Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3291-3308.doi: 10.3864/j.issn.0578-1752.2019.19.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive Assessment on Cold Tolerance of the Strong Winter Brassica napus L. Cultivated in Northern China

PU YuanYuan,ZHAO YuHong,WU JunYan,LIU LiJun,BAI Jing,MA Li,NIU ZaoXia,JIN JiaoJiao,FANG Yan,LI XueCai,SUN WanCang()   

  1. College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Arid Land Crop Sciences/Gansu Research Center of Rapeseed Engineering and Technology/Key Laboratory of Crop Genetics Improvement and Germplasm Enhancement of Gansu Province, Lanzhou, 730070
  • Received:2019-04-19 Accepted:2019-05-30 Online:2019-10-01 Published:2019-10-11
  • Contact: WanCang SUN E-mail:18293121851@163.com

Abstract:

【Objective】 In this study, the cold tolerance of twelve strong winter Brassica napus, which planted in northern China, were compared. The degree of cold tolerance was clearly classified by three identification methods. It provides a scientific and reliable identification method and varieties (lines) with strong cold tolerance, for improvement of Brassica napus in northern China. 【Method】 Twelve strong winter Brassica napus varieties (lines) were used as the materials. In order to compare and analyze the difference of cold tolerance among these materials, we observed the morphology of seedlings before overwintering, recorded statistical overwintering rate and calculated the lethal temperature (LT50), meanwhile, measured physiological indexes, and analyzed the relationship among cold tolerance, vernalization rate and the differences in growth stages after sowing in early spring. Then, we used LT50, subordinate function and comparison of vernalization differences, respectively, to clarify the cold tolerance classification of twelve Brassica napus. 【Result】 The overwintering survival rate of materials in Tianshui area (34°60′N, altitude 1 084-1 650 m) was 92.1%-97.8%. However, the overwintering survival rate decreased rapidly after moving to Lanzhou (36°73′N, altitude 1 517 m) and Shangchuan (36°03′N, altitude 2 150 m), the overwintering survival rate was 0-14.4%, (plastic film mulch) and 36.0%-78.6% (plastic film mulch) respectively. The strong winter Brassica napus lines ‘16TS 309-4, 16TS 306-3, 16TS 309-10, 15NS 45-4, 2016 8(G) and 2016TSG (10)’ which were new bred by Gansu Agricultural University could survive over winter, with the average overwintering survival rate of 10.2%-14.4%. Before overwintering, the seedlings of these new materials tended to prostrate growth, the colors of heart leaves and young stems were yellow-green or purple, the color of leaves was dark green, the accumulation of underground dry matter was greater than aboveground dry matter, and the root shoot ratio increased which was between 0.23 to 0.95, with a significant difference (P<0.05). Under cold stress, leaves kept relatively high enzyme activity of super oxide dismutase (SOD), peroxidase (POD) and catalase (CAT), moreover, the high content of soluble protein (SP), soluble sugar (SS) and free proline (Pro) was detected, and LT50 was relatively lower (range from -13.4℃ to -5.7℃). In the field experiment, twelve winter rapeseeds were sowed in early spring, the results have shown that the vernalization rate was between 4.05% and 87.65%, and ‘2016TS (G) 10’ was the lowest one. However, ‘2016TS (G) 10’ not only has the lowest vernalization rate (4.05%), but also the average plant height (10.77 cm), the average blot height of plants in the not budding stage (10.50 cm) and the average blot height of plants in budding stage (17.10 cm) were all the lowest one. Correlation analysis showed that the vernalization rate was significantly positively correlated with the average plant (bolt) height, the proportion of mature plants and LT50, with R 2of 0.90-0.96, and significantly negatively correlated with overwintering survival rate, LT50, comprehensive evaluation value (D), CAT, POD and SP, with R 2 of -0.96--0.63.【Conclusion】 In northern China, sowing winter rapeseeds in the early spring, according to the difference of vernalization rate, growth stage and average plant (blot) high, the cold tolerance of winter rapeseeds were evaluated. The seven new lines of Brassica napus bred by Gansu Agricultural University showed strong cold tolerance, could over winter in the area of 36°03′N, altitude 2 150 m, and the cold tolerance was significantly strong than Tianyou 14, Tianyou 2288 (bred by Tianshui Agricultural Science Research Institute) and Xinyou 23 (bred by Xinjiang Academy of Agricultural Sciences), that is an essential germplasm resource with strong cold tolerance for Brassica napus breeding in northern China.

Key words: Brassica napus L., overwintering survival rate, LT50, vernalization rate, assessment of cold tolerance

Table 1

The list of materials"

品种(系) Variety (line) 类型 Type 选育单位 Source
新油23 Xinyou23 甘蓝型冬油菜 Winter Brassica napus 新疆农业科学院 Xinjiang Academy of Agricultural Sciences
16TS 309-4 甘蓝型冬油菜 Winter Brassica napus 甘肃农业大学 Gansu Agricultural University
16TS 306-3 甘蓝型冬油菜 Winter Brassica napus 甘肃农业大学 Gansu Agricultural University
16TS 312-2 甘蓝型冬油菜 Winter Brassica napus 甘肃农业大学 Gansu Agricultural University
16TS 309-10 甘蓝型冬油菜 Winter Brassica napus 甘肃农业大学 Gansu Agricultural University
16NPZ 269-1 甘蓝型冬油菜 Winter Brassica napus 甘肃农业大学 Gansu Agricultural University
16NTS 158 甘蓝型冬油菜 Winter Brassica napus 甘肃农业大学 Gansu Agricultural University
15NS 45-4 甘蓝型冬油菜 Winter Brassica napus 甘肃农业大学 Gansu Agricultural University
2016 8(G) 甘蓝型冬油菜 Winter Brassica napus 甘肃农业大学 Gansu Agricultural University
2016TS(G)10 甘蓝型冬油菜 Winter Brassica napus 甘肃农业大学 Gansu Agricultural University
天油14 Tianyou14 甘蓝型冬油菜 Winter Brassica napus 天水市农业科学研究所 Tianshui Agricultural Science Research Institute
天油2288 Tianyou2288 甘蓝型冬油菜 Winter Brassica napus 天水市农业科学研究所 Tianshui Agricultural Science Research Institute

Table 2

Major climatic and environmental factors in the planting regions"

环境因子 Environment factor 天水 Tianshui 上川 Shangchuan 兰州 Lanzhou
经度 Longitude 105°69′ E 103°40′ E 103°73′ E
纬度 Latitude 34°60′ N 36°03′ N 36°73′ N
海拔 Altitude (m) 1084—1650 2150 1517
年平均气温 Annual average temperature (℃) 11.5 6.5 10.3
最冷月平均最低气温 Lowest temperature in the coldest month (℃) -2.0 -14.6 -5.0
极端气温 Extreme low temperature (℃) -14.7 -26.5 -16.0
无霜期 Free frost days (d) 155 142 180
平均降雨量 Precipitation (mm) 491 175 327

Table 3

Overwintering rates of materials"

品种(系)
Variety (line)
越冬率Overwintering rate (%) 抗寒性分类
Cold tolerance
classification
天水Tianshui 兰州Lanzhou 上川Shangchuan
2016—2018 平均值Mean 2016—2018 平均值 Mean 2016—2018 平均值 Mean
新油23 Xinyou23 94.1 90.1 92.1a 6.0 40.0 23.0g 0.0 0.0 0.0e 弱 Weak
16TS 309-4 98.4 96.2 97.3a 21.0 65.0 43.0bc 4.9 14.3 9.6a 强 Strong
16TS 306-3 98.9 96.5 97.7a 15.4 57.5 36.5d 1.8 13.6 7.7bc 中 Medium
16TS 312-2 94.1 93.7 93.9a 22.5 65.4 44.0ab 3.3 13.7 8.5ab 强 Strong
16TS 309-10 98.8 94.0 96.4a 15.6 44.2 30.0f 3.8 12.6 8.2abc 中 Medium
16NPZ 269-1 97.7 92.5 95.1a 19.5 54.8 37.2d 2.9 11.7 7.3bcd 中 Medium
16NTS 158 95.8 91.0 93.4a 16.0 50.0 33.0e 2.0 10.6 6.3cd 中 Medium
15NS 45-4 96.6 96.4 96.5a 12.0 78.6 45.3a 2.1 14.4 8.2abc 强 Strong
2016 8(G) 95.9 93.5 94.7a 20.8 63.0 42.0c 1.2 10.2 5.7d 强 Strong
2016TS(G)10 99.3 96.3 97.8a 18.5 70.0 44.3abc 4.4 11.0 7.7bc 强 Strong
天油14 Tianyou14 97.0 95.0 96.0a 9.2 36.0 22.6g 0.0 2.0 1.0e 弱 Weak
天油2288 Tianyou2288 95.9 89.5 92.7a 7.2 38.5 22.9g 0.0 0.0 0.0e 弱 Weak

Table 4

Relative electrolytic leakage and Logistic equation of leaves under different low temperatures treatments"

品种(系)
Variety(line)
相对电导率 Relative electrolytic leakage (%) 回归方程
Regression equation
拟合度
R2
半致死
温度
LT50 (℃)
抗寒性排序
Cold tolerance ranking
5℃ 0℃ -5℃ -10℃ -15℃
新油23
Xinyou23
25.30b 32.54a 42.40ab 61.27a 80.45abc y=100/(1+1.949e0.1237x 0.96 -5.4 11
16TS 309-4 20.07cd 31.20b 31.83abc 46.67a 68.67c y=100/(1+2.6e0.0998x 0.92 -9.6 2
16TS 306-3 19.87de 22.03b 32.22cd 48.80a 80.55abc y=100/(1+2.976e0.1369x 0.89 -8.0 3
16TS 312-2 17.26de 28.57b 34.20a 53.07a 85.92ab y=100/(1+2.775e0.1558x 0.90 -6.6 7
16TS 309-10 15.14bc 21.75c 36.16cd 52.03a 85.97ab y=100/(1+3.251e0.1687x 0.93 -7.0 5
16NPZ 269-1 15.95e 25.16c 34.23bcd 66.31a 88.85a y=100/(1+2.872e0.1849x 0.94 -5.7 9
16NTS 158 19.60bc 26.33b 39.00abcd 54.63a 86.36ab y=100(1+2.57e0.1546x 0.91 -6.1 8
15NS 45-4 20.05e 35.76bc 37.73abcd 57.80a 84.99ab y=100/(1+2.496e0.1256x 0.94 -7.3 4
2016 8(G) 25.92bc 31.67a 41.23ab 52.13a 75.63bc y=100/(1+2.04e0.1044x 0.93 -6.8 6
2016TS(G)10 20.66bc 21.21b 29.37d 41.37a 57.63d y=100/(1+3.134e0.0854x 0.93 -13.4 1
天油14
Tianyou14
20.71bc 29.04a 32.90abcd 58.17a 76.61bc y=100/(1+2.22e0.1427x 0.91 -5.6 10
天油2288
Tianyou2288
22.71a 34.65a 40.22ab 73.63a 79.17abc y=100/(1+1.734e0.125x 0.91 -4.4 12

Table 5

Botany records of the winter Brassica napus before overwintering"

品种(系)
Variety(line)
心叶色
Leaf color
幼茎色
Young stem color
叶柄色
Petiole color
生长习性
Growth habit
叶片数
Leaves amount
新油23
Xinyou23
黄绿/紫色
Yellow-green/Purple
黄绿/紫色
Yellow-green/Purple
黄绿/紫色
Yellow-green/Purple
半直立/匍匐
Semi-erect/Prostrate
12.0
16TS 309-4 紫色
Purple
绿色
Green
黄绿/紫色
Yellow-green/Purple
半直立/匍匐
Semi-erect/Prostrate
9.8
16TS 306-3 紫色
Purple
黄绿
Yellow-green
黄绿/紫色
Yellow-green/Purple
半直立/匍匐
Semi-erect/Prostrate
9.1
16TS 312-2 紫色
Purple
紫色
Purple
黄绿
Yellow-green
半直立
Semi-erect
10.7
16TS 309-10 紫色
Purple
紫色
Purple
黄绿/紫色
Yellow-green/Purple
半直立/匍匐
Semi-erect/Prostrate
9.8
16NPZ 269-1 紫色
Purple
黄绿
Yellow-green
黄绿
Yellow-green
半直立/匍匐
Semi-erect/Prostrate
11.0
16NTS 158 黄绿/紫色
Yellow-green/Purple
黄绿
Yellow-green
黄绿
Yellow-green
半直立/匍匐
Semi-erect/Prostrate
11.3
15NS 45-4 紫色
Purple
黄绿
Yellow-green
黄绿/紫色
Yellow-green/Purple
半直立/匍匐
Semi-erect/Prostrate
10.0
2016 8(G) 紫色
Purple
黄绿/紫色
Yellow-green/Purple
黄绿/紫色
Yellow-green/Purple
半直立/匍匐
Semi-erect/Prostrate
9.1
2016TS(G)10 紫色
Purple
黄绿
Yellow-green
黄绿
Yellow-green
半直立/匍匐
Semi-erect/Prostrate
10.8
天油14
Tianyou14
黄绿/紫色
Yellow-green/Purple
黄绿
Yellow-green
黄绿
Yellow-green
半直立
Semi-erect
12.6
天油2288
Tianyou2288
黄绿/紫色
Yellow-green/Purple
黄绿
Yellow-green
黄绿
Yellow-green
半直立
Semi-erect
12.8

Fig. 1

Morphological characteristics of Brassica napus before overwintering 1: Xinyou23; 2: 16TS 309-4; 3: 16TS 306-3; 4: 16TS 312-2; 5: 16TS 309-10; 6: 16NPZ 269-1; 7: 16NTS 158; 8: 15NS 45-4; 9: 2016 8(G); 10: 2016TS(G)10; 11: Tianyou14; 12: Tianyou2288; 13: Semi-erect; 14: Semi-erect/Prostrate; 15: Prostrate; 16: The heart leaves and young stems were yellow-green; 17: The heart leaves are purple; 18: The heart leaves, young stems and petiole were purple"

Table 6

Comparison of dry matter between materials before overwintering"

品种(系)
Variety (line)
地上部干重 Above-ground dry matter 地下部干重 Under-ground dry matter 干根冠比 Dry root shoot ratio
9/26 10/29 9/26 10/29 9/26 10/29
新油23 Xinyou23 4.75a 10.98abcd 0.73a 3.86bcd 0.16a 0.36bcd
16TS 306-4 3.40ab 5.35d 0.82a 5.12abc 0.30a 0.95abc
16TS 306-3 3.29ab 6.31bcd 0.87a 2.56cd 0.27a 0.40cd
16TS 312-2 3.91ab 14.58ab 0.79a 3.67bcd 0.21a 0.24bcd
16TS 309-10 3.26ab 5.51cd 0.73a 2.69cd 0.23a 0.49cd
16NPZ269-1 2.69b 14.12abc 0.65a 6.08ab 0.24a 0.46ab
16NTS 158 4.58ab 12.24abcd 0.66a 2.27d 0.14a 0.19d
15NS 45-4 3.32ab 8.95abcd 0.89a 7.08a 0.27a 0.88a
2016 8(G) 3.78ab 5.69cd 0.88a 2.39d 0.24a 0.42d
2016TS(G)10 3.66ab 7.52abcd 0.73a 4.21bcd 0.20a 0.59bcd
天油14 Tianyou14 2.62b 14.72ab 0.58a 3.25cd 0.22a 0.23cd
天油2288 Tianyou2288 3.91ab 15.65a 0.78a 2.25d 0.28a 0.25d

Fig. 2

Physiological Responses of Brassica napus before overwintering Different letters indicate significant differences at P<0.05. The same as below"

Fig. 3

Field performance of materials by spring sowing 1: Xinyou23; 2: 16TS 309-4; 3: 16TS 306-3; 4: 16TS 312-2; 5: 16TS 309-10; 6: 16NPZ 269-1; 7: 16NTS 158; 8: 15NS 45-4; 9: 2016 8(G); 10: 2016TS(G)10; 11: Tianyou14; 12: Tianyou2288"

Table 7

The number and proportion of plants in different growth stages after sowing in spring"

品种(系)
Variety (line)
春化率
Vernalization rate (%)
小区平均株数
Amount
比例Ratio (%) 抗寒性分类
Cold tolerance
classification
未现蕾
Not budding
现蕾期
Squaring stage
花期
Flowering stage
成熟期
Maturing stage
新油23 Xinyou23 87.65a 162 12.35 39.51 48.15
16TS 309-4 9.39g 181 90.61 9.39
16TS 306-3 17.16f 204 82.84 17.16
16TS 312-2 27.13e 387 72.87 27.13
16TS 309-10 25.00e 216 75.00 24.54 0.46
16NPZ 269-1 43.98c 241 56.43 39.00 0.41 4.15
16NTS 158 38.71d 124 61.29 38.71
15NS 45-4 16.40f 189 83.60 16.40
2016 8(G) 24.37e 119 75.63 23.53 0.84
2016TS(G)10 4.05h 222 95.95 4.05
天油14 Tianyou14 55.00b 100 45.00 31.00 7.00 17.00
天油2288 Tianyou2288 85.19a 108 14.81 10.19 2.78 72.22

Table 8

The plant (blot) height in different growth stages"

品种(系)
Variety (line)
平均值Mean 平均株(薹)高 Average height of plant (bolt) (cm)
春化率
Vernalization rate (%)
平均株(薹)高
Average plant (bolt) height (cm)
未现蕾
Not budding
现蕾期
Squaring stage
花期
Flowering stage
成熟期
Maturing stage
新油23 Xinyou23 87.65 80.18 28.7 44.7 122.5
16TS 309-4 9.39 15.88 14.5 29.2
16TS 306-3 17.16 18.74 17.8 23.3
16TS 312-2 27.13 27.46 24.8 34.6
16TS 309-10 25.00 28.84 26.2 35.5 103.0
16NPZ 269-1 43.98 37.83 34.5 35.6 85.0 99.3
16NTS 158 38.71 33.42 32.3 35.2
15NS 45-4 16.4 20.73 16.6 41.8
2016 8(G) 24.37 20.21 17.6 28.1 34.0
2016TS(G)10 4.05 10.77 10.5 17.1
天油14 Tianyou14 55.00 38.79 23.1 28.7 49.4 94.4
天油2288 Tianyou2288 85.19 58.21 22.7 33.8 46.0 69.4

Table 9

Correlation analysis of vernalization rate and average plant (blotting) height"

指标
Index
小区平均株高
Average plant height
未现蕾 Not budding 现蕾期 Squaring stage 成熟期 Maturing stage
比例
Proportion
平均薹高
Average blot height
比例
Proportion
平均薹高
Average blot height
比例
Proportion
平均株高
Plant height
春化率
Vernalization rate
0.96** -1.00** 0.57 0.46 0.53 0.89** 0.71**

Table 10

Coefficients of cold tolerance evaluated of main physiological traits"

品种(系)
Variety(line)
耐寒系数(K) Anti-cold coefficiency
SOD CAT POD SP SS Pro
新油23 Xinyou23 1.267b 1.267d 1.563c 1.478a 2.870ab 2.292c
16TS 309-4 1.377b 0.688d 3.369bc 1.316abcd 3.898a 3.633c
16TS 306-3 1.459b 0.486cd 2.765abc 1.278bcd 3.248ab 2.959bc
16TS 312-2 1.259ab 0.252bcd 1.844abc 1.174cd 2.889ab 2.356bc
16TS 309-10 1.629ab 0.407bcd 2.045abc 1.336abc 3.229ab 2.167bc
16NPZ 269-1 1.393ab 0.232bcd 2.064abc 1.243bcd 2.747ab 1.995bc
16NTS 158 1.291ab 0.184bcd 1.950abc 1.090d 2.794ab 2.573bc
15NS 45-4 1.242ab 0.155abc 2.846abc 1.395abc 3.267ab 2.307bc
2016 8(G) 1.426ab 0.158abc 2.818abc 1.243bcd 2.829ab 2.293ab
2016TS(G)10 1.565ab 0.157abc 2.641abc 1.426ab 3.325ab 2.318ab
天油14 Tianyou14 1.375ab 0.125ab 2.157ab 1.267bcd 2.688ab 2.007a
天油2288 Tianyou2288 1.198a 0.100a 1.542a 1.100d 2.338b 2.990a

Table 11

Subordinator functional components and the integrated evaluation index for winter Brassica napus "

品种(系)
Variety (line)
隶属函数值 Subordinative function 综合评价值(D)
Comprehensive evaluation value
抗寒性排序
Cold tolerance ranking
μ(1) μ(2) μ(3) μ(4) μ(5) μ(6)
新油23 Xinyou23 0.000 0.436 0.000 0.125 0.643 0.000 0.343 12
16TS 309-4 4.674 0.820 0.828 0.591 0.869 0.944 2.961 2
16TS 306-3 3.609 0.705 0.002 0.020 0.899 1.000 2.378 3
16TS 312-2 2.804 0.352 0.194 0.355 0.777 0.740 1.839 7
16TS 309-10 3.935 0.454 0.299 0.101 1.000 0.680 2.364 4
16NPZ 269-1 1.652 0.190 0.051 0.183 0.942 0.373 1.180 9
16NTS 158 2.304 0.271 1.000 0.754 0.409 0.540 1.544 8
15NS 45-4 3.413 1.000 0.935 1.000 0.122 0.949 2.345 5
2016 8(G) 3.022 0.520 0.528 0.138 0.918 0.853 2.090 6
2016TS(G)10 5.283 0.754 0.359 0.692 0.744 0.940 3.106 1
天油14 Tianyou14 1.674 0.242 0.302 0.583 0.460 0.401 1.143 10
天油2288 Tianyou2288 1.000 0.000 0.105 0.000 0.000 0.179 0.493 11
权重系数 Weighted value 0.249 0.209 0.068 0.051 0.174 0.248

Table 12

Correlation analysis of vernalization rate and cold resistance indexes"

指标
Index
越冬率
Overwintering rate
半致死温度
LT50
综合评价值(D)
Comprehensive evaluation value
SOD CAT POD SP
春化率
Vernalization rate
-0.91** 0.74** -0.96** -0.64* -0.84** -0.80** -0.93**
[1] 孙万仓, 武军艳, 方彦, 刘秦, 杨仁义, 马维国, 李学才, 张俊杰, 张鹏飞, 曹建明, 孙佳 . 北方旱寒区北移冬油菜生长发育特性. 作物学报, 2010,36(12):2124-2134.
doi: 10.3724/SP.J.1006.2010.02124
SUN W C, WU J Y, FANG Y, LIU Q, YANG R Y, MA W G, LI X C, ZHANG J J, ZHANG P F, CAO J M, SUN J . Growth and development characteristics of winter rapeseed northern-extended from the cold and arid regions in China. Acta Agronomica Sinica, 2010,36(12):2124-2134. (in Chinese)
doi: 10.3724/SP.J.1006.2010.02124
[2] 王晨光, 李思训 . 陕西省甘蓝型油菜再次北移的探讨. 陕西农业科学(自然科学版), 2000(3):32-33, 46.
WANG C G, LI S X . Study on the north extension ofBrassica napus. Shaanxi Journal of Agricultural Sciences (Natural Science Edition), 2000(3):32-33, 46. (in Chinese)
[3] 殷艳, 廖星, 余波, 王汉中 . 我国油菜生产区域布局演变和成因分析. 中国油料作物报, 2010,32(1):147-151.
YIN Y, LIAO X, YU B, WANG H Z . Regional distribution evolvement and development tendency of Chinese rapeseed production. Chinese Journal of Oilcrop Sciences, 2010,32(1):147-151. (in Chinese)
[4] 雷建明, 庞进平, 范提平, 张建学, 张岩, 张亚宏 . 强冬性甘蓝型单低杂交油菜02N杂2的选育. 中国种业, 2010(6):66-67.
LEI J M, PANG J P, FAN T P, ZHANG J X, ZHANG Y, ZHANG Y H . Breeding of strong winter type hybrid rapeseed ‘02N hybrid 2’. Chinese Seed Industry, 2010(6):66-67. (in Chinese)
[5] 黄继英 . 甘蓝型冬油菜北移可行性初探. 中国油料, 1992(4):43-46.
HUANG J Y . Preliminary study on the feasibility of north migration ofBrassica napus. Chinese Oil, 1992(4):43-46. (in Chinese)
[6] 宋良图 . 甘蓝型油菜抗寒性的形态生理学研究. 安徽农业科学, 1992(2):127-132.
SONG L T . Morphological and physiological basis of the cold hardiness of winter rape( B. napus). Journal of Anhui Agricultural Sciences, 1992(2):127-132. (in Chinese)
[7] 史鹏辉 . 北方强冬性白菜型冬油菜抗寒性评价及抗寒机制研究[D]. 兰州: 甘肃农业大学, 2013: 14-15.
SHI P H . Evaluation of cold tolerance and study on the cold tolerance mechanism on strong anti-cold north winter rapeseed (Brassica rapa)[D]. Lanzhou: Gansu Agricultural University, 2013: 14-15. (in Chinese)
[8] 马骊, 孙万仓, 刘自刚, 赵艳宁, 杨刚, 刘海卿, 武军艳, 方彦, 李学才, 刘林波, 钱武, 侯献飞 . 白菜型与甘蓝型冬油菜抗寒机理差异的研究. 华北农学报, 2016(1):147-154.
MA L, SUN W C, LIU Z G, ZHAO Y N, YANG G, LIU H Q, WU J Y, FANG Y, LI X C, LIU L B, QIAN W, HOU X F . Study of difference in mechanism of cold resistance of winter rapeseed ofBrassica rape and Brassica napus. Acta Agriculturae Boreali-Sinica, 2016(1):147-154. (in Chinese)
[9] 杜春芳 . 甘蓝型油菜低温诱导的转录组和蛋白组分析[D]. 武汉: 华中农业大学, 2016: 29-32.
DU C F . Analysis of transcriptomics and proteomics induced by cold stress in Brassica napus L.[D]. Wuhan: Huazhong Agricultural University, 2016: 29-32. (in Chinese)
[10] 王月, 孙万仓, 刘自刚, 杨宁宁, 方彦, 曾秀存, 孔德晶, 鲁美宏, 王丽萍, 董红业, 杨刚, 侯献飞, 刘林波, 种彦容 . 甘蓝型冬油菜在西北不同生态区适应性及生理生化反应. 干旱地区农业研究, 2015,33(4):197-205.
WANG Y, SUN W C, LIU Z G, YANG N N, FANG Y, ZENG X C, KONG D J, LU M H, WANG L P, DONG H Y, YANG G, HOU X F, LIU L B, ZHONG Y R . Adaptation and physiological and biochemical characteristics of winter rapeseed ( Brassica napus L.) in different eco-regions of northwest China. Agricultural Research in the Arid Areas, 2015,33(4):197-205. (in Chinese)
[11] 孙万仓, 武军艳, 曾军, 朱慧霞, 刘雅丽, 张亚宏 . 8个白菜型冬油菜品种抗寒性的初步评价. 湖南农业大学学报(自然科学版), 2007,33(8):151-155.
SUN W C, WU J Y, ZENG J, ZHU H X, LIU L Y, ZHANG Y H . Preliminary evaluation of cold resistance of 8 Chinese cabbage varieties. Journal of Hunan Agricultural University (Natural Science Edition), 2007,33(8):151-155. (in Chinese)
[12] 张晓红, 冯梁杰, 杨特武, 徐正华, 胡立勇 . 冬季低温胁迫对油菜抗寒生理特性的影响. 植物生理学报, 2015,51(5):737-746.
ZHANG X H, FENG L J, YANG T W, XU Z H, HU L Y . Effects of chilling stress on physiological characteristics of rapeseed seedlings in winter. Plant Physiology Journal, 2015,51(5):737-746. (in Chinese)
[13] 闫蕾, 蔡俊松, 高立兵, 黄斌, 马海清, 刘清云, 戴熙燕, 张学昆, 程勇, 邹锡玲 . 甘蓝型油菜抗寒性鉴定方法的建立和种质资源筛选. 中国油料作物学报, 2018,40(1):74-83.
YAN L, CAI J S, GAO L B, HUANG B, MA H Q, LIU Q Y, DAI X Y, ZHANG X K, CHENG Y, ZOU X L . Identification method and selection of cold tolerance in rapeseed ( Brassica napus L.). Chinese Journal of Oil Crop Sciences, 2018,40(1):74-83. (in Chinese)
[14] 杨宁宁, 孙万仓, 刘自刚, 史鹏辉, 方彦, 武军艳, 曾秀存, 孔德晶, 鲁美宏, 王月 . 北方冬油菜抗寒性的形态与生理机制. 中国农业科学, 2014,47(3):452-461.
doi: 10.3864/j.issn.0578-1752.2014.03.005
YANG N N, SUN W C, LIU Z G, SHI P H, FANG Y, WU J Y, ZENG X C, KONG D J, LU M H, WANG Y . Morphological characters and physiological mechanisms of cold resistance of winter rapeseed in northern China. Scientia Agricultura Sinica, 2014,47(3):452-461. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.03.005
[15] 李瑞雪, 金晓玲, 胡希军, 柴弋霞, 蔡梦颖, 罗峰, 张方静 . 6种含笑属植物抗寒性分析与综合评价. 应用生态学报, 2017,28(5):1464-1472.
LI R X, JIN X L, HU X J, CHAI Y X, CAI M Y, LUO F, ZHANG F J . Analysis and comprehensive evaluation on cold resistance of six varieties of Michelia.Chinese Journal of Applied Ecology, 2017,28(5):1464-1472. (in Chinese)
[16] 张佳平, 李丹青, 聂晶晶, 夏宜平 . 高温胁迫下芍药的生理生化响应和耐热性评价. 核农学报, 2016,30(9):1848-1856.
ZHANG J P, LI D Q, NIE J J, XIA Y P . Physiological and biochemical responses to the high temperature stress and heat resistance evaluation of Paeonia lactiflora Pall. cultivars. Journal of Nuclear Agricultural Sciences, 2016,30(9):1848-1856. (in Chinese)
[17] 朱菊华, 孙星, 许斌, 梁婷, 刘明, 缪建, 赵耕毛 . 不同基因型菊芋耐盐生理及其生态适应性研究. 草业学报, 2018,27(6):120-127.
ZHU J H, SUN X, XU B, LIANG T, LIU M, MIU J, ZHAO G M . Physiological response and ecological adaptability of different Jerusalem artichoke genotypes to salt stress. Acta Prataculturae Sinica, 2018,27(6):120-127. (in Chinese)
[18] 孙东雷, 卞能飞, 陈志德, 邢兴华, 徐泽俊, 齐玉军, 王晓军, 王幸 . 花生萌发期耐盐性综合评价及耐盐种质筛选. 植物遗传资源学报, 2017,18(6):1079-1087.
SUN D L, BIAN N F, CHEN Z D, XING X H, XU Z J, QI Y J, WANG X J, WANG X . Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of peanut ( Arachis hypogaea L.) at germination stage. Journal of Plant Genetic Resources, 2017,18(6):1079-1087. (in Chinese)
[19] 德英, 石凤翎, 赵来喜, 穆怀彬, 解继红, 赵海霞 . 老芒麦种质资源耐盐性评价. 中国草地学报, 2017,39(6):106-111.
DE Y, SHI F L, ZHAO L X, MU H B, XIE J H, ZHAO H X . Evaluation of the salt resistance of Elymus sibiricus germplasm resources. Chinese Journal of Grassland, 2017,39(6):106-111. (in Chinese)
[20] 李长慧, 李淑娟, 刘艳霞, 董添财, 贾科, 梁德飞 . 低温胁迫对10份鹅观草属野生种抗寒生理指标的影响. 草业科学, 2018,35(1):123-132.
LI C H, LI S J, LIU Y X, DONG T C, JIA K, LIANG D F . Effect of low temperature stress on the cold-resistance physiological indexes of 10 germplasm resources of Roegneria in Qinghai. Pratacultural Science, 2018,35(1):123-132. (in Chinese)
[21] 陈晶晶, 王英哲, 金艳, 郭强, 徐博 . 不同紫花苜蓿杂交组合对冻害胁迫的生理响应. 草业科学, 2018,35(5):1138-1144.
CHEN J J, WANG Y Z, JIN Y, GUO Q, XU B . Physiological responses of different alfalfa hybrid combinations to freezing stress. Pratacultural Science, 2018,35(5):1138-1144. (in Chinese)
[22] 王兰芬, 武晶, 景蕊莲, 程须珍, 王述民 . 绿豆种质资源成株期抗旱性鉴定. 作物学报, 2015,41(8):1287-1294.
doi: 10.3724/SP.J.1006.2015.01287
WANG L F, WU J, JING R L, CHENG X Z, WANG S M . Identification of Mungbean germplasm resources resistant to drought at adult stage. Acta Agronomica Sinica, 2015,41(8):1287-1294. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01287
[23] 于天一, 林建材, 孙学武, 冯昊, 孙秀山, 吴正锋, 郑永美, 沈浦, 王才斌 . 花生幼苗耐酸鉴定指标筛选及综合评价. 中国油料作物学报, 2017,39(4):488-495.
YU T Y, LIN J C, SUN X S, FENG H, SUN X S, WU Z F, ZHENG Y M, SHEN P, WANG C B . Screen of acid resistance evaluation indicators and comprehensive evaluation in peanut seedlings of different genotypes. Chinese Journal of Oil Crop Sciences, 2017,39(4):488-495. (in Chinese)
[24] 熊洁, 邹小云, 陈伦林, 李书宇, 邹晓芬, 宋来强 . 油菜苗期耐铝基因型筛选和鉴定指标的研究. 中国农业科学, 2015,48(16):3112-3120.
doi: 10.3864/j.issn.0578-1752.2015.16.002
XIONG J, ZOU X Y, CHEN L L, LI S Y, ZOU X F, SONG L Q . Screening of rapeseed genotypes with aluminum tolerance at seedling stage and evaluation of selecting indices. Scientia Agricultura Sinica, 2015,48(16):3112-3120. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.16.002
[25] 陈致富, 李勤菲, 张永晶, 崔艺馨, 许汪洁, 贺亚军, 万华方, 李晓荣, 钱伟 . 白菜型油菜品种萌发期的抗旱性鉴定与筛选. 植物遗传资源学报, 2015,16(1):15-22.
CHEN Z F, LI Q F, ZHANG Y J, CUI Y X, XU W J, HE Y J, WAN H F, LI X R, QIAN W . Identification and screening of resources with tolerance against drought stress in Brassica rapa during germination stage. Journal of Plant Genetic Resources, 2015,16(1):15-22. (in Chinese)
[26] 鲜孟筑, 杨萍, 胡立勇, 徐正华 . 油菜种子萌发成苗期耐低温性评价. 作物杂志, 2015(5):116-122.
XIAN M Z, YANG P, HU L Y, XU Z H . Comprehensive evaluation of low temperature tolerance in rapeseed during germination and emergence periods. Crops, 2015(5):116-122. (in Chinese)
[27] CHOUARD P . Vernalization and its relations to dormancy. Annual Review of Plant Physiology, 1960,11(1):191-238.
[28] HAWKINS G P, DENG Z A, KUBIK T J, JOHNSON-FLANAGAN A M . Characterization of freezing tolerance and vernalization in Vern-, a spring-type Brassica napus line derived from a winter cross. Planta (Berlin), 2002,216(2):220-226.
[29] FOWLER D B, LIMIN A E, WANG S Y, WARD R W . Relationship between low-temperature tolerance and vernalization response in wheat and rye. Canadian Journal of Plant Science, 1996,76(1):37-42.
[30] 伍晓明, 陈碧云, 陆光远 . 油菜种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007.
WU X M, CHEN B Y, LU G Y. Description and Data Standard for Rapeseed Germplasm Resources. Beijing: China Agricultural Press, 2007. (in Chinese)
[31] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000.
ZOU Q. Plant Physiology Experiment Guide. Beijing: China Agricultural Press, 2000. (in Chinese)
[32] 崔党群 . Logistic曲线方程的解析与拟合优度测验. 数理统计与管理, 2005(1):112-115.
CUI D Q . Analysis and making good fitting degree test for logistic curve regression equation. Mathematical Statistics and Management, 2005(1):112-115. (in Chinese)
[33] 刘自刚, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 史鹏飞, 杨刚, 李学才, 武军艳, 方彦, 曾秀存 . 冬前低温胁迫下白菜型冬油菜抗寒性的形态及生理特征. 中国农业科学, 2013,46(22):4679-4687.
doi: 10.3864/j.issn.0578-1752.2013.22.005
LIU Z G, SUN W C, YANG N N, WANG Y, HE L, ZHAO C X, SHI P F, YANG G, LI X C, WU J Y, FANG Y, ZENG X C . Morphology and physiological characteristics of cultivars with different levels of cold-resistance in winter rapeseed ( Brassica campestris L.) during cold acclimation. Scientia Agricultura Sinica, 2013,46(22):4679-4687. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.22.005
[34] 王丽萍, 杨刚, 孙万仓, 张正丽, 王月, 董红业, 赵艳宁, 孔德晶, 鲁美宏, 杨宁宁, 刘自刚, 方彦, 武军艳 . 白菜型冬油菜和春油菜杂交后代抗寒性与植物学特性. 干旱地区农业研究, 2015(4):291-296.
WANG L P, YANG G, SUN W C, ZHANG Z L, WANG Y, DONG H Y, ZHAO Y N, KONG D J, LU M H, YANG N N, LIU Z G, FANG Y, WU J Y . Cold resistance and botanical characteristics of the hybrid progeny between winter and spring turnip rapes (Brassica campestris L.). Agricultural Research in Arid Regions, 2015(4):291-296. (in Chinese)
[35] 武军艳, 方彦, 张朋飞, 杨月蓉, 孙万仓, 刘自刚, 李学才 . 北方旱寒区冬油菜根系抗寒指标分析. 干旱地区农业研究, 2014(6):250-255.
WU J Y, FANG Y, ZHANG P F, YANG Y R, SUN W C, LIU Z G, LI X C . Analysis of cold-tolerant characters of winter rape roots in northern arid-cold area. Agricultural Research in Arid Regions, 2014(6):250-255. (in Chinese)
[36] CHEN Y, JIANG J F, CHANG Q S, GU C S, SONG A P, CHEN S M, DONG B, CHEN F D . Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species. Molecular Biology Reports, 2014,41(2):815-822.
[37] ZHANG X Z, WANG K H, ERVIN E H, WALTZ C, MURPHY T . Metabolic changes during cold acclimation and deacclimation in five bermudagrass varieties: I. Proline, total amino acid, protein, and dehydrin expression. Crop Science, 2011,51:838-846.
[38] 苏李维, 李胜, 马绍英, 戴彩虹, 时振振, 唐斌, 赵生琴, 蒲彦涛 . 葡萄抗寒性综合评价方法的建立. 草业学报, 2015,24(3):70-79.
SU L W, LI S, MA S Y, DAI C H, SHI Z Z, TANG B, ZHAO S Q, PU Y T . A comprehensive assessment method for cold resistance of grape vines. Acta Prataculturae Sinica, 2015,24(3):70-79. (in Chinese)
[39] 闫彪 . 甘蓝型油菜响应低温胁迫的差异蛋白质组学分析[D]. 郑州: 郑州大学, 2012: 21-30.
YAN B . Differential proteomics analysis of Brassica napus L. in response to low temperature stress[D]. Zhengzhou: Zhengzhou University, 2012: 21-30. (in Chinese)
[40] WAALEN W M, STAVANG J A, OLSEN J E . The relationship between vernalization saturation and the maintenance of freezing tolerance in winter rapeseed. Environmental & Experimental Botany, 2014,106(1):164-173.
[41] 孙万仓, 侯献飞, 杨刚, 刘自刚, 曾秀存, 武军艳, 方彦, 李学才, 郭仁迪 . 一种利用高温诱导鉴定白菜型冬油菜抗寒性的方法: 中国, CN104982173A, 2015 -10-21.
SUN W C, HOU X F, YANG G, LIU Z G, ZENG X C, WU J Y, FANG Y, LI X C, GUO R D . Method for identifying cold resistance of winter rapeseed by using high temperature induction: China,CN104982173A, 2015 -10-21. (in Chinese)
[42] ARMATRONG J J, TAKEBAYASHI N, SFORMO T, WOLF D E . Cold tolerance in Arabidopsis kamchatica. American Journal of Botany, 2015,102:439-448.
[43] PEIXTO M M, FRIESEN P C, SAGE R F . Winter cold tolerance thresholds in field-grown Miscanthus hybrid rhizomes. Journal of Experimental Botany, 2015,66:4415-4425.
[44] 张龙龙, 杨明明, 董剑, 赵万春, 高翔, 陈冬阳 . 三个小麦新品种不同生育阶段抗旱性的综合评价. 麦类作物学报, 2016,36(4):426-434.
ZHANG L L, YANG M M, DONG J, ZHAO W C, GAO X, CHEN D Y . Comprehensive analysis of drought resistance of three new wheat cultivars at different growth stages. Journal of Wheat Crops, 2016,36(4):426-434. (in Chinese)
[45] 罗俊杰, 欧巧明, 叶春雷, 王方, 王镛臻, 陈玉梁 . 重要胡麻栽培品种的抗旱性综合评价及指标筛选. 作物学报, 2014,40(7):1259-1273.
doi: 10.3724/SP.J.1006.2014.01259
LUO J J, OU Q M, YE C L, WANG F, WANG Y Z, CHEN Y L . Comprehensive valuation of drought resistance and screening of indices of important flax cultivars. Journal of Crops, 2014,40(7):1259-1273. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01259
[46] 罗耀, 席嘉宾, 谭筱弘, 张巨明 . 9种暖季型草坪草耐阴性综合评价及其指标的筛选. 草业学报, 2013,22(5):239.
doi: 10.11686/cyxb20130528
LUO Y, XI J B, TAN X H, ZHANG J M . Evaluation of shade tolerance of nine warm-season turfgrass and selection of their shade tolerant indices. Journal of Grass Industry, 2013,22(5):239. (in Chinese)
doi: 10.11686/cyxb20130528
[47] 孙万仓 . 北方旱寒区冬油菜栽培技术. 北京: 中国农业出版社, 2013.
SUN W C. Techniques of Winter Rapeseed Cultivation in Arid and Cold Areas of North China. Beijing: China Agriculture Press, 2013. (in Chinese)
[48] 孙万仓 . 北方冬油菜北移与区划. 北京: 科学出版社, 2016.
SUN W C. Migration and Regionalization of Winter Rapeseed in North China. Beijing: Science Press, 2016. (in Chinese)
[49] 孙万仓, 曾秀存, 刘自刚, 杨刚, 方彦, 武军艳, 李学才 . 轮回选择对白菜型冬油菜抗寒性及经济性状的影响. 中国油料作物学报, 2015,37(4):443-452.
doi: 10.7505/j.issn.1007-9084.2015.04.003
SUN W C, ZENG X C, LIU Z G, YANG G, FANG Y, WU J Y, LI X C . Effects of recurrent selection on cold tolerance and economic traits of Brassica rapa. Chinese Journal of Oil Crops, 2015,37(4):443-452. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2015.04.003
[50] 杨晓光, 刘志娟, 陈阜 . 全球气候变暖对中国种植制度可能影响: Ⅵ. 未来气候变化对中国种植制度北界的可能影响. 中国农业科学, 2011,44(8):1562-1570.
YANG X G, LIU Z J, CHEN F . The possible effects of global warming on cropping systems in China: Ⅵ. Possible effects of future climate change on northern limits of cropping system in China. Scientia Agricultura Sinica, 2011,44(8):1562-1570. (in Chinese)
[51] 王栓全, 刘冬梅 . 甘蓝型油菜北移的栽培技术. 作物杂志, 1995(1):20-21.
WANG S Q, LIU D M . Cultivation techniques ofBrassica napus L. Journal of Crops, 1995(1):20-21. (in Chinese)
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[3] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[4] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[5] WANG LiuYan,WANG RuiLi,YE Sang,GAO HuanHuan,LEI Wei,CHEN LiuYi,WU JiaYi,MENG LiJiao,YUAN Fang,TANG ZhangLin,LI JiaNa,ZHOU QingYuan,CUI Cui. QTL Mapping and Candidate Genes Screening of Related Traits in Brassica napus L. During the Germination Under Tribenuron-Methyl Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1510-1523.
[6] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[7] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!