Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2584-2597.doi: 10.3864/j.issn.0578-1752.2022.13.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Current Status of Chemical Fertilizers, Pesticides, and Irrigation Water and Their Reducing Potentials in Wheat Production of Northern China

WEI Lei1(),MI XiaoTian1,SUN LiQian1,LI ZhaoMin1,SHI Mei1(),HE Gang1(),WANG ZhaoHui1,2   

  1. 1College of Natural Resources and Environment, Northwest A & F University/Key Laboratory of Plant Nutrition and Ago- environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2021-04-26 Accepted:2021-07-25 Online:2022-07-01 Published:2022-07-08
  • Contact: Mei SHI,Gang HE E-mail:weilei106@163.com;meishi@nwafu.edu.cn;hegang029@nwafu.edu

Abstract:

【Objective】The unreasonable use of chemicals and irrigation water is the crucial to limiting the wheat production. The objective of the study was to clarify the current status of chemical fertilizers, pesticides, and irrigation water in wheat production of Northern China and their reduction potentials. Further, understanding the effects of farm size on wheat production could provide an effective reference for sustainable wheat production in China. 【Method】 Based on a large-scale survey in seven provinces of Northern China during 2018-2019, based on the nutrient requirements formed by wheat yield, the potential of fertilizer reduction in northern wheat regions and the potential of pesticide reduction based on the recommended amount of pesticides were assessed, and the water-saving potential based on Penman-Monteith was estimated, and then the effects of farm size on wheat yield and the input costs of chemical fertilizer and irrigation water were investigated. 【Result】The mean wheat yields of spring wheat area, Fenwei Plain, Loess Plateau, and oasis irrigation area were 3.0, 7.6, 4.7, and 7.4 t·hm-2, respectively. The application rate of nitrogen (N), phosphorus (P) and potassium (K) fertilizer was 87 kg N·hm-2, 91 kg P2O5·hm-2, and 1 kg K2O·hm-2 in spring wheat area, was 280 kg N·hm-2, 133 kg P2O5·hm-2, and 1 kg K2O·hm-2 in Fenwei Plain, was 178 kg N·hm-2, 117 kg P2O5·hm-2, and 25 kg K2O·hm-2 in Loess Plateau, and was 225 kg N·hm-2, 168 kg P2O5·hm-2, and 15 kg K2O·hm-2 in oasis irrigation area, respectively. The problems of excessive application of N and P fertilizers and insufficient application of K fertilizers coexisted. The reduction potential of N and P fertilizers was 25% and 40% in Fenwei Plain, respectively, which was 24% and 57% in Loess Plateau, respectively. The reduction potential of P fertilizer was 65% and 54% in spring wheat area and oasis irrigation area, respectively. The use of pesticides varied greatly in different areas of wheat production. In the spring wheat area of Fenwei Plain, Loess Plateau, and oasis irrigation area, the mean number of pesticides sprayed were 1.8, 1.4, 1.6, and 1.6 times, respectively; the reduction potential of pesticides was 40%-70%, 54%-83%, 40%-65% and 50%-83%, respectively. Insecticides and herbicides were the main types of pesticides, and the frequency of insecticides application accounted for 73%, which was higher than that of herbicides. For insecticides, imidacloprid and triadimefon were more commonly used. For herbicides, tribenuron-methy, 2, 4-D butyl ester, and sodium dimethyl tetrachloride were more often used. The irrigation times of wheat production were 2-4 in most cases. For Fenwei Plain, the mean number of irrigations was 2.2 times, and the river water was the most key source of irrigation water. For oasis irrigation area, the mean number of irrigations was 3.5 times, and the well water was the most key source of irrigation water. The water-saving potential in Fenwei Plain and oasis irrigation area was 14% and 42%, respectively. Small-scale farm size was the most common way to manage farms, resulting in a serious fragmentation of farmland in each wheat area. Compared with small-scale farm size, the large-scale farm size increased wheat yields by 7%-36% with reducing input costs by 17%-19%. 【Conclusion】The study reported the current status of the wheat yield, chemical fertilizers, pesticides, and irrigation water in wheat production of Northern China, and found that their application rates varied greatly between farmers and production regions. This brought huge potential for the reduction of chemical fertilizers, pesticides, and irrigation water. Moreover, combined with farm size, it clarified that an appropriate increase in farm size could increase wheat yield while decreasing input costs, which could be essential for optimizing management scale in wheat region of north China.

Key words: farmers, chemical fertilizer, pesticides, irrigation water, reducing potential, farm size

Table 1

Investigation of the situation of the area"

麦区 Wheat region 省/自治区 Province 县 County
春麦区
Spring wheat area
黑龙江、内蒙古、宁夏
Heilongjiang, Neimenggu,
Ningxia
巴彦、二道桥、贺兰、黑河、利通、临河、蒙海、嫩江、沙坡头、石嘴山、双庙、孙吴、天池、头道桥、五原、永宁
Bayan, Erdaoqiao, Helan, Heihe, Litong, Linhe, Menghai, Nenjiang, Shapotou, Shizuishan, Shuangmiao, Sunwu, Tianchi, Toudaoqiao, Wuyuan, Yongning
汾渭平原灌区
Fenwei Plain
山西、陕西
Shanxi, Shaanxi
大荔、凤翔、富平、洪洞、侯马、华州、栲栳、临汾、临渭、蒲州、乔李、曲沃、上马、渭南、闻喜、武功、夏县、襄汾、张营
Dali, Fengxiang, Fuping, Hongtong, Houma, Huazhou, Kaolao, Linfen, Linwei, Puzhou, Qiaoli, Quwo, Shangma, Weinan, Wenxi, Wugong, Xiaxian, Xiangfen, Zhangying
黄土高原旱地
Loess Plateau
山西、陕西、甘肃
Shanxi, Shaanxi, Gansu
安定、彬县、陈仓、崇信、店头、甘井、合阳、浪杨、浪赵、麟游、马坊、浦城、岐山、乾县、清水、渠子、通渭、旬邑、永寿、游县、长武、庄浪
Anding, Binxian, Chencang, Chongxin, Diantou, Ganjing, Heyang, Langyang, Langzhao, Linyou, Mafang, Pucheng, Qishan, Qianxian, Qingshui, Quzi, Tongwei, Xunyi, Yongshou, Youxian, Changwu, Zhuanglang
绿洲灌区
Oasis irrigation area
甘肃、新疆
Gansu, Xinjiang
墨玉、策勒、伽师、奇台、新源、民乐、永昌、谢河、黄羊、甘州、泽普、坎苏
Moyu, Cele, Jiashi, Qitai, Xinyuan, Minle, Yongchang, Xiehe, Huangyang, Ganzhou, Zepu, Kansu

Fig. 1

Monthly precipitation in the northern wheat region from 2018 to 2019 The precipitation data comes from the National Meteorological Science Data Center (http://www.cma.gov.cn/ 2011qxfw/2011qsjgx/) The monthly precipitation of spring wheat area was from January to December 2018. The monthly precipitation of other regions are from July to December 2018 and from January to June 2019"

Table 2

Fertilizer application rate and its reducing potential in the main wheat regions of Northern China"

麦区
Wheat region
样本量
Sample
number
产量
Yield
(t·hm-2)
氮肥用量
N rate (kg N·hm-2)
减施潜力Reducing potential (%) 磷肥用量
P rate (kg P2O5·hm-2)
减施潜力Reducing potential (%) 钾肥用量
K rate (kg K2O·hm-2)
减施潜力
Reducing potential (%)
FP RFec FP RFec FP RFec
春麦区
Spring wheat area
206 3.0 d 87 86 1 91 32 65 1 25
汾渭平原灌区 Fenwei Plain 490 7.6 a 280 210 25 133 80 40 1 50
黄土高原旱地 Loess Plateau 777 4.7 c 178 135 24 117 50 57 25 26
绿洲灌区
Oasis irrigation area
297 7.4 b 225 214 5 168 78 54 15 51

Table 3

Current status of pesticides, diseases, pests, and weeds in the main wheat regions of Northern China"

麦区
Wheat region
样本量
Sample number
喷药次数
Numbers of spraying
占比
Ratio
(%)
喷药时期
Spraying period
占比
Ratio
(%)
主要病害
Main disease
主要草害
Main weed
主要虫害
Main pest
春麦区
Spring wheat area
98 2 100 播种期
Sowing date
34 丛矮病
Plexus dwarf
赤霉病
Gibberellic disease
散黑穗
Loose smut

Chenopodium album L.
麦蚜虫
Wheat aphid
3 44 灌浆期
Grouting period
66
汾渭平原灌区
Fenwei Plain
239 1 100 播期
Sowing date
28 赤霉病
Gibberellic disease
白粉病
Powdery mildew
叶锈病
Brown leaf rust
纹枯病
Banded sclerotial blight
节节麦
Aegilops tauschii
野燕麦
Wild oats
播娘蒿
Flixweed
麦蚜虫
Wheat aphid
红蜘蛛
Starscream
吸浆虫
Sitodiplosis mosellana
2 59 返青期
Rejuvenation period
10
3 7 拔节期
Elongation stage
45
灌浆期
Grouting period
17
黄土高原旱地
Losess Plateau
625 1 100 播期
Sowing date
21 赤霉病
Gibberellic disease
白粉病
Powdery mildew
条锈病
Stripe rust
野燕麦
Wild oats
节节麦
Aegilops tauschii
播娘蒿
Flixweed
麦蚜虫
Wheat aphid
红蜘蛛
Starscream
吸浆虫
Sitodiplosis mosellana
2 58 返青期
Rejuvenation period
34
3 27 拔节期
Elongation stage
12
4 1 灌浆期
Grouting period
33
绿洲灌区
Oasis irrigation area
118 1 100 播期
Sowing date
29 白粉病
Powdery mildew
赤霉病
Gibberellic disease
叶锈病
Brown leaf rust
野燕麦
Wild oats
Chenopodium album L.
播娘蒿
Flixweed
麦蚜虫
Wheat aphid
吸浆虫
Sitodiplosis mosellana
负泥虫
Negative mud bug
2 69 拔节期
Elongation stage
35
3 17 灌浆期
Grouting period
36

Table 4

Pesticides application rate and its reducing potential in the main wheat regions of Northern China"

麦区
Wheat region
喷药名称
Pesticide
实际用药量
Actual usage
(mL·hm-2)
喷药次数
Number of spraying
单次用药量
Single dose (mL·hm-2)
单次合理用药量
Reasonable single dose (mL·hm-2)
减药潜力
Reducing potential of dose (%)
春麦区
Spring wheat area
三唑酮 Triadimefon 1500 2 750 450 40
高效氯氰菊酯Beta-cypermethrin 1760 2 880 300 66
吡虫啉 Imidacloprid 2250 3 750 225 70
汾渭平原灌区
Fenwei Plain
吡虫啉 Imidacloprid 974 2 487 225 54
戊唑醇 Tebuconazole 1950 2 975 226 77
阿维菌 Abamectin 3000 2 1500 250 83
甲基二磺隆Mesosulfuron 368 1 368 525
黄土高原旱地
Loess Plateau
高效氯氰菊酯Beta-cypermethrin 1127 2 300 300 0
吡虫啉 Imidacloprid 1125 3 375 225 40
三唑酮 Triadimefon 2594 2 1297 450 65
绿洲灌区
Oasis irrigation area
炔草酯Clodinafop-propargyl 900 2 450 225 50
高效氯氰菊酯Beta-cypermethrin 1725 1 1725 300 83
精噁唑禾草灵Fenoxaprop-p-ethyl 500 1 500 600
苯磺隆Tribenuron-methyl 566 2 283 300
阿维菌 Abamectin 150 1 150 250

Fig. 2

Usage frequency and accumulation proportion of insecticides (a) and herbicides (b) in the main wheat areas of Northern China"

Table 5

Frequencies, periods, ways, and sources of irrigation application in the main wheat regions of Northern China"

麦区
Wheat region
样本量
Sample number
灌溉次数及占比
Irrigation frequency and ratio
灌溉时期及占比
Irrigation period and ratio
灌水方式及占比
Irrigation way and ratio
灌水来源及占比
Irrigation source and ratio
灌溉次数
Irrigation frequency
占比
Ratio (%)
灌溉时期
Irrigation period
占比
Ratio (%)
灌水方式
Irrigation way
占比Ratio (%) 灌水来源
Irrigation source
占比
Ratio (%)
汾渭平原灌区
Fenwei Plain
423 1 100 播种期
Sowing date
19 漫灌
Basin irrigation
100 井水
Well water
26
2 64 越冬期
Wintering period
19 滴灌
Trickle irrigation
0 河水
River water
54
3 38 返青期
Rejuvenation period
3 水库水
Reservoir water
16
4 15 拔节期
Elongation stage
21
灌浆期
Grouting period
38
绿洲灌区
Oasis irrigation area
171 1 100 播种期
Sowing date
8 漫灌
Basin irrigation
98 井水
Well water
48
2 98 越冬期
Wintering period
10 滴灌
Trickle irrigation
2 河水
River water
34
3 58 返青期
Rejuvenation period
4 水库水
Reservoir water
18
4 50 拔节期
Elongation stage
38
5 31 灌浆期
Grouting period
40
6 14

Table 6

Irrigation volume and its reducing potential in the main wheat regions of Northern China"

麦区
Wheat region
样本量
Number
ET0
(mm)
生育期降水量
Precipitation (mm)
实际灌溉量
Farmers’ irrigation (mm)
平均灌溉次数
Irrigation frequency
节水潜力
Reducing potential (%)
汾渭平原灌区
Fenwei Plain
423 701 252 412 2 14
绿洲灌区
Oasis irrigation area
171 974 52 596 4 42

Fig. 3

The frequency of farm size distribution (a) and the relationship between farmer size and grain yield, between farmer size and input of fertilizers and irrigations (b) in main wheat regions in Northern China The scale of farm management of spring wheat area, Fenwei Plain, and oasis irrigation water were divided from small to large: small, middle and large management. The Loess Plateau was divided into small and large management. Different lowercase and capital letters represent significant differences in yields and production costs of different operation scales at P<0.05. The sample sizes of wheat yield in Spring wheat area, Fenwei Plain, Loess Plateau, and Oasis irrigation area were 206, 490, 777, and 297, respectively"

[1] VITOUSEK P M, NAYLOR R, CREWS T, DAVID M B, DRINKWATER L E, HOLLAND E, JOHNES P J, KATZENBERGER J, MARTINELLI L A, MATSON P A, NZIGUHEBA G, OJIMA D, PALM C A, ROBERTSON G P, SANCHEZ P A, TOWNSEND A R, ZHANG F S. Nutrient imbalances in agricultural development. Science, 2009, 324(5934): 1519-1520. doi: 10.1126/science.1170261.
doi: 10.1126/science.1170261
[2] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2003.
National Bureau of Statistics of China, China Statistical Yearbook. Beijing: China Statistics Press, 2003. (in Chinese)
[3] 赵护兵, 王朝辉, 高亚军, 张卫峰. 西北典型区域旱地冬小麦农户施肥调查分析. 植物营养与肥料学报, 2013, 19(4): 840-848.
ZHAO H B, WANG Z H, GAO Y J, ZHANG W F. Investigation and analysis of dryland winter wheat fertilizer application in northwest typical areas. Journal of Plant Nutrition and Fertilizer, 2013, 19(4): 840-848. (in Chinese)
[4] 牛新胜, 张宏彦. 华北平原冬小麦-夏玉米生产肥料管理现状分析. 耕作与栽培, 2010(5): 1-4, 8.
NIU X S, ZHANG H Y. Analysis of fertilizer management in winter wheat-summer corn production in North China Plain. Culture with Planting, 2010(5): 1-4, 8. (in Chinese)
[5] 李廷亮, 谢英荷, 任苗苗, 邓树元, 单杰, 雷震宇, 洪坚平, 王朝辉. 施肥和覆膜垄沟种植对旱地小麦产量及水氮利用的影响. 生态学报, 2011, 31(1): 212-220.
doi: 10.1016/j.chnaes.2011.04.001
LI T L, XIE Y H, REN M M, DENG S Y, SHAN J, LEI Z Y, HONG J P, WANG Z H. Effects of fertilization and plastic film mulched ridge-furrow cultivation on yield and water and nitrogen utilization of winter wheat on dryland. Acta Ecologica Sinica, 2011, 31(1): 212-220. (in Chinese)
doi: 10.1016/j.chnaes.2011.04.001
[6] 张昊青. 黄土高原旱地麦田有机无机配施减氮增效作用研究[D]. 杨凌: 西北农林科技大学, 2017.
ZHANG H Q. Reducing nitrogen fertilization rate and improving winter wheat yield through a combination of manure and chemical fertilizer in the loess plateau[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
[7] 应瑞瑶, 徐斌. 农作物病虫害专业化防治服务对农药施用强度的影响. 中国人口·资源与环境, 2017, 27(8): 90-97.
YING R Y, XU B. Effects of regional pest control adoption on pesticides application. China Population, Resources and Environment, 2017, 27(8): 90-97. (in Chinese)
[8] 姜健, 周静, 孙若愚. 菜农过量施用农药行为分析: 以辽宁省蔬菜种植户为例. 农业技术经济, 2017(11): 16-25.
JIANG J, ZHOU J, SUN R Y. Analysis on the behavior of excessive use of pesticides by vegetable growers in Liaoning Province. Journal of Agrotechnical Economics, 2017(11): 16-25. (in Chinese)
[9] 张宗毅. 基于农户行为的农药使用效率、效果和环境风险影响因素研究[D]. 南京: 南京农业大学, 2011.
ZHANG Z Y. Research on influencing factors of pesticide application effectiveness, efficiency and environmental risk based on farmers’ behaviors[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[10] 刘小宁, 刘海坤, 黄玉芳, 叶优良. 施氮量、土壤和植株氮浓度与小麦赤霉病的关系. 植物营养与肥料学报, 2015, 21(2): 306-317.
LIU X N, LIU H K, HUANG Y F, YE Y L. Relationships between nitrogen application rate soil nitrate-nitrogen, plant nitrogen concentration and wheat scab. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 306-317. (in Chinese)
[11] 张芳, 薛绪掌, 张建丰, 王利春, 李银坤. 负水头供水盘埋设方式对番茄生长和水分利用率的影响. 干旱地区农业研究, 2016, 34(2): 239-244.
ZHANG F, XUE X Z, ZHANG J F, WANG L C, LI Y K. Effects of embedding methods on water supplying device with negative pressure toward the growth of tomatoes and their water use efficiency. Agricultural Research in the Arid Areas, 2016, 34(2): 239-244. (in Chinese)
[12] 吕丽华, 董志强, 李谦, 张丽华, 姚艳荣, 张经廷, 贾秀领. 微喷灌模式冬小麦产量形成及水分利用特性研究. 麦类作物学报, 2020, 40(2): 185-194.
LÜ L H, DONG Z Q, LI Q, ZHANG L H, YAO Y R, ZHANG J T, JIA X L. Study on yield formation and water utilization characteristics of winter wheat under micro-sprinkling irrigation. Journal of Triticeae Crops, 2020, 40(2): 185-194. (in Chinese)
[13] HEINRICHS J, KUHN T, PAHMEYER C, BRITZ W. Economic effects of plot sizes and farm-plot distances in organic and conventional farming systems: A farm-level analysis for Germany. Agricultural Systems, 2021, 187: 102992.
doi: 10.1016/j.agsy.2020.102992
[14] TILMAN D, CASSMAN K G, MATSON P A, NAYLOR R, POLASKY S. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671-677.
doi: 10.1038/nature01014
[15] 曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶. 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017, 50(14): 2758-2768.
CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, LÜ H, SHI Y C, DU M Y. Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production. Scientia Agricultura Sinica, 2017, 50(14): 2758-2768. (in Chinese)
[16] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51(14): 2722-2734.
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018, 51(14): 2722-2734. (in Chinese)
[17] 曹寒冰, 王朝辉, 师渊超, 杜明叶, 雷小青, 张文忠, 张璐, 蒲岳建. 渭北旱地冬小麦监控施氮技术的优化. 中国农业科学, 2014, 47(19): 3826-3838.
CAO H B, WANG Z H, SHI Y C, DU M Y, LEI X Q, ZHANG W Z, ZHANG L, PU Y J. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei dryland. Scientia Agricultura Sinica, 2014, 47(19): 3826-3838. (in Chinese)
[18] 宋妮, 孙景生, 王景雷, 陈智芳, 强小嫚, 刘祖贵. 基于Penman修正式和Penman-Monteith公式的作物系数差异分析. 农业工程学报, 2013, 29(19): 88-97.
SONG N, SUN J S, WANG J L, CHEN Z F, QIANG X M, LIU Z G. Analysis of difference in crop coefficients based on modified Penman and Penman-Monteith equations. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 88-97. (in Chinese)
[19] 国家发展和改革委员会价格司. 全国农产品成本收益资料汇编. 北京: 中国统计出版社, 2011.
Price Division, National Development and Reform Commission. Compilation of National Agricultural Products Cost-benefit Data. Beijing: China Statistics Press, 2011. (in Chinese)
[20] HE G, CUI Z L, YING H, ZHENG H F, WANG Z H, ZHANG F S. Managing the trade-offs among yield increase, water resources inputs and greenhouse gas emissions in irrigated wheat production systems. Journal of Cleaner Production, 2017, 164: 567-574.
doi: 10.1016/j.jclepro.2017.06.085
[21] 王旭, 李贞宇, 马文奇, 张福锁. 中国主要生态区小麦施肥增产效应分析. 中国农业科学, 2010, 43(12): 2469-2476.
WANG X, LI Z Y, MA W Q, ZHANG F S. Effects of fertilization on yield increase of wheat in different agro-ecological regions of China. Scientia Agricultura Sinica, 2010, 43(12): 2469-2476. (in Chinese)
[22] 谭德水, 金继运, 黄绍文, 李书田, 何萍. 不同种植制度下长期施钾与秸秆还田对作物产量和土壤钾素的影响. 中国农业科学, 2007, 40(1): 133-139.
TAN D S, JIN J Y, HUANG S W, LI S T, HE P. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. Scientia Agricultura Sinica, 2007, 40(1): 133-139. (in Chinese)
[23] 李青军, 赖宁, 耿庆龙, 马彦茹, 陈署晃. 不同灌溉方式下冬小麦和春小麦施肥现状与评价. 新疆农业科学, 2016, 53(5): 893-900.
LI Q J, LAI N, GENG Q L, MA Y R, CHEN S H. Evaluation and present situation of fertilization for winter wheat and spring wheat under different irrigation methods in Qitai County, Xinjiang. Xinjiang Agricultural Sciences, 2016, 53(5): 893-900. (in Chinese)
[24] 徐进, 朱杰华, 杨艳丽, 汤浩, 吕和平, 樊明寿, 石瑛, 董道峰, 王贵江, 王万兴, 熊兴耀, 高玉林. 中国马铃薯病虫害发生情况与农药使用现状. 中国农业科学, 2019, 52(16): 2800-2808.
XU J, ZHU J H, YANG Y L, TANG H, LÜ H P, FAN M S, SHI Y, DONG D F, WANG G J, WANG W X, XIONG X Y, GAO Y L. Status of major diseases and insect pests of potato and pesticide usage in China. Scientia Agricultura Sinica, 2019, 52(16): 2800-2808. (in Chinese)
[25] 陈云, 王建强, 杨荣明, 马忠华. 小麦赤霉病发生危害形势及防控对策. 植物保护, 2017, 43(5): 11-17.
CHEN Y, WANG J Q, YANG R M, MA Z H. Current situation and management strategies of Fusarium head blight in China. Plant Protection, 2017, 43(5): 11-17. (in Chinese)
[26] 刘小宁, 刘海坤, 黄玉芳, 叶优良. 施氮量、土壤和植株氮浓度与小麦赤霉病的关系. 植物营养与肥料学报, 2015, 21(2): 306-317.
LIU X N, LIU H K, HUANG Y F, YE Y L. Relationships between nitrogen application rate soil nitrate-nitrogen, plant nitrogen concentration and wheat scab. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 306-317. (in Chinese)
[27] 房锋, 李美, 高兴祥, 李健, 李燕. 麦田播娘蒿发生动态及其对小麦产量构成因素的影响. 中国农业科学, 2015, 48(13): 2559-2568.
FANG F, LI M, GAO X X, LI J A, LI Y. Occurrence of flixweed (Descurainia sophia) in wheat fields and its influence on wheat yield components. Scientia Agricultura Sinica, 2015, 48(13): 2559-2568. (in Chinese)
[28] 闵红. 我国农药减量控害技术的现状及展望. 中国植保导刊, 2017, 37(6): 83-85.
MIN H. Present situation and prospect of pesticide reduction and pest control technology in China. China Plant Protection, 2017, 37(6): 83-85. (in Chinese)
[29] 杨普云, 王凯, 厉建萌, 李文星, 尹俊梅. 以农药减量控害助力农业绿色发展. 植物保护, 2018, 44(5): 95-100.
YANG P Y, WANG K, LI J M, LI W X, YIN J M. Promoting green agricultural development through eliminating pesticide overuses in crop pest management. Plant Protection, 2018, 44(5): 95-100. (in Chinese)
[30] 展进涛, 张慧仪, 陈超. 果农施用农药的效率测度与减少错配的驱动力量: 基于中国桃主产县524个种植户的实证分析. 南京农业大学学报(社会科学版), 2020, 20(6): 148-156.
ZHAN J T, ZHANG H Y, CHEN C. The analysis of efficiency measurement of pesticide application for fruit growers and the driving force to reduce misallocation: empirical analysis: based on 524 peach farmers from 85 production counties in China. Journal of Nanjing Agricultural University (Social Sciences Edition), 2020, 20(6): 148-156. (in Chinese)
[31] 杨晓亚, 于振文, 许振柱. 灌水量和灌水时期对小麦耗水特性和氮素积累分配的影响. 生态学报, 2009, 29(2): 846-853.
YANG X Y, YU Z W, XU Z Z. Effects of irrigation regimes on water consumption characteristics and nitrogen accumulation and allocation in wheat. Acta Ecologica Sinica, 2009, 29(2): 846-853. (in Chinese)
[32] 王德梅, 于振文. 灌溉量和灌溉时期对小麦耗水特性和产量的影响. 应用生态学报, 2008, 19(9): 1965-1970.
WANG D M, YU Z W. Effects of irrigation amount and stage on water consumption characteristics and grain yield of wheat. Chinese Journal of Applied Ecology, 2008, 19(9): 1965-1970. (in Chinese)
[33] 韩惠芳, 李全起, 董宝娣, 刘孟雨. 灌溉频次和时期对冬小麦籽粒产量及品质特性的影响. 生态学报, 2010, 30(6): 1548-1555.
HAN H F, LI Q Q, DONG B D, LIU M Y. Effects of irrigation frequency and stages on grain yield and quality characteristics of winter wheat. Acta Ecologica Sinica, 2010, 30(6): 1548-1555. (in Chinese)
[34] LIU M C, YANG L, MIN Q W. Water-saving irrigation subsidy could increase regional water consumption. Journal of Cleaner Production, 2019, 213: 283-288.
doi: 10.1016/j.jclepro.2018.12.152
[35] 姚素梅, 康跃虎, 刘海军. 喷灌与地面灌溉冬小麦干物质积累、分配和运转的比较研究. 干旱地区农业研究, 2008, 26(6): 51-56.
YAO S M, KANG Y H, LIU H J. Studies on dry matter accumulation, partitioning and translocation in winter wheat under sprinkler and surface irrigation conditions. Agricultural Research in the Arid Areas, 2008, 26(6): 51-56. (in Chinese)
[36] HEINRICHS J, KUHN T, PAHMEYER C, BRITZ W. Economic effects of plot sizes and farm-plot distances in organic and conventional farming systems: A farm-level analysis for Germany. Agricultural Systems, 2021, 187: 102992.
doi: 10.1016/j.agsy.2020.102992
[37] 倪国华, 蔡昉. 农户究竟需要多大的农地经营规模?—农地经营规模决策图谱研究. 经济研究, 2015, 50(3): 159-171.
NI G H, CAI F. What is the proper land management scale really needed by farmers? Economic Research Journal, 2015, 50(3): 159-171. (in Chinese)
[1] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[2] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[3] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[4] TANG MingYao,SHEN ChongYang,CHEN ShuHuang,TANG GuangMu,LI QingJun,YAN CuiXia,GENG QingLong,FU GuoHai. Yield of Wheat and Maize and Utilization Efficiency of Nitrogen, Phosphorus and Potassium in Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(14): 2762-2774.
[5] GONG Liang,JIN DanDan,NIU ShiWei,WANG Na,XU JiaYi,SUI ShiJiang. Analysis of Chemical Fertilizer Application Reduction Potential for Paddy Rice in Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(9): 1926-1936.
[6] ZHANG WeiLi,ZHANG RenLian,JI HongJie,KOLBE H,CHEN YinJun. A Comparative Study Between China and Germany on the Control System for Agricultural Source Pollution [J]. Scientia Agricultura Sinica, 2020, 53(5): 965-976.
[7] LI TingLiang,WANG YuFeng,WANG JiaHao,LI Li,XIE JunYu,LI LiNa,HUANG XiaoLei,XIE YingHe. Nutrient Resource Quantity from Main Grain Crop Straw Incorporation and Its Enlightenment on Chemical Fertilizer Reduction in Wheat Production in China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4835-4854.
[8] ZHANG QiRu,XIE YingHe,LI TingLiang,LIU Kai,JIANG LiWei,CAO Jing,SHAO JingLin. Effects of Organic Fertilizers Replacing Chemical Fertilizers on Yield, Nutrient Use Efficiency, Economic and Environmental Benefits of Dryland Wheat [J]. Scientia Agricultura Sinica, 2020, 53(23): 4866-4878.
[9] ZHANG WeiLi,KOLBE H,ZHANG RenLian,JI HongJie. Soil Organic Carbon Management and Farmland Organic Matter Balance Method [J]. Scientia Agricultura Sinica, 2020, 53(2): 332-345.
[10] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
[11] YaJing XI,JunYu WANG,YinKun LI,XuePing WU,XiaoXiu LI,BiSheng WANG,ShengPing LI,XiaoJun SONG,CaiCai LIU. Effects of Drip Irrigation Water and Fertilizer Integration Combined with Organic Fertilizers on Soil N2O Emission and Enzyme Activity [J]. Scientia Agricultura Sinica, 2019, 52(20): 3611-3624.
[12] QIU ShaoJun, LI Ning, HE Ping, WEI Dan, JIN Liang, ZHAO ShiCheng, XU XinPeng, ZHOU Wei. Nutrients Use Efficiency Change of Chemical Fertilizers for Spring Maize in a Typical Black Soil [J]. Scientia Agricultura Sinica, 2019, 52(16): 2824-2834.
[13] YANG QingLong, LIU Peng, DONG ShuTing, ZHANG JiWang, ZHAO Bin, LI RongFa, REN Hao, REN Han, HAN XiangFei. Effects of Combined Application of Manure and Chemical Fertilizers on Loss of Gaseous Nitrogen and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2018, 51(13): 2476-2488.
[14] LIU KaiLou, ZHANG HuiMin, HAN TianFu, ZHOU LiJun, LI DaMing, HU ZhiHua, HUANG QingHai, YE HuiCai, XU XiaoLin, HU HuiWen. Effects of Long-Term Application of Chemical and Organic Fertilizers on Root Biomass and Nutrient in Double Cropping Rice System [J]. Scientia Agricultura Sinica, 2017, 50(18): 3540-3547.
[15] ZHOU Guo-peng, CAO Wei-dong, BAI Jin-shun, NIE jun, XU Chang-xu, ZENG Nao-hua, GAO Song-juan, WANG Yan-qiu, Shimizu Katsuyoshi. Effects of Different Fertilization Levels on Soil Organic Matter and Dissolved Organic Matter in Two Paddy Soils After Multi-Years’ Rotation of Chinese Milk Vetch and Double-Cropping Rice [J]. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!