Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (7): 1260-1271.doi: 10.3864/j.issn.0578-1752.2019.07.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils

ZHANG MengYang1,XIA Hao1,LÜ Bo1,CONG Ming1,SONG WenQun2,JIANG CunCang1()   

  1. 1 Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070
    2 Xinfeng’s Agricultural Technology Promotion Station, Ganzhou 341600, Jiangxi;
  • Received:2018-09-10 Accepted:2018-10-29 Online:2019-04-01 Published:2019-04-04
  • Contact: CunCang JIANG E-mail:jcc2000@mail. hzau.edu.cn

Abstract:

【Objective】Ammonia oxidation is the first step in nitrification and the rate-limiting step in nitrification. It is a key link in the global nitrogen cycle. The purpose of this experiment was to study the effects of peanut shell biochar application on bacteria and ammonia oxidation in different type soils in China, so as to provide a theoretical basis for the promotion and use of biochar.【Method】Yellow-brown soil, fluvo-aquic soil and black soil were utilized as the tested soil. Through short-term culture experiments, 16SrRNA sequencing was used to study the effects of biochar on ammonia-oxidizing microorganisms, bacterial community structure and related enzyme gene expression in different type soils. Four treatments for each soil included CK (no fertilizer and biochar), F (single fertilization), C (single 2% peanut shell biochar), and FC (application of fertilizer + 2% peanut shell biochar).【Result】Acid soil pH increased significantly by 0.5-1.0 units after application of biochar (C, FC), but alkaline soil pH decreased significantly by 0.5-0.6 units; the microbial abundance and diversity of yellow-brown soil increased significantly caused by single application of biochar (C). The fluvo-aquic only significantly increased the microbial diversity index of the soil when it was applied to biochar alone (C). Biochar and chemical fertilizers did not significantly change soil abundance and diversity in black soil; the abundance of ammonia-oxidizing bacteria in three soils was higher than that of ammonia-oxidizing archaea. The measured OTU abundance of ammonia-oxidizing bacteria was about 8.1 times that of ammonia-oxidizing archaea. Biochar and chemical fertilizers did not significantly alter the OTU abundance in the thaumarchaeota, but had a significant effect on the OTU abundance in the beta and gamma proteobacteria. The ammonia-oxidizing bacteria of the three soils were mainly β-proteobacteria, accounting for about 60%. In addition, the application of biochar (C, FC) significantly changed the microbial community structure of yellow-brown soil on PC1 (40.4%), and significantly changed the microbial community structure of fluvo-aquic soil on both PC1 (42.3%) and PC2 (21.3%). After application of biochar (C, FC), the expression of ammonia synthesis related enzyme gene in fluvo-aquic soil decreased significantly by 14.7%-39.9% in a short period of time, and the ammoxidation archaea abundance decreased by 70.5% and 48.7% under C treatment and FC treatment, respectively.【Conclusion】After application of biochar, the microbial community structure of yellow-brown soil and fluvo-aquic soil was significantly changed, and the ammoxidation of fluvo-aquic soil was obviously inhibited in a short period of time.

Key words: biochar, chemical fertilizer, ammonia oxidation, microbial community structure, yellow-brown soil, fluvo-aquic soil, black soil

Table 1

Basic properties of tested soil"

土壤类型
Soil type
质地
Soil texture
pH 碱解氮
Available nitrogen
(mg·kg-1)
速效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
有机质
Organic matter
(g·kg-1)
黄棕壤Yellow-brown soil (YB) 黏土Clay 5.2 77.7 49.2 169.4 13.3
潮土Fluvo-aquic soil (FA) 壤土Loam 5.6 43.9 9.3 84.7 8.7
黑土Black soil (B) 黏土Clay 8.8 125.5 3.6 259.2 32.5

Fig. 1

The pH of different soil under different treatment conditions YB: Yellow-brown soil; FA: Fluvo-aquic soil; B: Black soil. CK, F, C, FC represent control treatment, single application of chemical fertilizer, single application of biochar and combined application of biochar and chemical fertilizer, respectively. Different letters indicate significant differences between treatments (P<0.05). The same as below"

Table 2

P value and F value based on a three-way ANOVA for soil pH"

因素Factor F P value
单施化肥处理F treatment 38.379 0.000
单施生物炭处理C treatment 271.157 0.000
土壤类型Soil type 4304.294 0.000
F×C 11.815 0.002
F×Soil type 57.887 0.000
C×Soil type 121.239 0.000
F×C×Soil type 0.204 0.817

Fig. 2

Histogram of difference between Alpha index groups in different soils *Represents a significant difference at the 0.05 level, **Represents a significant difference at the 0.01 level"

Table 3

Sequence number of ammonia-oxidizing microorganisms"

处理
Treatment
奇古菌Thaumarchaeota β和γ变形菌β, γ- Proteobacteria
YB FA B YB FA B
CK 152a 216a 763a 4768ab 6156ab 2141ab
F 285a 194a 873a 4744ab 5726b 1937b
C 219a 63a 1259a 3997b 6626a 1918b
FC 130a 110a 1121a 5267a 6417a 2969a

Fig. 3

Histogram of abundance changes of thaumarchaeota, betaproteobacteria and gammaproteobacteria in different soil"

Fig. 4

Principal component analysis of each soil treatment"

Fig. 5

KEGG metabolic pathway of nitrogen metabolism"

Table 4

Nitrogen metabolism pathway abundance in different soils under different treatments"

土壤类型Soil type CK F C FC
YB 260856a 250203a 238879a 230877a
FA 263525a 253256ab 242993bc 234804c
B 225273a 220124a 223533a 226165a

Table 5

Gene expression of soil ammonia synthesis related enzymes and ammonia oxidation related enzymes"


Enzyme
EC(编号)EC (number) YB FA B
CK F C FC CK F C FC CK F C FC
甲酰胺酶
Formamidase
1.7.2.1 1073a 1384a 1014a 1083a 1077a 1069a 892a 933a 361b 328b 329b 477a
腈水解酶
Nitrilase
3.5.1.49 4513ab 5000a 4044b 4582ab 5402a 6062a 5352a 5025a 5849a 5448a 5232a 6008a
氰酸裂合酶
Cyanate lyase
3.5.5.1 7036ab 7303ab 5903b 7985a 9535a 8958a 9566a 9398a 9240ab 8538bc 8168c 9710a
氨基甲酸酯激酶
Carbamate kinase
4.2.1.104 4006ab 3632b 3521b 4448a 4539a 4761a 4592a 4837a 4657a 4547a 4384a 4533a
谷氨酸脱氢酶
Glutamate dehydrogenase
2.7.2.2 4984ab 5332a 4574ab 4200b 5148a 5068a 3263b 3092b 9561a 9745a 10561a 10095a
谷氨酸脱氢酶(NAD(P)+)
Glutamate dehydrogenase ((NAD(P)+)
1.4.1.2 9631ab 10188a 8444b 9389ab 10659a 11757a 8684b 8277b 17594a 16898a 16405a 16705a
谷氨酸脱氢酶(NADP+)
Glutamate dehydrogenase (NADP+)
1.4.1.3 43350a 42063a 41901a 35676a 43520a 39070b 36778b 37143b 29553a 32706a 35500a 32690a
亚硝酸还原酶 (不分解)
Nitrite reductase (No-forming)
1.4.1.4 13424a 11436a 10945a 12922a 12085bc 14166a 13367ab 10763c 13604a 13240a 14048a 13256a
[1] CANFIELD D E, GLAZER A N, FALKOWSKI P G . The evolution and future of Earth's nitrogen cycle. Science, 2010,330(6001):192-196.
doi: 10.1126/science.1186120 pmid: 20929768
[2] 李霞 . 微生物在氮循环中的作用. 松辽学刊(自然科学版), 1998,10(4):30-33.
LI X . The role of microorganisms in the nitrogen cycle. Songliao Journal (Natural Science Edition), 1998,10(4):30-33. (in Chinese)
[3] 贺纪正, 张丽梅 . 氨氧化微生物生态学与氮循环研究进展. 生态学报, 2009,29(1):406-415.
doi: 10.3321/j.issn:1000-0933.2009.01.049
HE J Z, ZHANG L M . Advances in ammonia oxidation microbial ecology and nitrogen cycle. Journal of Ecology, 2009,29(1):406-415. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2009.01.049
[4] 陈温福, 张伟明, 孟军, 徐正进 . 生物炭应用技术研究. 中国工程科学, 2011,13(2):83-89.
doi: 10.3969/j.issn.1009-1742.2011.02.015
CHEN W F, ZHANG W M, MENG J, XU Z J . Biochar application technology research. Chinese Engineering Science, 2011,13(2):83-89. (in Chinese)
doi: 10.3969/j.issn.1009-1742.2011.02.015
[5] 陈心想, 何绪生, 耿增超, 张雯, 高海英 . 生物炭对不同土壤化学性质、小麦和糜子产量的影响. 生态学报, 2013,33(20):6534-6542.
doi: 10.5846/stxb201212281891
CHEN X X, HE X S, GENG Z C, ZHANG W, GAO H Y . Effects of biochar on different soil chemical properties, wheat and hazelnut yield. Journal of Ecology, 2013,33(20):6534-6542. (in Chinese)
doi: 10.5846/stxb201212281891
[6] 郑瑞伦, 王宁宁, 孙国新, 谢祖彬, 庞卓, 王庆海, 武菊英 . 生物炭对京郊沙化地土壤性质和苜蓿生长、养分吸收的影响. 农业环境科学学报, 2015,34(5):904-912.
doi: 10.11654/jaes.2015.05.013
ZHENG R L, WANG N N, SUN G X, XIE Z B, PANG Z, WANG Q H, WU J Y . Effects of biochar on soil properties, alfalfa growth and nutrient uptake in desertification areas of Beijing suburbs. Journal of Agricultural Environmental Science, 2015,34(5):904-912. (in Chinese)
doi: 10.11654/jaes.2015.05.013
[7] 李昌见, 屈忠义, 勾芒芒, 苏永莉, 霍星 . 生物炭对土壤水肥利用效率与番茄生长影响研究. 农业环境科学学报, 2014,33(11):2187-2193.
doi: 10.11654/jaes.2014.11.017
LI C J, QU Z Y, GOU M M, SU Y L, HUO X . Effects of biochar on soil water and fertilizer utilization efficiency and tomato growth. Journal of Agricultural Environmental Science, 2014,33(11):2187-2193. (in Chinese)
doi: 10.11654/jaes.2014.11.017
[8] 吕波, 王宇函, 夏浩, 姚子涵, 姜存仓 . 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异. 中国农业科学, 2018,51(22):4306-4315.
LV B, WANG Y H, XIA H, YAO Z H, JIANG C C . Effects of Biochar and Other Amendments on the Cabbage Growth and Soil Fertility in Yellow-Brown Soil. Scientia Agricultura Sinica, 2018,51(22):4306-4315. (in Chinese)
[9] 应介官, 林庆毅, 张梦阳, 黄毅, 彭抒昂, 姜存仓 . 生物炭对铝富集酸性土壤的毒性缓解效应及潜在机制. 中国农业科学, 2016,49(23):4576-4583.
doi: 10.3864/j.issn.0578-1752.2016.23.010
YING J G, LIN Q Y, ZHANG M Y, HUANG Y, PENG S A, JIANG C C . Mitigative effect of biochar on aluminum toxicity of acid soil and the potential mechanism. Scientia Agricultura Sinica, 2016,49(23):4576-4583. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.23.010
[10] ASADA T, ISHIHARA S, YAMANE T, TOBA A, YAMADA A . Science of bamboo charcoal: Study of carbonizing temperature of bamboo charcoal and removal capability of harmful gases. Journal of Health Science, 2002,48(6):473-479.
doi: 10.1248/jhs.48.473
[11] ASADA T, OHKUBO T, KAWATA K, OIKAWA K . Ammonia adsorption on bamboo charcoal with acid treatment. Journal of Health Science, 2006,52(5):585-589.
doi: 10.1248/jhs.52.585
[12] CLOUGH T J, BERTRAM J E, RAY J L, CONDRON L M, O'CALLAGHAN M, SHERLOCK R R, WELLS N S . Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine- amended pasture soil. Soil Science Society of America Journal, 2010,74(3):852-860.
doi: 10.2136/sssaj2009.0185
[13] CAYUELA M L, SÁNCHEZ-MONEDERO M A, ROIG A, HANLEY K, ENDERS A, LEHMANN J . Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports, 2013,3:1732.
doi: 10.1038/srep01732 pmid: 3635057
[14] VERHOEVEN E, SIX J . Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years. Agriculture, Ecosystems & Environment, 2014,191(15):27-38.
doi: 10.1016/j.agee.2014.03.008
[15] PURKHOLD U, POMMERENINGRÖSER A, JURETSCHKO S, SCHMID M C, KOOPS H P, WAGNER M . Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology, 2000,66(12):5368-5382.
doi: 10.1128/AEM.66.12.5368-5382.2000 pmid: 92470
[16] MONTEIRO M, SÉNECA J, MAGALHÃES C . The history of aerobic ammonia oxidizers: from the first discoveries to today. Journal of Microbiology, 2014,52(7):537-547.
doi: 10.1007/s12275-014-4114-0 pmid: 24972807
[17] TREUSCH A, LEININGER S, KLETZIN A, SCHUSTER S, KLENK H, SCHLEPER C . Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 2005,7(12):1985-1995.
doi: 10.1111/j.1462-2920.2005.00906.x pmid: 16309395
[18] BROCHIERARMANET C, BOUSSAU B, GRIBALDO S, FORTERRE P . Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 2008,6(3):245-252.
doi: 10.1038/nrmicro1852
[19] PESTER M, SCHLEPER C, WAGNER M . The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Current Opinion in Microbiology, 2011,14(3):300-306.
doi: 10.1016/j.mib.2011.04.007 pmid: 21546306
[20] SINGH B P, HATTON B J, BALWANT S, COWIE A L, KATHURIA A . Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality, 2010,39(4):1224-1235.
doi: 10.2134/jeq2009.0138 pmid: 20830910
[21] STEINER C, TEIXEIRA W G, LEHMANN J, NEHLS T, DE MACÊDO J L V, BLUM W E H, ZECH W . Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 2007,291(1/2):275-290.
doi: 10.1007/s11104-007-9193-9
[22] RONDON M A, LEHMANN J, RAMÍREZ J, HURTADO M . Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 2007,43(6):699-708.
doi: 10.1007/s00374-006-0152-z
[23] BALL P N, MACKENZIE M D, DELUCA T H, HOLBEN W E . Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Quality, 2010,39(4):1243-1253.
doi: 10.2134/jeq2009.0082 pmid: 20830912
[24] SPOKAS K A, REICOSKY D C . Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science, 2009,3(1):179-193.
[25] ABUJABHAH I S, DOYLE R B, BOUND S A, BOWMAN J P . Assessment of bacterial community composition, methanotrophic and nitrogen-cycling bacteria in three soils with different biochar application rates. Journal of Soils & Sediments, 2018,18(1):148-158.
doi: 10.1007/s11368-017-1733-1
[26] LIU S N, MENG J, JIANG L L, YANG X, LAN Y, CHENG X Y, CHEN W F . Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Applied Soil Ecology, 2017,116:12-22.
doi: 10.1016/j.apsoil.2017.03.020
[27] MAGOČ T, SALZBERG S L . FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011,27(22):2957-2963.
doi: 10.1093/bioinformatics/btr507
[28] EDGAR R C . UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013,10(10):996.
doi: 10.1038/NMETH.2604 pmid: 23955772
[29] WANG Q, GARRITY G M, TIEDJ J M, COLE J R . Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007,73(16):5261-5267.
doi: 10.1128/AEM.00062-07
[30] CHAO A, BUNGE J . Estimating the number of species in a stochastic abundance model. Biometrics, 2002,58(3):531-539.
doi: 10.1111/j.0006-341X.2002.00531.x pmid: 12229987
[31] LANGILLE M G I, ZANEVELD J, CAPORASO J G, MCDONALD D, KNIGHTS D, REYES J A, CLEMENTE J C, BURKEPILE D E, THURBER R L V, KNIGHT R, BEIKO R G, HUTTENHOWER C . Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013,31(9):814.
doi: 10.1038/nbt.2676 pmid: 3819121
[32] 郭赟 . 长期施肥对酸性及中性水稻土壤中氨氧化微生物的影响[D]. 南京: 南京师范大学, 2013.
GUO Y . Effects of long-term fertilization on ammonia-oxidizing microorganisms in acidic and neutral rice soils[D]. Nanjing: Nanjing Normal University, 2013. ( in Chinese)
[33] PROSSER J I . Autotrophic nitrification in bacteria. Advances in Microbial Physiology, 1989,30(1):125-181.
[34] LEININGER S, URICH T, SCHLOTER M, SCHWARK L, QI J, NICOL G W, PROSSER J I, SCHUSTER S C, SCHLEPER C . Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006,442:806-809.
doi: 10.1038/nature04983 pmid: 16915287
[35] NICOLE G W, LEININGER S, SCHLEPER C, PROSSER J I . The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 2010,10(11):2966-2978.
doi: 10.1111/j.1462-2920.2008.01701.x pmid: 18707610
[36] NEJC S, GUBRYRANGIN C, ŠPELA H, GRAEME W N, INES M, JAMES I P . Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Applied and Environmental Microbiology, 2010,76(22):7626.
doi: 10.1128/AEM.00595-10 pmid: 20889787
[37] LIAO X, CHEN C, ZHANG J, DAI Y, ZHANG X, XIE S . Operational performance, biomass and microbial community structure: impacts of backwashing on drinking water biofilter. Environmental Science and Pollution Research International, 2015,22(1):546.
doi: 10.1007/s11356-014-3393-7 pmid: 25087501
[38] HE L L, BI Y C, ZHAO J, PITTELKOW C M, ZHAO X, WANG S Q, XING G X . Population and community structure shifts of ammonia oxidizers after four-year successive biochar application to agricultural acidic and alkaline soils. Science of the Total Environment, 2018,619:1105-1115.
doi: 10.1016/j.scitotenv.2017.11.029 pmid: 29734589
[39] 李双双, 陈晨, 段鹏鹏, 许欣, 熊正琴 . 生物质炭对酸性菜地土壤NO排放及相关功能基因丰度的影响. 植物营养与肥料学报, 2018,24(2):414-423.
doi: 10.11674/zwyf.17272
LI S S, CHEN C, DUAN P P, XU X, XIONG Z Q . Effects of biochar on NO emission and related functional gene abundance in acidic vegetable soils. Journal of Plant Nutrition and Fertilizer, 2018,24(2):414-423. (in Chinese)
doi: 10.11674/zwyf.17272
[40] 刘远, 朱继荣, 吴雨晨, 束良佐 . 施用生物质炭对采煤塌陷区土壤氨氧化微生物丰度和群落结构的影响. 应用生态学报, 2017,28(10):3417-3423.
doi: 10.13287/j.1001-9332.201710.034
LIU Y, ZHU J R, WU Y C, SHU L Z . Effects of application of biomass carbon on ammonia microbial abundance and community structure in coal mining subsidence area. Chinese Journal of Applied Ecology, 2017, 28(10):3417-3423. (in Chinese)
doi: 10.13287/j.1001-9332.201710.034
[41] BI Q F, CHEN Q H, YANG X R, LI H, ZHENG B X, ZHOU W W, LIU X X, DAI P B, LI K J, LIN X Y . Effects of combined application of nitrogen fertilizer and biochar on the nitrification and ammonia oxidizers in an intensive vegetable soil. Amb Express, 2017,7:108.
doi: 10.1186/s13568-017-0363-8 pmid: 28571306
[42] WU H P, ZENG G M, LIANG J, CHEN J, XU J J, DAI J, LI X D, CHEN M, XU P, ZHOU Y Y, LI F, HU L, WAN J . Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Environmental Biotechnology, 2016, 100:8583-8591.
doi: 10.1007/s00253-016-7614-5 pmid: 27338575
[43] JIN H . Thesis: Characterization of microbial life colonizing biochar and biochar-amended soils[D]. Ithaca: Cornell University, 2010.
[44] KHODADAD C L M, ZIMMERMAN A R, GREEN S J, UTHANDI S, FOSTER J S . Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology & Biochemistry, 2011,43(2):385-392.
doi: 10.1016/j.soilbio.2010.11.005
[45] ALLISON S D, MARTINY J B H . Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(32):11512-11519.
doi: 10.1073/pnas.0801925105
[46] BÖRJESSON G, MENICHETTI L, KIRCHMANN H, KATTERER T . Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biology & Fertility of Soils, 2012,48(3):245-257.
doi: 10.1007/s00374-011-0623-8
[47] HALLIN S, JONES C M, SCHLOTER M, PHILIPPOT L . Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. Isme Journal, 2009,3(5):597.
doi: 10.1038/ismej.2008.128 pmid: 19148144
[48] HARTMANN M, FLIESSBACH A, OBERHOLZER H R, WIDMER F . Ranking the magnitude of crop and farming system effects on soil microbial biomass and genetic structure of bacterial communities. FEMS Microbiology Ecology, 2006,57(3):378-388.
doi: 10.1111/j.1574-6941.2006.00132.x pmid: 16907752
[49] ZHONG W H, GU T, WEI W, ZHANG B, LIN X, HUANG Q, SHEN W . The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 2010,326(1/2):511-522.
doi: 10.1007/s11104-009-9988-y
[50] GEISSELER D, LAZICKI P A, SCOW K M . Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops. Applied Soil Ecology, 2016,106:1-10.
doi: 10.1016/j.apsoil.2016.04.015
[51] OGILVIE L A, HIRSCH P R, JOHNSTON A W B . Bacterial diversity of the Broadbalk ‘Classical’ winter wheat experiment in relation to long-term fertilizer inputs. Microbial Ecology, 2008,56(3):525-537.
doi: 10.1007/s00248-008-9372-0 pmid: 18347845
[1] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[2] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[3] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[4] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[5] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[6] ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364.
[7] TANG MingYao,SHEN ChongYang,CHEN ShuHuang,TANG GuangMu,LI QingJun,YAN CuiXia,GENG QingLong,FU GuoHai. Yield of Wheat and Maize and Utilization Efficiency of Nitrogen, Phosphorus and Potassium in Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(14): 2762-2774.
[8] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[9] WEI Lei,MI XiaoTian,SUN LiQian,LI ZhaoMin,SHI Mei,HE Gang,WANG ZhaoHui. Current Status of Chemical Fertilizers, Pesticides, and Irrigation Water and Their Reducing Potentials in Wheat Production of Northern China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2584-2597.
[10] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[11] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[12] GONG Liang,JIN DanDan,NIU ShiWei,WANG Na,XU JiaYi,SUI ShiJiang. Analysis of Chemical Fertilizer Application Reduction Potential for Paddy Rice in Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(9): 1926-1936.
[13] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[14] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[15] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!