变异的方法:中国, 2010106071854.3.2013. |
QIAN W, LI Q F, MEI J Q, FU D H, LI J N. A strategy of using Brassica rapa to widen genetic variance of B. napus: China , 201010607185. 4.2013. (in Chinese) | |
[28] |
MEI J Q, LIU Y, WEI D Y, WITTKOP B, DING Y J, LI Q F, LI J N, WAN H F, LI Z Y, GE X H, FRAUEN M, SNOWDON , R J, QIAN W, FRIENT W. Transfer of sclerotinaia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theoretical and Applied Genetics, 2015,128(4):639-644.
doi: 10.1007/s00122-015-2459-3 pmid: 25628163 |
[29] |
李勤菲, 陈致富, 刘瑶, 梅家琴, 钱伟. 六倍体(AnAnCnCnCoCo)与白菜型油菜杂交可交配性及后代菌核病抗性. 中国农业科学, 2017,50(1):123-133.
doi: 10.3864/j.issn.0578-1752.2017.01.011 |
LI Q F, CHEN Z F, LIU Y, MEI J Q, QIAN W. Crossability and sclerotinia resistance among hybrids between hexaploid (AnAnCnCnCoCo) and Brassica rapa. Scientia Agricultura Sinica, 2017,50(1):123-133.( in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.011 |
|
[30] | SHANGGUAN Z P, LEI T W, SHAO M A, XUE Q W. Effects of phosphorus nutrient on the hydraulic conductivity of Sorghum (Sorghum vulgare Pers.) seedling roots under water deficiency. Journal of Integrative Plant Biology, 2005,47(4):421-427. |
[31] |
陈郡雯, 吴卫, 郑有良, 侯凯, 徐应文, 翟娟园. 聚乙二醇(PEG-6000)模拟干旱条件下白芷苗期抗旱性研究. 中国中药杂志, 2010,35(2):149-153.
pmid: 20394281 |
CHEN J W, WU W, ZHENG Y L, HOU K, XU Y W, ZHAI J Y. Drought resistance of Angelica dahurica during seedling stage under polyethylene glycol (PEG-6000)-simulated drought stress. China Journal of Chinese Materia Medica, 2010,35(2):149-153. (in Chinese)
pmid: 20394281 |
|
[32] |
LI Q F, ZHOU Q H, MEI J Q, ZHANG Y J, LI J N, LI Z Y, GE X H, XIONG Z Y, HUANG Y J, QIAN W. Improvement of Brassica napus via interspecific hybridization between B. napus and B. oleracea. Molecular Breeding, 2014,34(4):1955-1963.
doi: 10.1007/s11032-014-0153-9 |
[33] |
QUAZI M. Interspecific hybrids between B. napus and B. oleracea developed by embryo culture. Theoretical and Applied Genetics, 1988,75(2):309-318.
doi: 10.1007/BF00303970 |
[34] |
DING Y J, MEI J Q, LI Q F, LIU Y, WAN H F, WANG L, BECKER H C, QIAN W. Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genetic Resources and Crop Evolution, 2013,60(5):1615-1619.
doi: 10.1007/s10722-013-9978-z |
[35] | XIAO Y, CHEN L L, ZOU J, TIAN E T, XIA W, MENG J L. Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theoretical Applied Genetics, 2010,121(6):1141-1150. |
[36] | 刘瑶, 丁一娟, 汪雷, 万华方, 梅家琴, 钱伟. 甘蓝型油菜与AnAnCnCnCoCo六倍体可交配性及杂种菌核病抗性. 中国农业科学, 2015,48(24):4885-4891. |
LIU Y, DING Y J, WANG L, WAN H F, MEI J Q, QIAN W. Crossability between Brassica napus with hexaploid AnAnCnCnCoCo and sclerotinia resistance in the hybrids. Scientia Agricultura Sinica , 2015,48(24):4885-4891. (in Chinese) | |
[37] |
FANG Y J, XIONG L Z. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015,72(4):673-689.
pmid: 25336153 |
[38] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007,58(2):221-227.
doi: 10.1093/jxb/erl164 pmid: 17075077 |
[39] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K, SEKI M. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003,6(5):410-417.
pmid: 12972040 |
[40] |
卢坤, 张琳, 曲存民, 梁颖, 唐章林, 李加纳. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因. 中国农业科学, 2015,48(4):630-645.
doi: 10.3864/j.issn.0578-1752.2015.04.02 |
LU K, ZHANG L, QU C M, LINAG Y, TANG Z L, LI J N. Identification of drought stress-responsive genes in leaves of Brassica napus by RNA sequencing. Scientia Agricultura Sinica, 2015,48(4):630-645. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.04.02 |
|
[41] |
CHEN L, REN F, ZHONG H, JIANG W M, LI X B. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochimica et Biophysica Sinica, 2010,42(2):154-164.
doi: 10.1093/abbs/gmp113 pmid: 20119627 |
[42] |
ZHANG J, MASON A S, WU J, LIU S, ZHANG X C, LUO T, REDDEN R, BATLEY J, HU L Y, YAN G J. Identification of putative candidate genes for water stress tolerance in Canola (Brassica napus). Frontiers in Plant Science, 2015,6:1058.
pmid: 26640475 |
[1] | HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30. |
[2] | XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807. |
[3] | LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270. |
[4] | LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736. |
[5] | WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523. |
[6] | Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117. |
[7] | WAN HuaFang,DING YiJuan,CHEN ZhiFu,MEI JiaQin,QIAN Wei. Improvement of the Resistance Against Sclerotinia sclerotiorum in Ogu CMS Restorer in Brassica napus Using Wild B. oleracea as Donor [J]. Scientia Agricultura Sinica, 2020, 53(10): 1950-1958. |
[8] | YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340. |
[9] | YE Sang,CUI Cui,GAO HuanHuan,LEI Wei,WANG LiuYan,WANG RuiLi,CHEN LiuYi,QU CunMin,TANG ZhangLin,LI JiaNa,ZHOU QingYuan. QTL Identification for Fatty Acid Content in Brassica napus Using the High Density SNP Genetic Map [J]. Scientia Agricultura Sinica, 2019, 52(21): 3733-3747. |
[10] | PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308. |
[11] | SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677. |
[12] | LIU Fang,XIAO Gang,GUAN ChunYun. Regulation of GT and GATA Transcription Factors on Promoter Function of BnA5.FAD2 and BnC5.FAD2 Genes in Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(24): 4603-4614. |
|