Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (23): 4575-4590.doi: 10.3864/j.issn.0578-1752.2018.23.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Analysis of Differentially Expressed Circular RNAs and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut

GUO Rui(),CHEN HuaZhi(),XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,DU Yu,WANG HaiPeng,GENG SiHai,ZHOU DingDing,LIU SiYa,CHEN DaFu()   

  1. College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2018-07-16 Accepted:2018-09-10 Online:2018-12-01 Published:2018-12-12

Abstract:

【Objective】Circular RNA (circRNA) plays a primary role in alternative splicing, transcription regulation and expression regulation of parental gene. The objective of this study is to investigate the profile expression of circRNAs and differentially expressed circRNAs (DEcircRNAs) during the developmental process of the midguts of Apis mellifera ligustica workers, and to explore the role of DEcircRNAs in the development of midgut at the transcriptional level. 【Method】 On basis of the whole transcriptome data from 7- and 10-day-old worker’s midguts of A. m. ligustica (Am7 and Am10), find_circ software was used to predict circRNAs based on the filtered sequencing data. The circRNA expression level was normalized by RPM algorithm. Differential expression analysis for circRNAs was conducted via DEGseq software following standards fold change≥2.0, P<0.05 and false discovery rate (FDR) <0.05. Source genes of DEcircRNAs were annotated to GO and KEGG databases to gain function and pathway annotations by using BLAST. DEcircRNAs-miRNAs and DEcircRNAs-miRNAs-mRNAs networks were predicted with TargetFinder software and visualized using Cytoscape v.3.2.1 software. RT-qPCR was conducted to verify the reliability of sequencing data.【Result】 On average, 19 616 356 anchors reads were obtained from each A. m. ligustica worker’s midgut sample. Pearson correlations between different biological repeats within Am7 and Am10 groups were ≥0.950. In total, 256 DEcircRNAs including 105 up-regulated circRNAs and 151 down-regulated circRNAs were predicted. Novel_circ_009675 and novel_circ_013879 were highly expressed in Am7 and Am10, respectively. Source genes of DEcircRNAs could be annotated to 32 GO terms including binding, single-organism process and cellular process, among them 35, 35 and 7 source genes were involved in catalytic activity, metabolic process and stress response. Additionally, these source genes could be annotated to 35 KEGG pathways, in which 5, 5 and 4 source genes were associated with Hippo signaling pathway, endocytosis and phagosome, respectively; further investigation showed that 1, 2 and 2 source genes could be annotated to material metabolisms such as phosphoinositol metabolism, starch and sucrose metabolism and galactose metabolism; 5, 4, 3, 1 and 1 source genes could be annotated to immune signaling pathways including endocytosis, phagosome, lysosome, ubiquitin-mediated proteolysis and MAPK signaling pathway, respectively. These results suggested that the corresponding DEcircRNA was involved in the development, metabolism and immune defense of the midgut of A. m. ligustica. DEcircRNA-miRNA regulation network analysis showed that 141 DEcircRNAs could link to 107 miRNAs, most of these DEcircRNAs could only bind to 1-2 miRNAs, but novel_circ_011577 and novel_circ_010719 could respectively bind to 32 and 28 miRNAs. In addition, the number of DEcircRNAs combined with mir-136-y, ame-miR-6001-3p and mir-136-y was the highest (15, 14 and 14, respectively), which indicated that the corresponding DEcircRNA could play roles during the developmental process of A. m. ligustica worker’s midgut as competing endogenous RNAs. Furthermore, DEcircRNAs-ame-miR-6001-3p-mRNA network was constructed and analyzed, and the result indicated that 14 DEcircRNAs could jointly link to ame-miR-6001-3p, implying they were likely to indirectly regulate division and differentiation of stem cells in A. m. ligustica worker’s midgut via regulation of ame-miR-6001-3p. Six DEcircRNAs were randomly selected for RT-qPCR assay, the result showed the alteration trend of expression levels of 5 DEcircRNAs was consistent with that of the sequencing data, which proved the reliability of trancriptome data.【Conclusion】Through the deep investigation of DEcircRNAs during the developmental process of A. m. ligustica worker’s midgut, the expression profile and differential expression information of circRNAs in the development of midgut of worker bee were provided, and the role of DEcircRNAs in the development of midgut was revealed. It provides a basis for the screening and functional study of key circRNAs associated with the development of the midgut.

Key words: Apis mellifera ligustica, midgut, circRNAs, regulation network, development

Table 1

Primer information of RT-qPCR validation"

引物名称Primer name 引物序列Primer sequence
Novel_circ_005547-F TCTGCTACTCAAATGGAGGG
Novel_circ_005547-R CCCACTGTCTCTCTTCTAAGGA
Novel_circ_014049-F GGAAGGAAGGAAGTAGCGA
Novel_circ_014049-R CACGAACACCACCCAATA
Novel_circ_002507-F ATTTCCTTGGGCATAGCC
Novel_circ_002507-R CTCGGTCAAACCATACACC
Novel_circ_012440-F AGTCTGTTCGGTAATCCCG
Novel_circ_012440-R CTCACCTGATACTTCACCTTTG
Novel_circ_001915-F CATCATCTCCGAAACCGA
Novel_circ_001915-R TTGAGGTGGCTGACTTGA
Actin-F CACTCCTGCTATGTATGTCGC
Actin-R GGCAAAGCGTATCCTTCA

Fig. 1

Pearson correlations between different biological repeats within each A. m. ligustica worker’s midgut sample"

Table 2

Summary of mapping information of unmapped clean reads in ribosome database in reference genome"

样品
Sample
短序列读段
Anchors reads
比对上的短序列读段
Mapped anchors reads
比对率
Mapping ratio (%)
Am7-1 236400908 19006601 8.04
Am7-2 168420472 19873468 11.80
Am7-3 136779122 17502228 12.80
Am10-1 195020440 22441139 11.51
Am10-2 184091234 21109367 11.47
Am10-3 168790774 17765330 10.53

Table 3

Top 10 circRNAs with the highest expression level in Am7 samples"

CircRNA名称
Name of circRNAs
RPM值
RPM value
来源基因ID
ID of source gene
长度
Length (bp)
环化类型
Type of circularization
novel_circ_003183 45581.85 410805 552 annot_exons
novel_circ_010717 33244.11 413053 956 annot_exons
novel_circ_012530 21253.62 725393 1190 one_exon
novel_circ_000476 15898.09 552294 1742 annot_exons
novel_circ_011750 14352.44 410379 613 antisense
novel_circ_011749 14094.35 410379 613 antisense
novel_circ_000896 12421 100576586 1362 annot_exons
novel_circ_006484 9348.5 413332 419 annot_exons
novel_circ_009675 7112.647 408996 404 annot_exons
novel_circ_012115 6698.064 724592 727 annot_exons

Table 4

Top 10 circRNAs with the highest expression level in Am10 samples"

CircRNA名称
Name of circRNAs
RPM值
RPM value
来源基因ID
ID of source gene
长度
Length (bp)
环化类型
Type of circularization
novel_circ_003183 50507.89 410805 552 annot_exons
novel_circ_010717 39732.13 413053 956 annot_exons
novel_circ_012530 23025.9 725393 1190 one_exon
novel_circ_000896 17755.41 100576586 1362 annot_exons
novel_circ_000476 17621.29 552294 1742 annot_exons
novel_circ_011750 13241.09 410379 613 antisense
novel_circ_011749 12729.28 410379 613 antisense
novel_circ_006484 9038.38 413332 419 annot_exons
novel_circ_013879 7982.833 408521 1219 exon_intron
novel_circ_012115 7316.428 724592 727 annot_exons

Fig. 2

Expression pattern of circRNAs in the developmental process of A. m. ligustica worker’s midgut"

Fig. 3

GO database annotations of DEcircRNAs’ source genes"

Fig. 4

KEGG database annotations of DEcircRNAs’ source genes The size of the circle indicates the number of enriched genes in a certain pathway, and the larger the circle, the more the number of genes; the color of the circle indicates the significance of enriched genes in a certain pathway, and the redder the color, the higher the significance"

Fig. 5

Overview map of Hippo signaling pathway and endocytosis Red boxes indicate DEcircRNAs’ source genes annotated in certain pathway"

Fig. 6

DEcircRNAs-miRNAs regulation networks in A. m. ligustica worker’s midgut"

Fig. 7

DEcircRNAs-ame-miR-6001-3p-mRNAs regulation networks in A. m. ligustica worker’s midgut"

Fig. 8

RT-qPCR validation of DEcircRNAs A: Novel_circ_005547; B: Novel_circ_012440; C: Novel_circ_014049; D: Novel_circ_001915; E: Novel_circ_002507"

[1] PARK D, JUNG J W, CHOI B S, JAYAKODI M, LEE J, LIM J, YU Y, CHOI Y S, LEE M L, PARK Y, CHOI I Y, YANG T J, EDWARDS O R, NAH G . Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics, 2015,16:1.
doi: 10.1186/1471-2164-16-1 pmid: 4326529
[2] National Research Council. Status of Pollinators in North America. The National Academies Press, 2006.
[3] 周冰峰 . 蜜蜂饲养管理学. 厦门: 厦门大学出版社, 2002.
ZHOU B F. Feeding and Management of Honeybee. Xiamen: Xiamen University Publishing Company, 2002. ( in Chinese)
[4] MENG S J, ZHOU H C, FENG Z Y, XU Z H, TANG Y, LI P Y, WU M H . CircRNA: Functions and properties of a novel potential biomarker for cancer. Molecular Cancer, 2017,16:94.
doi: 10.1186/s12943-017-0663-2 pmid: 28535767
[5] HE J, XIE Q C, XU H L, LI J T, LI Y S . Circular RNAs and cancer. Cancer Letters, 2017,396:138-144.
doi: 10.1016/j.canlet.2017.03.027
[6] QU S B, YANG X S, LI X L, WANG J L, GAO Y, SHANG R Z, SUN W, DOU K F, LI H M . Circular RNA: A new star of noncoding RNAs. Cancer Letters, 2015,365(2):141-148.
doi: 10.1016/j.canlet.2015.06.003 pmid: 26052092
[7] ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, IVANOV A, BARTOK O, HANAN M, EVANTAL N, MEMCZAK S, RAJEWSKY N, KADENER S . CircRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 2014,56(1):55-66.
doi: 10.1016/j.molcel.2014.08.019
[8] KOS A, DIJKEMA R, ARNBERG A C, VAN DER MEIDE P H, SCHELLEKENS H . The hepatitis delta (delta) virus possesses a circular RNA. Nature, 1986,323(6088):558-560.
doi: 10.1038/323558a0
[9] PERKEL J M . Assume nothing: The tale of circular RNA. Biotechniques, 2013,55(2):55-57.
doi: 10.2144/000114061 pmid: 23931592
[10] JECK W R, SORRENTINO J A, WANG K, SLEVIN M K, BURD C E, LIU J, MARZLUFF W F, SHARPLESS N E . Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013,19(2):141-157.
doi: 10.1261/rna.035667.112
[11] MEMCZAK S, JENS M, ELEFSINIOTI A, TORTI F, KRUEGER J, RYBAK A, MAIER L, MACKOWIAK S D, GREGERSEN L H, MUNSCHAUER M, LOEWER A, ZIEBOLD U, LANDTHALER M, KOCKS C, LE NOBLE F, RAJEWSKY N . Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2014,495(7441):333-338.
[12] SALZMAN J, CHEN R E, OLSEN M N, WANG P L, BROWN P O . Cell-type specific features of circular RNA expression. PLoS Genetics, 2013,9(9):e1003777.
doi: 10.1371/journal.pgen.1003777 pmid: 24039610
[13] SHEN Y D, GUO X W, WANG W M . Identification and characterization of circular RNAs in zebrafish. FEBS Letters, 2017,591(1):213-220.
doi: 10.1002/1873-3468.12500 pmid: 27878987
[14] LU T T, CUI L L, ZHOU Y, ZHU C R, FAN D L, GONG H, ZHAO Q, ZHOU C C, ZHAO Y, LU D F, LUO J H, WANG Y C, TIAN Q L, FENG Q, HUANG T, HAN B . Transcriptome-wide investigation of circular RNAs in rice. RNA, 2015,21(12):2076-2087.
doi: 10.1261/rna.052282.115 pmid: 26464523
[15] DANAN M, SCHWARTZ S, EDELHEIT S, SOREK R . Transcriptome- wide discovery of circular RNAs in Archaea. Nucleic Acids Research, 2012,40(7):3131-3142.
doi: 10.1093/nar/gkr1009 pmid: 3326292962175459219598570825
[16] GUO R, CHEN D F, CHEN H Z, FU Z M, XIONG C L, HOU C S, ZHENG Y Z, GUO Y L, WANG H P, DU Y, DIAO Q Y . Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene, 2018, 678: DOI: 10.1016/j.gene.2018.07.076.
[17] WESTHOLM J O, MIURA P, OLSON S, SHENKER S, JOSEPH B, SANFILIPPO P, CELNIKER S E, GRAVELEY B R, LAI E C . Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Reports, 2014,9(5):1966-1980.
doi: 10.1016/j.celrep.2014.10.062 pmid: 25544350
[18] GAN H, FENG T, WU Y, LIU C, XIA Q, CHENG T . Identification of circular RNA in the Bombyx mori silk gland. Insect Biochemistry and Molecular Biology, 2017,89:97-106.
doi: 10.1016/j.ibmb.2017.09.003 pmid: 28918159
[19] CHEN X, SHI W, CHEN C . Differential circular RNAs expression in ovary during oviposition in honeybees. Genomics, 2018: doi. org/10.1016/j.ygeno.2018.03.015.
doi: 10.1016/j.ygeno.2018.03.015 pmid: 29709513
[20] DU W W, YANG W, LIU E, YANG Z, DHALIWAL P, YANG B B . Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Research, 2016,44(6):2846-2858.
doi: 10.1093/nar/gkw027 pmid: 26861625
[21] CHENG X, ZHANG L, ZHANG K, ZHANG G, HU Y, SUN X, ZHAO C, LI H, LI Y M, ZHAO J . Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Annals of the Rheumatic Diseases, 2018,77(5):770-779.
doi: 10.1136/annrheumdis-2017-212056 pmid: 29343508
[22] ZHENG Q P, BAO C Y, GUO W J, LI S Y, CHEN J, CHEN B, LUO Y T, LYU D B, LI Y, SHI G H, LIANG L H, GU J R, HE X H, HUANG S L . Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communication, 2016,7:11215.
doi: 10.1038/ncomms11215 pmid: 4823868
[23] 李兆英 . 意大利蜜蜂胚后发育过程中中肠上皮组织细胞的更替. 昆虫学报, 2011,54(10):1127-1132.
LI Z Y . Replacement of midgut epithelium in Apis mellifera ligustica(Hymenoptera: Apidae) during postembryonic development. Acta Entomologica Sinica, 2011,54(10):1127-1132. (in Chinese)
[24] 郭睿, 解彦玲, 熊翠玲, 尹伟轩, 郑燕珍, 付中明, 陈大福 . 意大利蜜蜂4、5和6日龄幼虫肠道发育过程中差异表达基因的趋势分析. 上海交通大学学报, 2018,36(4):14-21, 29.
GUO R, XIE Y L, XIONG C L, YI W X, ZHENG Y Z, FU Z M, CHEN D F . Trend analysis for differentially expressed genes in developmental process of 4-, 5- and 6-day-old larval guts of Apis mellifera ligustica. Journal of Shanghai Jiaotong University (Agricultural Science), 2018,36(4):14-21, 29. (in Chinese)
[25] 郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福 . 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的差异表达分析. 中国农业科学, 2018,51(18):3600-3613.
GUO R, GENG S H, XIONG C L, ZHENG Y Z, FU Z M, WANG H P, DU Y, TONG X Y, ZHAO H X, CHEN D F . Differential expression analysis of long non-coding RNAs during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2018,51(18):3600-3613. (in Chinese)
[26] KIM D, PERTEA G, TRAPNELL C, PIMENTEL H, KELLEY R, SALZBERG S L . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013,14(4):R36.
doi: 10.1186/gb-2013-14-4-r36 pmid: 4053844
[27] The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006,443(7114):931-949.
[28] WANG L K, FENG Z X, WANG X W, WANG X, ZHANG X G . DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010,26(1):136-138.
doi: 10.1093/bioinformatics/btp612
[29] LI Z Y, HUANG C, BAO C, CHEN L, LIN M, WANG X L, ZHONG G L, YU B, HU W C, DAI L M, ZHU P F, CHANG Z X, WU Q F, ZHAO Y, JIA Y, XU P, LIU H J, SHAN G . Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 2015,22(3):256-264.
doi: 10.1038/nsmb.2959 pmid: 25664725
[30] LANGMEAD B, TRAPNELL C, POP M, SALZBERG S L . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009,10(3):R25.
doi: 10.1186/gb-2009-10-3-r25 pmid: 2690996
[31] ALLEN E, XIE Z, GUSTAFSON A M, CARRINGTON J C . MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005,121(2):207-221.
[32] SMOOT M E, ONO K, RUSCHEINSKI J, WANG P L, IDEKER T . Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011,27(3):431-432.
doi: 10.1093/bioinformatics/btq675 pmid: 21149340
[33] HU X L, ZHU M, ZHANG X, LIU B, LIANG Z, HUANG L X, XU J, YU L, LI K, ZAR M S, XUE R Y, CAO G L, GONG C L . Identification and characterization of circular RNAs in the silkworm midgut following Bombyx mori cytoplasmic polyhedrosis virus infection. RNA Biology, 2018,15(2):292-301.
doi: 10.1080/15476286.2017.1411461 pmid: 29268657
[34] ZHANG C L, WU H, WANG Y H, ZHU S Q, LIU J Q, FANG X T, CHEN H . Circular RNA of cattle casein genes are highly expressed in bovine mammary gland. Journal of Dairy Science, 2016,99(6):4750-4760.
doi: 10.3168/jds.2015-10381 pmid: 27040791
[35] HUANG M J, SHEN Y F, MAO H G, CHEN L X, CHEN J C, GUO X L, XU N G . Circular RNA expression profiles in the porcine liver of two distinct phenotype pig breeds. Asian-Australasian Journal of Animal Sciences, 2018,31(6):812-819.
doi: 10.5713/ajas.17.0651 pmid: 29268579
[36] ZHANG X H, YAN Y M, LEI X Y, LI A J, ZHANG H M, DAI Z K, LI X J, CHEN W G, LIN W C, CHEN F, MA J Y, XIE Q M . Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens. Oncotarget, 2017,8(21):34961-34970.
doi: 10.18632/oncotarget.16442 pmid: 5471026
[37] FAN X Y, ZHANG X N, WU X L, GUO H S, HU Y Q, TANG F C, HUANG Y Y . Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biology, 2015,16:148.
doi: 10.1186/s13059-015-0706-1 pmid: 26201400
[38] HE L B, ZHANG A D, XIONG L, LI Y M, HUANG R, LIAO L J, ZHU Z Y, WANG Y P . Deep circular RNA sequencing provides insights into the mechanism underlying grass carp reovirus infection. International Journal of Molecular Sciences, 2017,18(9):1977.
doi: 10.3390/ijms18091977 pmid: 28906455
[39] DARBANI B, NOEPARVAR S, BORG S . Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Frontiers in Plant Sciences, 2016,7:776.
doi: 10.3389/fpls.2016.00776 pmid: 27375638
[40] SUN X Y, WANG L, DING J C, WANG Y R, WANG J S, ZHANG X Y, CHE Y L, LIU Z W, ZHANG X R, YE J Z, WANG J, SABLOK G, DENG Z P, ZHAO H W . Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Letters, 2016,590(20):3510-3516.
doi: 10.1002/1873-3468.12440 pmid: 27685607
[41] 刘骏武, 陈玲玲 . 线虫环状RNA分析. 计算生物学, 2015,5(2):17-28.
LIU J W, CHEN L L . Analysis of circular RNA in Caenorhabditis elegans. Hans Journal of Computational Biology, 2015,5(2):17-28. (in Chinese)
[42] 刘春蕾, 胥保华, 刘振国, 王颖, 王红芳 . 不同越冬饲料对蜜蜂中肠消化酶活性、组织发育状态以及抗氧化酶基因表达的影响. 动物营养学报, 2017,29(4):1183-1190.
doi: 10.3969/j.issn.1006-267x.2017.04.013
LIU C L, XU B H, LIU Z G, WANG Y, WANG H F . Effects of different overwintering feeds on midgut digestive enzyme activities, tissue development status and antioxidant enzyme gene expression of honeybees. Chinese Journal of Animal Nutrition, 2017,29(4):1183-1190. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2017.04.013
[43] 刘彩珍. 中华蜜蜂( Apis cerana cerana Fabricius)中肠消化酶活性的探讨[D]. 福州: 福建农林大学, 2001.
LIU C Z . Inquisition of the digestive enzyme activity in the midgut of the honeybee (Apis cerana cerana Fab.)[D]. Fuzhou: Fujian Agriculture and Forestry University, 2001. ( in Chinese)
[44] HALDER G, JOHNSON R L . Hippo signaling: growth control and beyond. Development, 2011,138(1):9-22.
doi: 10.1242/dev.045500 pmid: 21138973
[45] CAMARGO F D, GOKHALE S, JOHNNIDIS J B, FU D, BELL G W, JAENISCH R, BRUMMELKAMP T R . YAP1 increases organ size and expands undifferentiated progenitor cells. Current Biology, 2007,17(23):2054-2060.
doi: 10.1016/j.cub.2007.10.039 pmid: 17980593
[46] FEVR T, ROBINE S, LOUVARD D, HUELSKEN J . Wnt/beta- catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Molecular and Cellular Biology, 2007,27(21):7551-7559.
doi: 10.1128/MCB.01034-07 pmid: 17785439
[47] 孙晓阳, 王雁玲 . Wnt 信号通路与哺乳动物生殖. 生物化学与生物物理进展, 2003,30(2):180-184.
doi: 10.3321/j.issn:1000-3282.2003.02.004
SUN X Y, WANG Y L . Wnt signaling pathways in mammalian reproduction. Progress in Biochemistry and Biophysics, 2003,30(2):180-184. (in Chinese)
doi: 10.3321/j.issn:1000-3282.2003.02.004
[48] BARRY E R, CAMARGO F D . The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Current Opinion in Cell Biology, 2013,25(2):247-253.
doi: 10.1016/j.ceb.2012.12.006 pmid: 23312716
[49] ARONSTEIN K A, MURRAY K D . Chalkbrood disease in honey bees. Journal of Invertebrate Pathology. 2010,103(Suppl. 1):S20-S29.
doi: 10.1016/j.jip.2009.06.018 pmid: 19909969
[50] SARAAV I, SINGH S, SHARMA S . Outcome of mycobacterium tuberculosis and Toll-like receptor interaction: immune response or immune evasion? Immunology and Cell Biology, 2014,92(9):741-746.
doi: 10.1038/icb.2014.52 pmid: 24983458
[51] SALMENA L, POLISENO L, TAY Y, KATS L, PANDOLFI P P . A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell, 2011,146(3):353-358.
doi: 10.1016/j.cell.2011.07.014 pmid: 3235919
[52] DENG Y Y, ZHANG W P, SHE J Q, ZHANG L S, CHEN T, ZHOU J, YUAN Z Y . Circular RNA related to PPARγ function as ceRNA of microRNA in human acute myocardial infarction. Journal of the American College of Cardiology, 2016,68(16):C51-C52.
[53] XU X W, ZHENG B A, HU Z M, QIAN Z Y, HUANG C J, LIU X Q, WU W D . Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b. Oncotarget, 2017,8(53):91674-91683.
doi: 10.18632/oncotarget.21748 pmid: 29207676
[54] LIU Q, ZHANG X, HU X Q, DAI L H, FU X, ZHANG J Y, AO Y F . Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a mir-136 ‘Sponge’ in human cartilage degradation. Scientific Reports, 2016,6:22572.
[55] WU Y, PARTHASARATHY R, BAI H, PALLI S R . Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mechanisms of Development, 2006,123(7):530-547.
doi: 10.1016/j.mod.2006.05.005
[56] MELLO T R, ALEIXO A C, PINHEIRO D G, NUNES F M, BITONDI M M, HARTFELDER K, BARCHUK A R, SIMOES Z L . Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera). Frontiers in Genetics, 2014,5:445.
doi: 10.3389/fgene.2014.00445 pmid: 25566327
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[4] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[5] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[6] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[7] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[8] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[9] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[10] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[11] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[12] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[13] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[14] ZHANG HongCheng,HU YaJie,YANG JianChang,DAI QiGen,HUO ZhongYang,XU Ke,WEI HaiYan,GAO Hui,GUO BaoWei,XING ZhiPeng,HU Qun. Development and Prospect of Rice Cultivation in China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321.
[15] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!