Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3225-3234.doi: 10.3864/j.issn.0578-1752.2020.16.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Creating a New-Type Brassica napus (AnArCnCo) with High Drought-resistance Employing Hexaploid (AnAnCnCnCoCo) as a Bridge

WAN HuaFang(),WEI Shuai(),FENG YuXia,QIAN Wei()   

  1. College of Agronomy and Biotechnology, Southwest University/Academy of Agricultural Sciences, Southwest University, Chongqing 400716
  • Received:2019-10-05 Accepted:2020-02-21 Online:2020-08-16 Published:2020-08-27
  • Contact: Wei QIAN E-mail:wanhua05@163.com;499623219@qq.com;qianwei666666@hotmail.com

Abstract:

【Objective】As one parent of Brassica napus, B. rapa has a wide range of variation, as well as excellent performance against drought or poor soil. Employing hexaploid as a bridge, the drought resistance of B. rapa is transferred to develop a new-type B. napus with excellent drought tolerance.【Method】The hexaploid (AnAnCnCnCoCo) was created via interspecific cross between B. napus (AnAnCnCn) and B. oleracea (CoCo) via embryo rescue and chrosome doubling. Next, a new-type B. napus(AnArCnCo)was developed by crossing the hexaploid with B. rapa (ArAr). Under the treatment with PEG-6000 solution to imitate drought stress at germination stage, the indices related to drought resistance were measured in the experimental materials, including natural B. napus, new-type B. napus and B.rapa. All the datum were analyzed with subordinate function method.【Result】 Using 11 hexaploid materials and 68 B. rapa materials as parents, 124 new-type B. napus lines were created, which showed intermediate morphology between hexaploid and B. rapa. The hexaploid used in the experiment all had 56 chrosomes and the new-type B. napus had 38 chromsomes. The pollen fertility in the hexaploid and the new-type B. napus was approximately 90% and 80%, respectively. Based on the results of principal components analysis and SSR analysis, 7 hexaploid, 59 new-type B. napus, 10 B. rapa and 20 natural B. napus were clustered into three groups, namely B.rapa, hexaploid and B. napus. The new-type B. napus and natural B. napus were in the same group, but they clearly separated each other. Based on the drought resistance-related indices, 200 g·L-1 and 250 g·L-1 PEG-6000 solution were used to imitate drought stress to B. rapa and new-type B. napus, respectively. Nine new-type B. napus were tested, but only three were more resistant than the control, Zhongshuang 11. Additionally, the resistance were positively associated to the corresponding parent B. rapa, which indicated that the three new-type B. napus have been transfered excellent drought resistance from B. rapa.【Conclusion】 Using B. rapa as a drought resistance donor and the hexaploid as a bridge, new-type B. napus lines with excellent drought tolerance were developed.

Key words: Brassica napus, Brassica rapa, drought tolerance, PEG-6000, principal components analysis

Fig. 1

Identification of new-type B. napus Ⅰ: Seedling phenotype of hexaploid (AnAnCnCnCoCo); Ⅱ: Seedling phenotype of the new-type B. napus; Ⅲ: Seedling phenotype of B. rapa; Ⅳ: Chrosomes of hexaploid; Ⅴ: Chrosomes of new-type B. napus; Ⅵ: Pollen stainability of hexaploid; Ⅶ: Pollen stainability of new-type B. napus; Ⅷ: Principal component analysis result, “round” refers to B. rapa; “red square” refers to a hexaploid; “green diamond” refers to new-type B. napus; “blue triangle” refers to natural B. napus"

Fig. 2

Root length of rapeseed treated by PEG-6000 solution with different concentration Ⅰ: Average root length of new-type B. napus treated by PEG-6000 solution with different concentration;Ⅱ: Variation coefficient of relative root length of the new-type B. napus treated by PEG-6000 solution with different concentration;Ⅲ: Average root length of B. rapa treated by PEG-6000 solution with different concentration; Ⅳ: Variation coefficient of relative root length of B. rapa treated by PEG-6000 solution with different concentration. Different letters indicate significant difference at P<0.01"

Table 1

Primitive matrix of principal component analysis on drought-resistance indices of rapeseed at germination stage"

编号
Code
类型
Type
萌发抗旱指数
DRI
相对萌发率
RGR
相对萌发势
RSP
相对根长
RRL
相对胚轴长
RSL
9X006 新型甘蓝型油菜New-type B. napus 0.262 0.067 0.069 0.209 0.106
9X002 新型甘蓝型油菜New-type B. napus 0.543 0.067 0.000 0.690 0.133
9X025 新型甘蓝型油菜New-type B. napus 0.798 0.300 0.296 0.718 0.135
9X016 新型甘蓝型油菜New-type B. napus 0.392 0.600 0.615 0.319 0.173
9X018 新型甘蓝型油菜New-type B. napus 0.824 0.900 0.827 0.692 0.249
9X111 新型甘蓝型油菜New-type B. napus 0.483 0.633 0.393 0.748 0.162
9X028 新型甘蓝型油菜New-type B. napus 0.591 0.933 0.933 0.156 0.109
9X015 新型甘蓝型油菜New-type B. napus 0.637 0.600 0.533 0.228 0.151
9X026 新型甘蓝型油菜New-type B. napus 0.380 0.700 0.633 0.122 0.109
中双11 ZS11 甘蓝型油菜B. napus 0.800 0.867 0.700 0.185 0.117
8M664 白菜型油菜B. rapa 0.800 0.830 0.860 0.690 0.210
8M681 白菜型油菜B. rapa 0.670 0. 830 0.800 0.920 0.410
8M625 白菜型油菜B. rapa 0.530 0.570 0.530 0.310 0.260
8M623 白菜型油菜B. rapa 0.520 0.900 0.830 0.610 0.500
8M684 白菜型油菜B. rapa 0.290 0.470 0.410 0.560 0.130
8M624 白菜型油菜B. rapa 0.370 0.700 0.500 0.510 0.210
8M693 白菜型油菜B. rapa 0.450 0.730 0.730 0.690 0.300
8M191 白菜型油菜B. rapa 0.300 0.600 0.480 0.500 0.810
8M655 白菜型油菜B. rapa 0.420 0.730 0.660 0.690 0.250

Table 2

Principal component analysis on drought-resistance-related indicators on rapeseed"

主成分
Principal component
类别
Category
特征值
Eigen value
贡献率Contribution ratio (%) 累计贡献率Accumulated contribution ratio (%) 抗旱指标特征向量Eigen vector of measured indicators
萌发抗旱指数DRI 相对萌发率RGR 相对萌发势RSP 相对根长RRL 相对胚轴长RSL
PC1 新型甘蓝型油菜
New-type B. napus
2.431 48.620 48.620 0.416 0.597 0.589 -0.024 0.350
PC2 新型甘蓝型油菜
New-type B. napus
1.774 35.470 84.090 0.332 -0.224 -0.274 0.720 0.497
PC3 新型甘蓝型油菜
New-type B. napus
0.597 11.930 96.020 -0.784 0.083 0.110 0.011 0.605
PC1 白菜型油菜
B. rapa
3.580 71.610 71.600 0.459 0.512 0.520 0.468 0.194
PC2 白菜型油菜
B. rapa
0.950 19.010 90.600 -0.313 0.08 -0.073 -0.038 0.946
PC3 白菜型油菜
B. rapa
0.320 6.430 97.000 0.599 -0.001 0.103 -0.775 0.175

Table 3

Membership function value of drought-resistance-related indicators of rapeseed under simulated drought stress"

编号
Code
类型
Type
萌发抗旱指数
DRI
相对萌发率
RGR
相对萌发势RSP 相对根长
RRL
相对胚轴长
RSL
均值
Means
9X006 新型甘蓝型油菜New-type B. napus 1.00 0.00 0.01 0.73 0.20 0.388
9X002 新型甘蓝型油菜New-type B. napus 0.78 0.09 0.00 1.00 0.19 0.412
9X025 新型甘蓝型油菜New-type B. napus 1.00 0.25 0.24 0.88 0.00 0.474
9X026 新型甘蓝型油菜New-type B. napus 0.46 1.00 0.89 0.02 0.00 0.474
9X028 新型甘蓝型油菜New-type B. napus 0.58 1.00 1.00 0.05 0.00 0.526
9X111 新型甘蓝型油菜New-type B. napus 0.55 0.80 0.39 1.00 0.00 0.548
中双11 ZS11 甘蓝型油菜B. napus 0.91 1.00 0.78 0.09 0.00 0.556
9X016 新型甘蓝型油菜New-type B. napus 0.50 0.96 1.00 0.33 0.00 0.558
9X015 新型甘蓝型油菜New-type B. napus 1.00 0.92 0.78 0.15 0.00 0.570
9X018 新型甘蓝型油菜New-type B. napus 0.88 1.00 0.89 0.68 0.00 0.690
8M623 白菜型油菜B. rapa 0.07 1.00 0.83 0.28 0.00 0.436
8M191 白菜型油菜B. rapa 0.00 0.61 0.35 0.40 1.00 0.472
8M624 白菜型油菜B. rapa 0.31 1.00 0.59 0.62 0.00 0.504
8M684 白菜型油菜B. rapa 0.37 0.78 0.66 1.00 0.00 0.562
8M625 白菜型油菜B. rapa 0.88 1.00 0.89 0.17 0.00 0.588
8M681 白菜型油菜B. rapa 0.51 0.83 0.76 1.00 0.00 0.620
8M655 白菜型油菜B. rapa 0.35 1.00 0.84 0.91 0.00 0.620
8M693 白菜型油菜B. rapa 0.36 1.00 1.00 0.90 0.00 0.652
8M664 白菜型油菜B. rapa 0.90 0.96 1.00 0.73 0.00 0.721

Table 4

Correlation analysis of simulated drought membership function values"

编号Code 9X006 9X002 9X025 9X026 9X028 9X111 中双11 ZS 11 9X016 9X015 9X018
8M623 -0.686 -0.583 -0.336 0.874* 0.833* 0.354 0.610 0.909* 0.522 0.666
8M191 -0.631 -0.497 -0.821* -0.274 -0.362 -0.475 -0.563 -0.398 -0.665 -0.734
8M624 -0.309 -0.129 0.081 0.692 0.651 0.764 0.560 0.791 0.503 0.789
8M684 0.023 0.289 0.398 0.311 0.300 0.912* 0.216 0.539 0.201 0.695
8M625 -0.151 -0.317 0.122 0.923** 0.948** 0.265 0.992** 0.891* 0.986** 0.872*
8M681 0.064 0.28 0.455 0.400 0.402 0.906* 0.341 0.622 0.347* 0.793
8M655 -0.232 -0.005 0.177 0.569 0.547 0.805 0.409 0.748 0.372 0.775
8M693 -0.291 -0.089 0.122 0.624 0.611 0.721 0.440 0.805 0.404 0.784
8M664 0.067 0.052 0.441 0.742 0.778 0.651 0.800 0.864* 0.818* 0.991**
[1] NAGAHARU U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan Journal of Botany, 1935,7:389-452.
[2] CHALHOUB B, DENOEUD F, LIU S Y, PARKIN I A P, TANG H B, WANG X Y, CHIQUET J, BELCRAM H, TONG C B, SAMANS B, CORRÉA M, DA SILVA C, JUST J, FALENTIN C, KOH C S, LE CLAINCHE I, BERNARD M, BENTO P, NOEL B, LABADIE K, ALBERTI A, CHARLES M, ARNAUD D, GUO H, DAVIAUDC ALAMERY S, JABBARI K, ZHAO M X, EDGER P P, CHELAIFA H, TACK D, LASSALLE G, MESTIRI I, SCHNEL N, LE PASLIER M C, FAN G Y, RENAULT V, BAYER P E, GOLICZ A A, MANOLI S, LEE T H, THI D V H, CHALABI S, HU Q, FAN C C, TOLLENAERE R, LU Y H, BATTAIL C, SHEN J X, SIDEBOTTOM C H D, WANG X F, CANAGUIER A, CHAUVEAU A, BÉRARD A, DENIOT G, GUAN M, LIU Z S, SUN F M, LIM Y P, LYONS E, TOWN C D, BANCROFT I, WANG X W, MENG J L, MA J X, PIRES J C, KING G J, BRUNEL D, DELOURME R, RENARD M, AURY J M, ADAMS K L, BATLEY J, SNOWDON R J, TOST J, EDWARDS D, ZHOU Y M, HUA W, SHARPE A G, PATERSON A H, GUAN C Y, WINCKER P. Early allopolyploid evolution in the post- Neolithic Brassica napus oilseed genome. Science, 2014,345(6199):950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[3] PRAKASH S, WU X, BHAT SR. History, evolution and domestication of Brassica crops. Plant Breeding Reviews, 2012,35:19-84.
[4] VALLIYODAN B, NGUYEN H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 2006,9(2):189-195.
pmid: 16483835
[5] TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world. Science, 2010,327:818-822.
pmid: 20150489
[6] 白鹏, 冉春燕, 谢小玉. 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响. 中国农业科学, 2014,47(18):3566-3776.
doi: 10.3864/j.issn.0578-1752.2014.18.005
BAI P, RAN C Y, XIE X Y. Influence of drought stress on physiological characteristics and agronomic traits at bud stage of rapeseed (Brassica napus L.). Scientia Agricultural Sinica, 2014,47(18):3566-3776. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.18.005
[7] BECILER H C, ENGQVIST G M, ILARLSSON B. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theoretical and Applied Genetics, 1995,91(1):62-67.
pmid: 24169668
[8] ALLENDER C, KING G. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biology, 2010,10:54-62.
pmid: 20350303
[9] MEI J Q, LI Q F, QIAN L W, FU Y, LI J N, FRAUEN M, QIAN W. Genetic investigation of the origination of allopolyploid with virtually synthesized lines: application to the C subgenome of Brassica napus. Heredity, 2011,106(6):955-961.
pmid: 21102622
[10] BUS A, KÖRBER N, SNOWDON R J, STICH B. Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theoretical and Applied Genetics, 2011,123:1413-1423.
pmid: 21847624
[11] QIAN W, MENG J L, LI M T, FRAUEN M, SASS O, NOACIL J, JUNG C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed(B. napus L.) with emphasis on the evolution of Chinese rapeseed. Theoretical and Applied Genetics, 2006,113:49-54.
pmid: 16604336
[12] GIRILE A, SCHIERHOLT A, BECILER H C. Extending the rapeseed gene pool with resynthesized Brassica napus I: Genetic diversity. Genetic Resources and Crop Evolution, 2012,59:1441-1447.
[13] GIRILE A, SCHIERHOLT A, BECILER H C. Extending the rapeseed gene pool with resynthesized Brassica napns II: Heterosis. Theoretical and Applied Genetics, 2012,124(6):1017-1026.
doi: 10.1007/s00122-011-1765-7
[14] FU D H, QIAN W, ZOU J, MENG J L. Genetic dissection of inter- subgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica, 2012,184:151-164.
doi: 10.1007/s10681-011-0533-8
[15] ZOU J, HU D D, MASON A S, SHEN X Q, WANG X H, WANG N, GRANDKE F, WANG M, CHAN S H, SNOWDON R J, MENG J L. Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. Plant Biotechnology Journal, 2018,16(2):507-519.
pmid: 28703467
[16] QIAN L W, QIAN W, SNOWDON R J. Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genomics, 2014,15(1):1170-1186.
[17] TALEBI R, HAGHNAZARI A, TABATABAEI I. Assessment of genetic variation within international collection of Brassica rapa genotypes using inter simple sequence repeat DNA markers. Biharean Biologist, 2010,4(2):145-153.
[18] ZHAO J J, WANG X W, DENG B, LOU P, WU J, SUN R F, XU Z Y, VROMANS J, KOORNNEEF M, BONNEMA G. Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theoretical and Applied Genetics, 2005,110(7):1301-1314.
doi: 10.1007/s00122-005-1967-y pmid: 15806345
[19] GUO Y M, CHEN S, LI Z Y, COWLING W A. Centre of origin and centres of diversity in an ancient crop,Brassica rapa (turnip rape). Journal of Heredity, 2014,105(4):555-565.
pmid: 24714366
[20] 何余堂, 陈宝元, 傅廷栋, 李殿荣, 涂金星. 白菜型油菜在中国的起源与进化. 遗传学报, 2003,30(11):1003-1012.
HE Y T, CHEN B Y, FU T D, LI D R, TU J X. Origin and evolution of Brassica campestris L. in China. Acta Genetica Sinica, 2003,30(11):1003-1012. (in Chinese)
[21] GUO Y M, TURNER N C, CHEN S, NELSON M N SIDDIQUE K H M, COWLING W A. Genotypic variation for tolerance to transient drought during the reproductive phase of Brassica rapa. Journal of Agronomy and Crop Science, 2015,201(4):267-279.
doi: 10.1111/jac.12107
[22] CHEN S, ZOU J, COWLING W A, MENG J L. Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop and Pasture Science, 2010,61(6):483-492.
[23] GUO Y M, SAMANS B, CHEN S, KIBRET K B, HATZIG S, TURNER N C, NELSON M N, COWLING W A, SNOWDON R J. Drought-tolerant Brassica rapa shows rapid expression of gene networks for general stress responses and programmed cell death under simulated drought Stress. Plant Molecular Biology Report, 2017,35(4):416-430.
[24] 周庆红, 周灿, 范淑英. 远缘杂交在芸薹属作物育种中的应用研究进展. 北方园艺, 2015(2):165-170.
ZHOU Q H, ZHOU C, FAN S Y. Research advance in application of distant hybridization on breeding of Brassica crops. Northern Horticulture, 2015(2):165-170. (in Chinese)
[25] RIPLEY V L, BEVERSDORF W D. Development of self- incompatible Brassica napus:(I) Introgression of S alleles from Brassica oleracea through interspecific hybridization. Plant Breeding, 2010,122(1):1-5.
[26] 岳芳, 汪雷, 陈燕桂, 忻晓霞, 李勤菲, 梅家琴, 熊志勇, 钱伟. 利用异源六倍体(ArArAnAnCnCn)与甘蓝种间杂交合成甘蓝型油菜的新方法. 作物学报, 2019,45(2):188-195.
YUE F, WANG L, CHEN Y G, JIN X X, LI Q F, MEI J Q, XIONG Z Y, QIAN W. A new method for the synthesis of Brassica napus by using inter-species hexaploid (ArArAnAnCnCn) and B. oleracea. Acta Agronomica Sinica, 2019,45(2):188-195. (in Chinese)
[27] 钱伟, 李勤菲, 梅家琴, 付东辉, 李加纳. 一种利用白菜型油菜拓宽甘蓝型油菜遗传变异的方法:中国, 2010106071854.3.2013.
QIAN W, LI Q F, MEI J Q, FU D H, LI J N. A strategy of using Brassica rapa to widen genetic variance of B. napus: China , 201010607185. 4.2013. (in Chinese)
[28] MEI J Q, LIU Y, WEI D Y, WITTKOP B, DING Y J, LI Q F, LI J N, WAN H F, LI Z Y, GE X H, FRAUEN M, SNOWDON , R J, QIAN W, FRIENT W. Transfer of sclerotinaia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theoretical and Applied Genetics, 2015,128(4):639-644.
doi: 10.1007/s00122-015-2459-3 pmid: 25628163
[29] 李勤菲, 陈致富, 刘瑶, 梅家琴, 钱伟. 六倍体(AnAnCnCnCoCo)与白菜型油菜杂交可交配性及后代菌核病抗性. 中国农业科学, 2017,50(1):123-133.
doi: 10.3864/j.issn.0578-1752.2017.01.011
LI Q F, CHEN Z F, LIU Y, MEI J Q, QIAN W. Crossability and sclerotinia resistance among hybrids between hexaploid (AnAnCnCnCoCo) and Brassica rapa. Scientia Agricultura Sinica, 2017,50(1):123-133.( in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.011
[30] SHANGGUAN Z P, LEI T W, SHAO M A, XUE Q W. Effects of phosphorus nutrient on the hydraulic conductivity of Sorghum (Sorghum vulgare Pers.) seedling roots under water deficiency. Journal of Integrative Plant Biology, 2005,47(4):421-427.
[31] 陈郡雯, 吴卫, 郑有良, 侯凯, 徐应文, 翟娟园. 聚乙二醇(PEG-6000)模拟干旱条件下白芷苗期抗旱性研究. 中国中药杂志, 2010,35(2):149-153.
pmid: 20394281
CHEN J W, WU W, ZHENG Y L, HOU K, XU Y W, ZHAI J Y. Drought resistance of Angelica dahurica during seedling stage under polyethylene glycol (PEG-6000)-simulated drought stress. China Journal of Chinese Materia Medica, 2010,35(2):149-153. (in Chinese)
pmid: 20394281
[32] LI Q F, ZHOU Q H, MEI J Q, ZHANG Y J, LI J N, LI Z Y, GE X H, XIONG Z Y, HUANG Y J, QIAN W. Improvement of Brassica napus via interspecific hybridization between B. napus and B. oleracea. Molecular Breeding, 2014,34(4):1955-1963.
doi: 10.1007/s11032-014-0153-9
[33] QUAZI M. Interspecific hybrids between B. napus and B. oleracea developed by embryo culture. Theoretical and Applied Genetics, 1988,75(2):309-318.
doi: 10.1007/BF00303970
[34] DING Y J, MEI J Q, LI Q F, LIU Y, WAN H F, WANG L, BECKER H C, QIAN W. Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genetic Resources and Crop Evolution, 2013,60(5):1615-1619.
doi: 10.1007/s10722-013-9978-z
[35] XIAO Y, CHEN L L, ZOU J, TIAN E T, XIA W, MENG J L. Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theoretical Applied Genetics, 2010,121(6):1141-1150.
[36] 刘瑶, 丁一娟, 汪雷, 万华方, 梅家琴, 钱伟. 甘蓝型油菜与AnAnCnCnCoCo六倍体可交配性及杂种菌核病抗性. 中国农业科学, 2015,48(24):4885-4891.
LIU Y, DING Y J, WANG L, WAN H F, MEI J Q, QIAN W. Crossability between Brassica napus with hexaploid AnAnCnCnCoCo and sclerotinia resistance in the hybrids. Scientia Agricultura Sinica , 2015,48(24):4885-4891. (in Chinese)
[37] FANG Y J, XIONG L Z. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015,72(4):673-689.
pmid: 25336153
[38] SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007,58(2):221-227.
doi: 10.1093/jxb/erl164 pmid: 17075077
[39] SHINOZAKI K, YAMAGUCHI-SHINOZAKI K, SEKI M. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003,6(5):410-417.
pmid: 12972040
[40] 卢坤, 张琳, 曲存民, 梁颖, 唐章林, 李加纳. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因. 中国农业科学, 2015,48(4):630-645.
doi: 10.3864/j.issn.0578-1752.2015.04.02
LU K, ZHANG L, QU C M, LINAG Y, TANG Z L, LI J N. Identification of drought stress-responsive genes in leaves of Brassica napus by RNA sequencing. Scientia Agricultura Sinica, 2015,48(4):630-645. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.04.02
[41] CHEN L, REN F, ZHONG H, JIANG W M, LI X B. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochimica et Biophysica Sinica, 2010,42(2):154-164.
doi: 10.1093/abbs/gmp113 pmid: 20119627
[42] ZHANG J, MASON A S, WU J, LIU S, ZHANG X C, LUO T, REDDEN R, BATLEY J, HU L Y, YAN G J. Identification of putative candidate genes for water stress tolerance in Canola (Brassica napus). Frontiers in Plant Science, 2015,6:1058.
pmid: 26640475
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[4] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[5] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[6] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[7] WAN HuaFang,DING YiJuan,CHEN ZhiFu,MEI JiaQin,QIAN Wei. Improvement of the Resistance Against Sclerotinia sclerotiorum in Ogu CMS Restorer in Brassica napus Using Wild B. oleracea as Donor [J]. Scientia Agricultura Sinica, 2020, 53(10): 1950-1958.
[8] YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340.
[9] YE Sang,CUI Cui,GAO HuanHuan,LEI Wei,WANG LiuYan,WANG RuiLi,CHEN LiuYi,QU CunMin,TANG ZhangLin,LI JiaNa,ZHOU QingYuan. QTL Identification for Fatty Acid Content in Brassica napus Using the High Density SNP Genetic Map [J]. Scientia Agricultura Sinica, 2019, 52(21): 3733-3747.
[10] PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308.
[11] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
[12] LIU Fang,XIAO Gang,GUAN ChunYun. Regulation of GT and GATA Transcription Factors on Promoter Function of BnA5.FAD2 and BnC5.FAD2 Genes in Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(24): 4603-4614.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!