Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (10): 1667-1677.doi: 10.3864/j.issn.0578-1752.2019.10.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L.

SONG Xi1,PU DingFu2,TIAN LuShen1,YU QingQing1,YANG YuHeng1,Dai BingBing1,ZHAO ChangBin1,HUANG ChengYun1,DENG WuMing1()   

  1. 1 Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan
    2 Sichuan Mianbang Agricultural Science and Technology Co., Ltd, Mianyang 621000, Sichuan
  • Received:2019-01-21 Accepted:2019-03-11 Online:2019-05-16 Published:2019-05-23
  • Contact: WuMing DENG E-mail:dengwmncnky@163.com

Abstract:

【Objective】 Plant height has an great effect on lodging resistant, productivity and mechanical operation in rapeseed. Identification and research of dwarf and semi-dwarf germplasm in rapeseed will facilitate genetic improvement of plant height. At present, excellent dwarf germplasm in rapeseed is seriously deficient. In this study, we obtained a semi-dwarf natural mutant in B. napus and it was evaluated by phenotypic identification, genetic analysis and morphological and physiological analysis correlated to plant hormone. This work provide a theoretical basis for dwarf breeding and will contribute to further gene mapping and cloning.【Method】 A semi-dwarf mutant discovered from rapeseed line 141492 after six generations of self-crossing was used to produce DH population by isolated microspores culture, from which we choose one named dw-1 with the average plant height of 95 cm (83-105 cm) to identify its performance on agronomic traits, economic traits and disease resistance. Joint segregation analysis of six generations derived from a cross between dw-1 and wild type was carried out to reveal the inheritance of plant height based on major gene plus polygene mixed model. Morphology analysis of light and dark treatment (16 hL/8 hD, 24 hD) and exogenous gibberellins sensibility test of hypocotyls and stems were performed to classify the mutant. 【Result】 Compared with wild type, 1000-seed weight did not change while disease index of sclerotinia stem rot, number of secondary braches and number of siliques per plant increased significantly or extremely significantly in dw-1. Length of main inflorescence, number of primary branches, plant height, branch height, height of gravity center, number of siliques on main inflorescence, seeds per silique and yield per plant decreased significantly or extremely significantly and growth duration was shortened remarkably. Genetic analysis indicated that dw-1 was controlled by a pair of major gene with additive-dominant effects plus polygene with additive-dominant-epistasis effects (D-0 model). Additive effect and degree of dominance of major gene were -47.5 and 0.2, respectively. The heritability of major gene in B1, B2, F2 population were 76.0%, 84.0% and 85.0%, respectively, and those of polygene were 4.1%, 5.6% and 6.7%, respectively. Morphogenesis of dw-1 was normal and the length of hypocotyl of dw-1 was decreased significantly compared with the wild type regardless of light or dark condition (P < 0.01). Exogenous gibberellic acid 3 (GA3) with lower concentration had no obvious effect on elongation of hypocotyls and stems in dw-1 while they could be partially rescued in higher concentration but not to the wild type phenotype. 【Conclusion】 Mutant dw-1 with good comprehensive performance was mainly controlled by one pair of additive-dominant major gene dominated by additive effect. Selection of plant height can be carried out in earlier generation of conventional hybridization breeding. dw-1 was unrelated to brassinosteroid (BR) pathway and showed a reduced response to GA3.

Key words: Brassica napus L., dwarf mutant, genetic analysis, brassinosteroids, gibberellic acid

Fig. 1

Phenotypes of seedling stage and mature stage of dw-1 and wild type in the field"

Table 1

Agronomic traits, economic traits and disease resistance of dw-1 and wild type"

材料
Material
株高
PH
分枝部
位高度
BH
重心
高度
HGC
全生
育期
GD
主序
有效长
LMI
主序
角果数 SMI
一次
分枝数
PB
二次
分枝数
SB
单株
角果数
SP
千粒重
SW
每角
粒数
SS
单株
产量
YP
菌核病
病指
DISSR
WT 194.1±4.6 57.1±1.8 90.9±2.5 208.7±0.6 76.9±1.4 109.9±2.4 13.8±0.5 4.5±1.6 745.1±27.1 3.42±0.04 10.2±0.3 25.8±1.3 8.1±3.0
dw-1 120.0±4.7 15.7±2.0 59.8±2.6 203.3±0.6 66.2±1.5 80.1±3.5 11.6±0.2 17.2±1.3 836.5±17.1 3.27±0.05 5.9±0.6 16.2±1.7 19.4±1.6
±WT(%) -38.2** -72.5** -34.2** -2.6** -13.9* -27.1** -15.9** 282.2** 12.3** -4.4 -42.2** -37.2** 139.5*

Table 2

Frequency distribution and basic statistics of plant height in six generations"

群体
Population
株高分布Distribution of plant height (cm) 样本
容量
Sample size
平均值±
标准差
Mean±SD
≤90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170 171-180 181-190 191-200 201-210 211-220 >220
P1 12 22 30 26 9 99 115.8±11.4
F1 1 6 40 78 35 7 167 155.0±8.4
P2 2 5 6 29 35 15 4 96 201.0±11.6
B1 3 13 26 62 80 36 40 96 99 28 7 2 492 142.4±22.7
B2 1 13 31 67 83 45 13 19 39 68 63 44 4 490 169.3±31.3
F2 19 32 50 51 59 96 141 131 67 38 24 69 86 45 12 920 155.4±35.0

Table 3

Maximum log likelihood value and AIC value of various genetic models"

模型
Model
模型含义
Implication of model
极大似然值
MLV
AIC值
AIC value
模型
Model
模型含义
Implication of model
极大似然值
MLV
AIC值
AIC value
A-1 1MG-AD -10417.3 20842.6 D-0 MX1-AD-ADI -10267.8 20559.5
A-2 1MG-A -10488.1 20982.2 D-1 MX1-AD-AD -10339.9 20697.8
A-3 1MG-EAD -10715.3 21436.7 D-2 MX1-A-AD -10414.3 20844.6
A-4 1MG-NCD -10981.0 21968.1 D-3 MX1-EAD-AD -10450.5 20916.9
B-1 2MG-ADI -10277.0 20574.1 D-4 MX1-NCD-AD -10519.0 21053.9
B-2 2MG-AD -10383.8 20779.7 E-0 MX2-ADI-ADI -10267.0 20570.1
B-3 2MG-A -10575.4 21158.8 E-1 MX2-ADI-AD -10357.0 20744.1
B-4 2MG-EA -10702.4 21410.8 E-2 MX2-AD-AD -10334.8 20691.7
B-5 2MG-CD -10715.4 21438.7 E-3 MX2-A-AD -10280.7 20579.5
B-6 2MG-EAD -10796.8 21599.5 E-4 MX2-EA-AD -10517.1 21050.1
C-0 PG-ADI -10543.2 21106.4 E-5 MX2-CD-AD -10450.4 20918.9
C-1 PG-AD -10579.2 21172.5 E-6 MX2-EAD-AD -10525.1 21066.1

Table 4

Estimation of genetic parameters of plant height by D-0 model"

模型
Model
一阶遗传参数
1st order genetic parameter
估计值
Estimate
二阶遗传参数
2nd order genetic parameter
估计值 Estimate
B1 B2 F2
MX1-AD-ADI m1 163.3 σ2p 513.4 980.7 1228.3
m2 162.8 σ2mg 390.2 824.1 1043.8
m3 153.4 σ2pg 21.2 54.6 82.5
m4 167.8 h2mg(%) 76.0 84.0 85.0
m5 150.6 h2pg(%) 4.1 5.6 6.7
m6 156.2 h2 mg +pg (%) 80.1 89.6 91.7
d -47.5
h -7.7
h/d 0.2

Fig. 2

Phenotypes of dw-1 and wild type seedlings grown in light (A) and dark (B) condition"

Fig. 3

Hypocotyls length of dw-1 and wild type in light and dark condition ** indicates significant difference at 0.01 levels"

Fig. 4

Effects of GA3 on hypocotyl (A) and stem (B) elongation Different letters represent significant difference between different treatments at 0.05 level"

[1] FOISSET N, DELOURME R, BARRET P, RENARD M . Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theoretical and Applied Genetics, 1995,91(5):756-761.
[2] 刘后利 . 实用油菜栽培学. 上海: 上海科学技术出版社, 1987: 538-539.
LIU H L. Practical Cultivation of Rapeseed. Shanghai: Shanghai Scientific and Technical Press, 1987: 538-539. (in Chinese)
[3] ISLAM N, EVANS E J . Influence of lodging and nitrogen rate on the yield and yield attributes of oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 1994,88(5):530-534.
[4] 傅廷栋 . 油菜遗传改良与机械化. 农业技术与装备, 2008(5):10-11.
doi: 10.3969/j.issn.1673-887X.2008.05.005
FU T D . Genetic improvement and mechanization in rapeseed. Agricultural Technology and Equipment, 2008(5):10-11. (in Chinese)
doi: 10.3969/j.issn.1673-887X.2008.05.005
[5] 刘霞, 张冰冰, 马兵, 赵娜, 田正书, 秦梦凡, 王阳, 郎丽娜, 刘亚萍, 黄镇, 徐爱遐 . 甘蓝型油菜株高及其相关性状的主基因+多基因遗传分析. 西北农业学报, 2018,27(4):528-536.
LIU X, ZHANG B B, MA B, ZHAO N, TIAN Z S, QIN M F, WANG Y, LANG L N, LIU Y P, HUANG Z, XU A X . Mixed major gene plus poly-gene genetic analysis of plant height and its related traits in Brassica napus L. Acta Agriculturae Boreali-occidentalis Sinica, 2018,27(4):528-536. (in Chinese)
[6] 王传富 . 甘蓝型油菜白花和矮杆性状的遗传分析[D]. 武汉: 华中农业大学, 2008.
WANG C F . Genetic analysis of white flower and dwarf traits in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2008. (in Chinese)
[7] 梅德圣, 王汉中, 李云昌, 胡琼, 李英德, 徐育松 . 甘蓝型油菜矮秆突变材料99CDAM的发现及遗传分析. 遗传, 2006,28(7):851-857.
doi: 10.3321/j.issn:0253-9772.2006.07.015
MEI D S, WANG H Z, LI Y C, HU Q, LI Y D, XU Y S . The discovery and genetic analysis of dwarf mutation 99CDAM in Brassica napus L. Hereditas, 2006,28(7):851-857. (in Chinese)
doi: 10.3321/j.issn:0253-9772.2006.07.015
[8] ZENG X H, ZHU L X, CHEN Y L, QI L P, PU Y Y, WEN J, YI B, SHEN J X, MA C Z, TU J X, FU T D . Identification, fine mapping and characterisation of a dwarf mutant (bnaC.dwf) in Brassica napus. Theoretical and Applied Genetics, 2011,122(2):421-428.
[9] 浦惠明, 戚存扣, 傅寿仲 . 甘蓝型矮杆油菜“矮源1号”鉴定研究初报. 作物品种资源, 1995(1):23-24.
PU H M, QI C K, FU S Z . Preliminary study and identification of dwarf resource Aiyuan1 inBrassica nupus L. Crop genetic resources, 1995(1):23-24. (in Chinese)
[10] WANG Y K, CHEN W J, CHU P, WAN S B, YANG M, WANG M M, GUAN R Z . Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach. BMC Plant Biology, 2016,16(1):178.
doi: 10.1186/s12870-016-0865-6 pmid: 4991092
[11] WANG Y K, HE J B, YANG L, WANG Y, CHEN W J, WAN S B, CHU P, GUAN R Z . Fine mapping of a major locus controlling plant height using a high-density single-nucleotide polymorphism map in Brassica napus. Theoretical and Applied Genetics, 2016,129(8):1479-1491.
doi: 10.1007/s00122-016-2718-y pmid: 27147069
[12] WILLIAMS P H, HILL C B . Rapid-cycling populations of Brassica. Science, 1986,232(4756):1385-1389.
[13] MUANGPROM A, OSBORN T C . Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theoretical and Applied Genetics, 2004,108(7):1378-1384.
doi: 10.1007/s00122-003-1551-2 pmid: 14727029
[14] MUANGPROM A, THOMAS S G, SUN T P, OSBORN T C . A novel dwarfing mutation in a green revolution gene from Brassica rapa. Plant Physiology, 2005,137(3):931-938.
doi: 10.1104/pp.104.057646
[15] MUANGPROM A, MAURIERA I, OSBORN T C . Transfer of a dwarf gene from Brassica rapa to oilseed B. napus, effects on agronomic traits, and development of a ‘perfect’ marker for selection. Molecular Breeding, 2006,17(2):101-110.
doi: 10.1007/s11032-005-3734-9
[16] 李云, 付绍红, 杨进, 王继胜, 邹琼, 陈晓华, 陶兰蓉, 康泽明, 唐蓉, 张汝全 . 甘蓝型油菜矮秆突变体bndf-1的遗传鉴定及利用潜力分析. 中国农学通报, 2013,29(13):173-177.
doi: 10.3969/j.issn.1000-6850.2013.13.032
LI Y, FU S H, YANG J, WANG J S, ZOU Q, CHEN X H, TAO L R, KANG Z M, TANG R, ZHANG R Q . The identification and application of dwarf mutation bndf-1 in Brasscia napus. Chinese Agricultural Science Bulletin, 2013,29(13):173-177. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2013.13.032
[17] 石淑稳, 周永明, 魏泽兰, 吴江生, 刘后利 . 甘蓝型油菜矮杆突变体DS-1和DS-2. 作物品种资源, 1997(3):15.
SHI S W, ZHOU Y M, WEI Z L, WU J S, LIU H L . Dwarf mutant DS-1 and DS-2 inBrassica napus. Crop Genetic Resources, 1997(3):15.(in Chinese)
[18] 黄天带 . 甘蓝型油菜矮秆突变体及矮杆基因分子标记的研究[D]. 武汉: 华中农业大学, 2003.
HUANG T D . Studies on a dwarf mutant and molecular markers of dwarf gene in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2003. (in Chinese)
[19] LIU C, WANG J L, HUANG T D, WANG F, YUAN F, CHENG X M, ZHANG Y, SHI S W, WU J S, LIU K D . A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theoretical and Applied Genetics, 2010,121(2):249-258.
doi: 10.1007/s00122-010-1306-9
[20] ZHAO B, LI H T, LI J J, WANG B, DAI C, WANG J, LIU K D . Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theoretical and Applied Genetics, 2017,130(4):727-741.
doi: 10.1007/s00122-016-2846-4 pmid: 28093630
[21] FOISSET N, DELOURME R, BARRET P, HUBERT N, LANDRY B S, RENARD M . Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theoretical and Applied Genetics, 1996,93(7):1017-1025.
doi: 10.1007/BF00230119 pmid: 24162475
[22] BARRET P, DELOURME R, FOISSET N, RENARD M . Development of a SCAR (sequence characterised amplified region) marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus L. Theoretical and Applied Genetics, 1998,97(5/6):828-833.
[23] MIERSCH S, GERTZ A, BREUER F, SCHIERHOLT A, BECKER H C . Influence of the semi-dwarf growth type on seed yield and agronomic parameters at low and high nitrogen fertilization in winter oilseed rape. Crop Science, 2016,56(4):1573-1585.
doi: 10.2135/cropsci2015.09.0554
[24] WANG M L, ZHAO Y, CHEN F, YIN X C . Inheritance and potentials of a mutated dwarfing gene ndf1 in Brassica napus. Plant Breeding, 2004,123(5):449-453.
[25] GAO Y, LI T T, ZHAO Y, LIU WEI, WANG M L . Characterization of the gibberellic acid response of the Brassica napus L. em. Metzg. dwarf mutant NDF-1. Genetic Resources and Crop Evolution. 2010,57(4):481-485.
doi: 10.1007/s10722-010-9541-0
[26] LI H P, WANG Y, LI X C, GAO Y, WANG Z J, ZHAO Y, WANG M L . A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Molecular Biology Reports, 2011,38(1):191-197.
doi: 10.1007/s11033-010-0094-2 pmid: 20358292
[27] 蒲晓斌, 张锦芳, 李浩杰, 黄池, 李治华, 张启行, 蒋梁材 . 甘蓝型油菜太空诱变后代农艺性状调查及品质分析. 西南农业学报, 2006,19(3):373-377.
doi: 10.3969/j.issn.1001-4829.2006.03.007
PU X B, ZHANG J F, LI H J, HUANG C, LI Z H, ZHANG Q X, JIANG L C . Investigation of agronomic characters and quality analysis of rapeseed lines (B. napus L.) experienced in the space flight. Southwest China Journal of Agricultural Sciences, 2006,19(3):373-377. (in Chinese)
doi: 10.3969/j.issn.1001-4829.2006.03.007
[28] 牛应泽, 汪良中, 刘玉贞, 郭世星 . 利用人工合成甘蓝型油菜创建油菜新种质. 中国油料作物学报, 2003,25(4):11-15.
doi: 10.3321/j.issn:1007-9084.2003.04.003
NIU Y Z, WANG L Z, LIU Y Z, GUO S X . Development of new germplasm in rapeseed through resynthesis of new Brassica napus L. Chinese Journal of Oil Crop Sciences, 2003,25(4):11-15. (in Chinese)
doi: 10.3321/j.issn:1007-9084.2003.04.003
[29] 刘淑艳, 刘宏波, 刘忠松, 官春云 . 油菜矮杆抗倒新种质的培育与研究. 湖南农业科学, 2007(5):42-43.
doi: 10.3969/j.issn.1006-060X.2007.05.015
LIU S Y, LIU H B, LIU Z S, GUAN C Y . Breeding and studies of dwarf and resistant lodging newly germplasm in rapeseed. Hunan Agricultural Sciences, 2007(5):42-43. (in Chinese)
doi: 10.3969/j.issn.1006-060X.2007.05.015
[30] 周清元, 李军庆, 崔翠, 卜海东, 阴涛, 颜银华, 李加纳, 张正圣 . 油菜半矮杆新品系10D130株型性状的遗传分析. 作物学报, 2013,39(2):207-215.
doi: 10.3724/SP.J.1006.2013.00216
ZHOU Q Y, LI J Q, CUI C, BU H D, YIN T, YAN Y H, LI J N, ZHANG Z S . Genetic analysis of plant type in semi-dwarf new line (10D130) of rapeseed. Acta Agronomica Sinica, 2013,39(2):207-215. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00216
[31] 高勇, 赵云, 刘薇, 张宇, 周增光, 张珍勇, 王茂林 . 激素对甘蓝型油菜矮化突变体幼苗生长及内源GA3含量的影响. 四川大学学报, 2007,44(5):1133-1137.
doi: 10.3969/j.issn.0490-6756.2007.05.045
GAO Y, ZHAO Y, LIU W, ZHANG Y, ZHOU Z G, ZHANG Z Y, WANG M L . Effects of exogenously applied hormones on seedling elongation and content of endogenous GA3 in a dwarf mutant (Brassica napus L.). Journal of Sichuan University, 2007,44(5):1133-1137. (in Chinese)
doi: 10.3969/j.issn.0490-6756.2007.05.045
[32] 盖钧镒, 章元明, 王建康 . 植物数量性状遗传体系. 北京: 科学出版社, 2003: 224-265.
GAI J Y, ZHANG Y M, WANG J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003: 224-265. (in Chinese)
[33] 曹锡文, 刘兵, 章元明 . 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013,36(6):1-6.
doi: 10.7685/j.issn.1000-2030.2013.06.001
CAO X W, LIU B, ZHANG Y M . SEA: a software package of segregation analysis of quantitative traits in plants. Journal of Nanjing Agricultural University, 2013,36(6):1-6. (in Chinese)
doi: 10.7685/j.issn.1000-2030.2013.06.001
[34] CHORY J, NAGPAL P, PETO C A . Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. The Plant Cell, 1991,3(5):445-459.
doi: 10.2307/3869351 pmid: 12324600
[35] AZPIROZ R, WU Y W, LOCASCIO J C, FELDMANN K A . An Arabidopsis brassinosteriod-dependent mutant is blocked in cell elongation. The Plant Cell, 1998,10(2):219-230.
[36] SZEKERES M, NEMETH K, KONCZ-KALMAN Z, MATHUR J, KAUSCHMANN A, ALTMANN T, REDEI G P, NAGY F, SCHELL J, KONCZ C . Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 1996,85(2):171-182.
doi: 10.1016/S0092-8674(00)81094-6 pmid: 8612270
[37] MONNA L, KITAZAWA N, YOSHINO R, SUZUKI J, MASUDA H, MAEHARA Y, TANJI M, SATO M, NASU S, MINOBE Y . Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Research, 2002,9(1):11-17.
doi: 10.1093/dnares/9.1.11 pmid: 11939564
[38] CHEN S L, GAO R H, WANG H Y, WEN M X, XIAO J, BIAN N F, ZHANG R Q, HU W J, CHENG S H, BIE T D, WANG X E . Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica, 2015,203(3):583-594.
doi: 10.1007/s10681-014-1275-1
[39] PEARCE S, SAVILLE R, VAUGHAN S P, CHANDLER P M, WILHELM E P, SPARKS C A, AL-KAFF N, KOROLEV A, BOULTON M I, PHILLIPS A L, HEDDEN P, NICHOLSON P, THOMAS S G . Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiology, 2011,157(4):1820-1831.
doi: 10.1104/pp.111.183657
[40] 岳绪国, 顾炳朝, 唐泽庆, 杨军, 王克明 . 适合全程机械化作业的油菜品种的选育实践和思考. 江西农业学报, 2009,21(5):27-29.
doi: 10.3969/j.issn.1001-8581.2009.05.009
YUE X G, GU B C, TANG Z Q, YANG J, WANG K M . Breeding practice and thought for rapeseed suiting for mechanized operation mode. Acta Agriculturae Jiangxi, 2009,21(5):27-29. (in Chinese)
doi: 10.3969/j.issn.1001-8581.2009.05.009
[41] 关周博, 董育红, 田建华, 张耀文 . 机收理想油菜品种的选育特征. 江苏农业科学, 2018,46(16):68-71.
GUAN Z B, DONG Y H, TIAN J H, ZHANG Y W . Breeding characteristics of ideal rapeseed varieties of mechanized harvest. Jiangsu Agricultural Sciences, 2018,46(16):68-71. (in Chinese)
[42] KOMORISONO M, UEGUCHI-TANAKA M, AICHI I, HASEGAWA Y, ASHIKARI M, KITANO H, MATSUOKA M, SAZUKA T . Analysis of the rice mutant dwarf and gladius leaf 1. aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling. Plant Physiology, 2005,138(4):1982-1993.
doi: 10.1104/pp.105.062968 pmid: 16040652
[43] KUMAR Z, SINGH T H . A rapid method for indentifying different dwarfing genes in rice. Rice Genetics Newsletter, 1984,1:134-135.
[44] 黄永娟 . 4个甘蓝型油菜EMS诱变突变体的初步研究[D]. 南京: 南京农业大学, 2011.
HUANG Y J . Preliminary studies on 4 EMS-induced mutants in Brassica napus L.[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[45] ZANEWICH K P, ROOD S B, SOUTHWORTH C E, WILLIAMS P H . Dwarf mutants of Brassica: responses to applied gibberellins and gibberellin content. Journal of Plant Growth Regulation, 1991,10(1):121-127.
doi: 10.1007/BF02279323
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[3] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[4] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[5] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[6] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[7] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[8] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[9] CUI MiaoMiao,MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin. Gene Expression and Salt-Tolerance Analysis of MsDWF4 Gene from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3650-3664.
[10] DUAN YouHou,LU Feng. Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A [J]. Scientia Agricultura Sinica, 2020, 53(14): 2828-2839.
[11] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[12] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
[13] HUANG ShengCai,WANG Bing,XIE GuoQiang,LIU ZhongLai,ZHANG MeiJuan,ZHANG ShuQing,CHENG XianGuo. Enrichment Profile of GA4 is an Important Regulatory Factor Triggering Rice Dwarf [J]. Scientia Agricultura Sinica, 2019, 52(5): 786-800.
[14] PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang. Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China [J]. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308.
[15] ZHAO QianRu, ZHONG XingHua, ZHANG Fei, FANG WeiMin, CHEN FaDi, TENG NianJun. Heterosis and Mixed Genetic Analysis of Green-Center Trait of Spray Cut Chrysanthemum [J]. Scientia Agricultura Sinica, 2018, 51(5): 964-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!