Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (18): 3470-3485.doi: 10.3864/j.issn.0578-1752.2018.18.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Reduction of Plant Height in Winter Wheat and Its Relationship with Grain Yield Under Late Frost Stress

YongFeng WU1(), Xin HU2, DeChao REN2, Ping SHI1, SongCai YOU1()   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, Ministry of Agriculture, Beijing 100081
    2Wheat Research Institute, Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, Henan
  • Received:2018-03-23 Accepted:2018-06-19 Online:2018-09-16 Published:2018-09-16

Abstract:

【Objective】 The objective of this study was to explore the effects of late frost stress on plant height and its components in winter wheat, and to clarify the characteristics of plant height reduction and its relationship with internode length, ear length and grain yield, in order to provide a basis for establishing the evaluation index of late frost damage. 【Method】By using two frost simulation means based on the Cold Climate Chamber and the Field Movable Climate Chamber, six pot experiments and three plots experiments were carried out with the developmental progresses (floret primordia differentiation (FPD), pistil and stamen primordia differentiation (PSPD), anther connective tissue formation (ACTF), tetrad formation (TF) and heading phase) of young ear and the subfreezing treatment temperatures (-1 °C, -3 °C, -5 °C, -7 °C, -9 °C and -11 °C) as the gradients. Culm injury was investigated after each frosting treatment, and plant height and its components, and grain yield were measured at maturity. Variance analysis, regression function fitting and test method for sudden change were used to study the rule of plant height reduction, the contribution of each component to plant height, and the regression relationship of plant height and grain yield. 【Result】 (1) In the stages of PSPD to late ACTF, plant height generally showed a decreasing trend with the decrease of treatment temperature. When the treatment temperature was lower than -5℃ or so, a mutation began, and there were certain differences between individual plants and varieties. At the same treatment temperature, the greatest decline in plant height occurred in the late ACTF stage. (2) In the stages of PSPD, early ACTF and late ACTF, fourth internode length from the top (FIL), antepenultimate internode length (AIL), penultimate internode length (PIL) and ear length (EL) all showed shortening trends in different degrees under the frost stress. In these periods, the key two internodes contributing to plant height were FIL and AIL, AIL and PIL, and PIL and FIL, respectively, that showed a strongly significant correlation (P<0.001) with plant height. Correspondingly, plant height significantly decreased. (3) The regression curves between plant height and kernel number per ear, 1 000-kernel weight, and yield per plant were well fitted by the power function models. The reduction in yield per plant showed a trend from the rapid to the slow as plant height decreased. When yield per plant was reduced to 1.5 g or less because of the further frost stress, it became relatively stable as plant height continued to decrease, also, kernel number per ear did not change significantly any more at that time. 【Conclusion】 Under the simulated late frost stress, a significantly shortening trend occurred only in the imminent or elongated internodes and young ear, but not in the end of elongation. When the shortening internodes were consistent with the internodes that mainly contributed to the plant height, plant height significantly decreased. Using the shortening feature of the internodes, and the power function model between plant height and yield per plant, a new approach could be provided for the risk assessment of plant lodging in late growth and yield loss of winter wheat affected by late frost.

Key words: winter wheat, late frost stress, developmental progress, plant height, length of internode and ear, grain yield

Table 1

Relevant elements of late frost simulation test"

晚霜冻模拟手段
Simulating method of late frost
试验年份
Experimental year
冬小麦品种
Winter wheat varieties
种植方式
Planting pattern
处理温度
Treatment temperature
低温室模拟
Cold Climate Chamber simulating
2015-2016 周麦22 ZM22 盆栽种植
Pot planting
-1℃、-3℃、-5℃、-7℃、-9℃、-11℃
田间可移动式霜箱模拟
Field Movable Climate Chamber simulating
2011-2012

2013-2014
豫麦18、周麦18和偃展4110
YM18, ZM18 and YZ4110
周麦22 ZM22
小区种植
Plot planting
-1℃、-3℃、-5℃、-7℃、-9℃

Table 2

Design of decreasing-temperature treatment based on Cold Climate Chamber"

试验
Experiment
处理日期
Treatment date
处理温度及时间间隔
Treatment temperature and time interval
主茎幼穗分化阶段
Differentiation stage of young ear in the main stem
试验1 Exp.1 03-20-03-22, 2016 -11℃: 12:00-18:00; -9℃: 18:30-00:30; -7℃: 01:20-07:20; -5℃: 09:00-15:00; -3℃: 15:30-21:30; -1℃: 22:00-04:00 小花原基分化期
Floret primordia differentiation phase
试验2 Exp.2 03-25-03-27, 2016 -11℃: 12:30-18:30; -9℃: 18:30-00:30; -7℃: 01:00-07:00; -5℃: 08:30-14:30; -3℃: 14:30-20:30; -1℃: 21:00-03:00 雌雄蕊原基分化期
Pistil and stamen primordia differentiation phase
试验3 Exp.3 03-30-04-01, 2016 -11℃: 21:30-03:30; -9℃: 15:30-21:30; -7℃: 09:00-15:00; -5℃: 16:00-22:00; -3℃: 22:30-04:30; -1℃: 10:00-16:00 药隔形成前期
Early anther connective tissue formation phase
试验4 Exp.4 04-05-04-07, 2016 -11℃: 12:30-18:30; -9℃: 19:30-01:30; -7℃: 02:00-08:00; -5℃: 09:00-15:00; -3℃: 19:00-01:00; -1℃: 01:00-07:00 药隔形成后期
Late anther connective tissue formation phase
试验5 Exp.5 04-10-04-12, 2016 -9℃: 19:00-01:00; -7℃: 01:00-07:00; -5℃: 12:00-18:00; -3℃: 19:00-01:00; -1℃: 01:00-07:00 四分体时期
Tetrad formation phase
试验6 Exp.6 04-15-04-16, 2016 -9℃: 09:00-15:00; -7℃: 17:00-23:00; -5℃: 23:00-05:00; -3℃: 10:30-16:30; -1℃: 16:30-22:30 抽穗期
Heading phase

Table 3

Design of decreasing-temperature treatment based on Field Movable Climate Chamber"

试验
Experiment
处理日期
Treatment date
处理温度及时间间隔
Treatment temperature and time interval
主茎幼穗分化阶段
Differentiation stage of young ear in the main stem
试验7 Exp.7 03-30-03-31, 2012 -1℃: 6:30 - 12:30; -3℃: 12:30 - 18:30; -5℃: 18:30 - 0:30; -7℃: 0:30 - 6:30; -9℃: 6:30 - 12:30 药隔形成后期
Late anther connective tissue formation phase
试验8 Exp.8 03-20-03-22, 2014 -9℃: 17:20 - 01:20; -7℃: 01:20 - 09:20; -5℃: 09:20 - 17:20; -3℃: 17:20 - 01:20; -1℃: 01:20 - 09:20 雌雄蕊原基分化期
Pistil and stamen primordia differentiation phase
试验9 Exp.9 04-01-04-02, 2014 -9℃: 17:20 - 23:20; -7℃: 23:20 - 05:20; -5℃: 05:20 - 11:20; -3℃: 11:20 - 17:20; -1℃: 17:20 - 23:20 四分体时期
Tetrad formation phase

Table 4

Sample size of plant height and its components data"

试验
Experiment
品种
Cultivar
处理
Treatment
对照
CK
试验
Experiment
品种
Cultivar
处理
Treatment
对照
CK
试验1 Exp.1 周麦22 ZM22 136 11 试验7 Exp.7 豫麦18 YM18 50 10
试验2 Exp.2 128 10 周麦18 ZM18 49 9
试验3 Exp.3 124 11 偃展4110 YZ4110 48 10
试验4 Exp.4 119 11 试验8 Exp.8 周麦22 ZM22 142 29
试验5 Exp.5 132 11 试验9 Exp.9 周麦22 ZM22 141 29
试验6 Exp.6 135 9

Fig. 1

Effect of late frost stress on plant height based on the Cold Climate Chamber simulation A-F represent Exp.1-Exp.6. Error bar represents the 50-time coefficient of variation. Dashed line indicates the linear fitting on plant height with the decreasing treatment temperature. Lowercase letter indicates the difference of plant height among treatment temperatures under the significance level of 0.05, the same as Fig. 2, Fig. 5 and Fig. 6"

Fig. 2

Effect of late frost stress on plant height based on the Field Movable Climate Chamber simulation G, H and I represent Exp.8, Exp.7 and Exp.9, and H-1, H-2 and H-3 represent cultivars Yumai18, Zhoumai18 and Yanzhan4110, respectively. Error bar represents the 50-time coefficient of variation"

Fig. 3

M-K test for sudden change of plant height under late frost stress simulated by Cold Climate Chamber B, C and D represent Exp.2, Exp.3 and Exp.4, respectively"

Fig. 4

M-K test for sudden change of plant height under late frost stress simulated by Field Movable Climate Chamber G and H represent Exp.8 and Exp.7, and H-1, H-2 and H-3 represent cultivars Yumai18, Zhoumai18 and Yanzhan4110, respectively"

Fig. 5

Effect of late frost stress on plant height’s components based on the Cold Climate Chamber simulation A-F represent Exp.1-Exp.6. Error bar represents the 10-time coefficient of variation"

Fig. 6

Effect of late frost stress on plant height’s components based on the Field Movable Climate Chamber simulation G, H and I represent Exp.8, Exp.7 and Exp.9, and H-1, H-2 and H-3 represent cultivars Yumai18, Zhoumai18 and Yanzhan4110, respectively. Error bar represents the 10-time coefficient of variation"

Table 5

Correlation coefficient of plant height’s components and treatment temperature"

试验 Experiment 穗长 EL 穗下节间长 PL 倒二节间长 PIL 倒三节间长 AIL 倒四节间长 FIL
试验1 Exp.1 0.080 -0.175* -0.112 0.100 0.261**
试验2 Exp.2 0.339*** -0.127 0.181* 0.308*** 0.114
试验3 Exp.3 0.270** 0.132 0.323*** 0.139 0.296***
试验4 Exp.4 0.472*** -0.036 0.406*** 0.259** 0.626***
试验5 Exp.5 -0.139 -0.249** 0.149 0.297*** 0.201*
试验6 Exp.6 -0.186* 0.175* -0.073 0.047 -0.294***

Table 6

Correlation coefficient of plant height and its components under late frost stress"

株高构成因素
PH’s component
试验1
Exp.1
试验2
Exp.2
试验3
Exp.3
试验4
Exp.4
试验5
Exp.5
试验6
Exp.6
试验7 Exp.7 试验8
Exp.8
试验9
Exp.9
豫麦18 YM 18 周麦18 ZM18 偃展4110 YZ4110
穗长 EL 0.315*** 0.422*** 0.381*** 0.806*** 0.433*** 0.392*** 0.790*** 0.525*** 0.767*** 0.404*** 0.189*
穗下节间长 PL -0.225** -0.321*** 0.116 0.416*** 0.160 0.183* 0.841*** 0.560*** 0.744*** 0.009 0.404***
倒二节间长 PIL 0.724*** 0.729*** 0.820*** 0.886*** 0.770*** 0.831*** 0.441** 0.845*** 0.864*** 0.521*** 0.783***
倒三节间长 AIL 0.748*** 0.804*** 0.737*** 0.727*** 0.555*** 0.639***
倒四节间长 FIL 0.597*** 0.786*** 0.679*** 0.742*** 0.562*** 0.504***

Table 7

Direct path coefficients of plant height’s components based on stepwise regression model"

试验
Experiment
入选自变量的直接通径系数 Direct path coefficient of entered independent variable 显著性水平
Significant level (P)
穗长 EL 穗下节间长 PL 倒二节间长 PIL 倒三节间长 AIL 倒四节间长 FIL
试验1 Exp.1 0.459 0.483 < 0.001
试验2 Exp.2 0.116 0.297 0.252 0.401 0.529 < 0.001
试验3 Exp.3 0.116 0.202 0.424 0.488 0.172 < 0.001
试验4 Exp.4 0.245 0.132 0.426 0.251 0.304 < 0.001
试验5 Exp.5 0.176 0.270 0.534 0.183 0.362 < 0.001
试验6 Exp.6 0.079 0.261 0.571 0.186 0.329 < 0.001

Fig. 7

Power function relationship between plant height and kernel number per ear, yield per plant, and 1000-kernel weight Black solid line presents a fitting curve based on the power function, and n is the sample size"

[1] ZHANG N, FAN X L, CUI F, ZHAO C H, ZHANG W, ZHAO X Q, YANG L J, PAN R Q, CHEN M, HAN J, JI J, LIU D C, ZHAO Z W, TONG Y P, ZHANG A M, WANG T, LI J M.Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the OTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 2017, 130(6): 1235-1252.
[2] 李春燕, 杨景, 张玉雪, 姚梦浩, 朱新开, 郭文善. 小麦分蘖期冻害后增施恢复肥的产量挽回效应及其生理机制. 中国农业科学, 2017, 50(10): 1781-1791.
doi: 10.3864/j.issn.0578-1752.2017.10.004
LI C Y, YANG J, ZHANG Y X, YAO M H, ZHU X K, GUO W S.Retrieval effects of remedial fertilizer after freeze injury on wheat yield and its mechanism at tillering stage.Scientia Agricultura Sinica, 2017, 50(10): 1781-1791. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.10.004
[3] FOWLER D B, N’DIAYE A, LAUDENCIA-CHINGCUANCO D, POZNIAK C J. Quantitative trait loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.). PLoS ONE, 2016, 11(3): e0152185.
[4] WHALEY J M, KIRBY E J M, SPINK J H, FOULKES M J, SPARKES D L. Frost damage to winter wheat in the UK: The effect of plant population density.European Journal of Agronomy, 2004, 21(1): 105-115.
doi: 10.1016/S1161-0301(03)00090-X
[5] MAHFOOZI S, LIMIN A E, AHAKPAZ F, FOWLER D B.Phenological development and expression of freezing resistance in spring and winter wheat under field conditions in northwest Iran.Field Crops Research, 2006, 97(2): 182-187.
doi: 10.1016/j.fcr.2005.09.012
[6] WU Y F, ZHONG X L, HU X, REN D C, LÜ G H, WEI C Y, SONG J Q.Frost affects grain yield components in winter wheat.New Zealand Journal of Crop and Horticultural Science, 2014, 42(3): 194-204.
doi: 10.1080/01140671.2014.887588
[7] 胡新, 任德超, 倪永静, 黄建英, 宋吉青, 武永峰. 冬小麦籽粒产量及其构成要素随晚霜冻害变化规律研究. 中国农业气象, 2014, 35(5): 575-580.
doi: 10.3969/j.issn.1000-6362.2014.05.015
HU X, REN D C, NI Y J, HUANG J Y, SONG J Q, WU Y F.Impacts of late frost on grain yield and its components of winter wheat.Chinese Journal of Agrometeorology, 2014, 35(5): 575-580. (in Chinese)
doi: 10.3969/j.issn.1000-6362.2014.05.015
[8] ZHANG J N, HAO C Y, REN Q, CHANG X P, LIU G R, JING R L.Association mapping of dynamic developmental plant height in common wheat.Planta, 2011, 234(5): 891-902.
doi: 10.1007/s00425-011-1434-8 pmid: 21647605
[9] WOODRUFF D, DOUGLAS N, FRENCH V.Frost Damage in Winter Crops, Crop Link. Queensland,Brisbane: Department of Primary Industries, 1997.
[10] CROMEY M G, WRIGHT D S C, BODDINGTON H J. Effects of frost during grain filling on wheat yield and grain structure.New Zealand Journal of Crop and Horticultural Science, 1998, 26(4): 279-290.
doi: 10.1080/01140671.1998.9514065
[11] 武永峰, 胡新, 钟秀丽, 吕国华, 任德超, 宋吉青. 农田尺度下冬小麦晚霜冻害空间差异及原因分析. 中国农业科学, 2014, 47(21): 4246-4256.
U Y F, HU X, ZHONG X L, LÜ G H, REN D C, SONG J Q. Study on spatial differences of late frost injury to winter wheat and its reasons at field scale.Scientia Agricultura Sinica, 2014, 47(21): 4246-4256. (in Chinese)
[12] SHROYER J P, MIKESELL M E, PAULSEN G M.Spring Freeze Injury to Kansas Wheat. Manhattan: Kansas State University, 1995.
[13] FREDERIKS T M, CHRISTOPHER J T, FLETCHER S E H, BORRELL A K. Post head-emergence frost resistance of barley genotypes in the northern grain region of Australia. Crop & Pasture Science, 2011, 62(9): 736-745.
[14] FREDERIKS T M, CHRISTOPHER J T, SUTHERLAND M W, BORRELL A K.Post-head-emergence frost in wheat and barley: Defining the problem, assessing the damage, and identifying resistance. Journal of Experimental Botany, 2015, 66(12): 3487-3498.
doi: 10.1093/jxb/erv088 pmid: 25873656
[15] 任德超, 胡新, 陈丹丹, 张建涛, 倪永静, 刘红杰, 黄绍华, 李国强. 不同低温处理对小麦光合特性和产量性状的影响. 中国农学通报, 2016, 32(21): 44-50.
REN D C, HU X, CHEN D D, ZHANG J T, NI Y J, LIU H J, HUANG S H, LI G Q.Effects of different low temperature treatments on photosynthetic characteristics and yield traits of wheat. Chinese Agricultural Science Bulletin, 2016, 32(21): 44-50. (in Chinese)
[16] 冯玉香, 何维勋, 孙忠富, 钟秀丽. 我国冬小麦霜冻害的气候分析. 作物学报, 1999, 25(3): 335-340.
FENG Y X, HE W X, SUN Z F, ZHONG X L.Climatological study on frost damage of winter wheat in China. Acta Agronomica Sinica, 1999, 25(3): 335-340. (in Chinese)
[17] 张雪芬, 郑有飞, 王春乙, 陈怀亮, 任振和, 邹春辉. 冬小麦晚霜冻害时空分布与多时间尺度变化规律分析. 气象学报, 2009, 67(2): 321-330.
doi: 10.3321/j.issn:0577-6619.2009.02.015
ZHANG X F, ZHENG Y F, WANG C Y, CHEN H L, REN Z H, ZOU C H.Spatial-temporal distribution and multiple-temporal scale variation analyses of winter wheat late freezing injury. Acta Meteorologica Sinica, 2009, 67(2): 321-330. (in Chinese)
doi: 10.3321/j.issn:0577-6619.2009.02.015
[18] 武永峰, 胡新, 吕国华, 任德超, 蒋卫国, 宋吉青. 晚霜冻影响下冬小麦冠层红边参数比较. 光谱学与光谱分析, 2014, 34(8): 2190-2195.
WU Y F, HU X, LÜ G H, REN D C, JIANG W G, SONG J Q.Comparison of red edge parameters of winter wheat canopy under late frost stress.Spectroscopy and Spectral Analysis, 2014, 34(8): 2190-2195. (in Chinese)
[19] 张朝生, 章申, 张立成, 王立军. 长江水系河流沉积物重金属元素含量的计算方法研究. 环境科学学报, 1995, 15(3): 257-264.
doi: 10.1007/BF02943514
ZHANG C S, ZHANG S, ZHANG L C, WANG L J.Calculation of heavy metal contents in sediments of the Changjiang river system. Acta Scientiae Circumstantiae, 1995, 15(3): 257-264. (in Chinese)
doi: 10.1007/BF02943514
[20] 柴元方, 李义天, 李思璇, 朱博渊, 王靖宜. 长江流域近期水沙变化趋势及成因分析. 灌溉排水学报, 2017, 36(3): 94-101.
CHAI Y F, LI Y T, LI S X, ZHU B Y, WANG J Y.Analysis of recent variation trend and cause of runoff and sediment load variations in the Yangtze River Basin. Journal of Irrigation and Drainage, 2017, 36(3): 94-101. (in Chinese)
[21] 陈贵菊, 陈明丽, 王福玉, 高国良, 江涛, 尹逊利, 李根英, 宋国琦. 药隔期低温对小麦生长发育的影响. 山东农业科学, 2015, 47(2): 25-28.
CHEN G J, CHEN M L, WANG F Y, GAO G L, JIANG T, YIN X L, LI G Y, SONG G Q.Influences of low temperature in connectivum period on wheat growth and development. Shandong Agricultural Sciences, 2015, 47(2): 25-28. (in Chinese)
[22] 刘立伟. 药隔、减数分裂、开花期低温对小麦产量的影响与补救研究[D]. 扬州: 扬州大学, 2016.
LIU L W.Effects of low temperature at anther connective formation, meiosis and anthesis stages on grain yield in wheat and remedial techniques[D]. Yangzhou: Yangzhou University, 2016. (in Chinese)
[23] 靖华, 亢秀丽, 马爱平, 崔欢虎, 王娟玲, 刘建华. 晋南旱垣春季低温对不同播种期小麦冻害的影响. 中国农学通报, 2011, 27(9): 76-80.
JING H, KANG X L, MA A P, CUI H H, WANG J L, LIU J H.Effect of spring low temperature on different sowing date winter wheat frozen injury on the arid area of southern Shanxi province. Chinese Agricultural Science Bulletin, 2011, 27(9): 76-80. (in Chinese)
[24] AL-ISSAWI M, RIHAN H Z, EL-SARKASSY N, FULLER M P.Frost hardiness expression and characterisation in wheat at ear emergence.Journal of Agronomy and Crop Science, 2013, 199(1): 66-74.
doi: 10.1111/j.1439-037X.2012.00524.x
[25] FULLER M P, FULLER A M, KANIOURAS S K, CHRISTOPHERS J, FREDERICKS T.The freezing characteristics of wheat at ear emergence. European Journal of Agronomy, 2007, 26(4): 435-441.
doi: 10.1016/j.eja.2007.01.001
[26] LIVINGSTON Ⅲ D P, TUONG T D, ISLEIB T G, MURPHY J P. Differences between wheat genotypes in damage from freezing temperatures during reproductive growth. European Journal of Agronomy ,2016, 74: 164-172.
doi: 10.1016/j.eja.2015.12.002
[27] 陈广凤, 陈建省, 田纪春. 小麦株高相关性状与SNP标记全基因组关联分析. 作物学报, 2015, 41(10): 1500-1509.
doi: 10.3724/SP.J.1006.2015.01500
CHEN G F, CHEN J S, TIAN J C.Genome-wide association analysis between SNP markers and plant height related traits in wheat. Acta Agronomica Sinica, 2015, 41(10): 1500-1509. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01500
[28] 朱新开, 郭文善, 李春燕, 封超年, 彭永欣. 小麦株高及其构成指数与产量及品质的相关性. 麦类作物学报, 2009, 29(6): 1034-1038.
doi: 10.7606/j.issn.1009-1041.2009.06.017
ZHU X K, GUO W S, LI C Y, FENG C N, PENG Y X.Relationship of plant height component indexes with grain yield and quality in wheat. Journal of Triticeae Crops, 2009, 29(6): 1034-1038. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2009.06.017
[29] LIVINGSTON Ⅲ D P, TUONG T D, MURPHY J P, GUSTA L V, WILLICK I, WISNIEWSKI M E. High-definition infrared thermography of ice nucleation and propagation in wheat under natural frost conditions and controlled freezing. Planta, 2018, 247(4): 791-806.
doi: 10.1007/s00425-017-2823-4 pmid: 29224121
[30] JI H T, XIAO L J, XIA Y M, SONG H, LIU B, TANG L, CAO W X, ZHU Y, LIU L L.Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology, 2017, 243: 33-42.
doi: 10.1016/j.agrformet.2017.04.016
[31] BANATH C L, SINGLE W V.Frost injury to wheat stems and grain production. Australian Journal of Agricultural Research, 1976, 27(6): 749-753.
doi: 10.1071/ar9760749
[32] 刘凯, 邓志英, 张莹, 王芳芳, 刘佟佟, 李青芳, 邵文, 赵宾, 田纪春, 陈建省. 小麦茎秆断裂强度相关性状OTL的连锁和关联分析. 作物学报, 2017, 43(4): 483-495.
LIU K, DENG Z Y, ZHANG Y, WANG F F, LIU T T, LI Q F, SHAO W, ZHAO B, TIAN J C, CHEN J S.Linkage analysis and genome-wide association study of OTLs controlling stem-breaking- strength-related traits in wheat. Acta Agronomica Sinica, 2017, 43(4): 483-495. (in Chinese)
[33] 胡昊, 李莎莎, 华慧, 孙蒙蒙, 康娟, 夏国军, 王晨阳. 不同小麦品种主茎茎秆形态结构特征及其与倒伏的关系. 麦类作物学报, 2017, 37(10): 1343-1348.
HU H, LI S S, HUA H, SUN M M, KANG J, XIA G J, WANG C Y.Research on stalk morphological structure characteristics and its relationship between the lodging of different wheat varieties. Journal of Triticeae Crops, 2017, 37(10): 1343-1348. (in Chinese)
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[3] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[4] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[5] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[6] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[7] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[8] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[9] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[10] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[11] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[12] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[13] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[14] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[15] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!