Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (23): 4517-4529.doi: 10.3864/j.issn.0578-1752.2017.23.006

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Changes of Yield and Traits of Broomcorn Millet Cultivars in China Based on the Data from National Cultivars Regional Adaptation Test

YANG Pu, Rabia Begum Panhwar, LI Jing, GAO JinFeng, GAO XiaoLi, WANG PengKe, FENG BaiLi   

  1. College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
  • Received:2017-05-12 Online:2017-12-01 Published:2017-12-01

Abstract: 【Objective】 The changes in yield and agronomic traits of broomcorn millet cultivars were analyzed in the national cultivars regional adaptation tests made in recent 17 years. The progress of broomcorn millet improvement and the capacity of the breeding institutions in China were investigated, aimed to provide information for further genetic improvement of broomcorn millet in China. 【Method】 The multivariate regression analysis, correlation analysis and cluster analysis were employed. The phenotypical variation of the broomcorn millet cultivars in the national regional adaptation tests were analyzed from the year 1998 to 2014. The differences in traits among the cultivars that bred by different breeding institutions were compared. 【Result】 The traits altered significantly among the years from 1998 to 2014 for broomcorn millet cultivars. Yield and grain weight per plant of non-waxy millet, and the yield, grain weight and panicle length of waxy millet constantly increased over the years. In the past 17 years, the yield of non-waxy and waxy millet increased by 50% and 21%, respectively. The grain weight per plant was increased by 90% and 7%, respectively. Panicle length was increased by 19% and 29%, respectively. There were no significant alteration in growing duration, plant height, node number and grain weight. Seventeen breeding institutions from Heilongjiang, Jilin, Liaoning, Inner Mongolia, Hebei, Shanxi, Shaanxi, Gansu and Ningxia provided 65 cultivars in total for the national cultivar regional adaptation test. Of which, seven institutions provided both non-waxy and waxy cultivars, two institutions provided only the non-waxy cultivars, and eight institutions provided only the waxy cultivars. The breeding institutions from Inner Mongolia, Gansu and Ningxia contributed 55.4% of the cultivars in total. In the latest 6 years, the cultivars from these 3 regions showed excellent performance, thus the breeding institutions in these regions are the backbone of broomcorn millet breeding in China. Multivariate regression analysis on yield and agronomic traits showed that the growing duration, node number and grain weight per plant contributed 82.8% of the yield variation for the non-waxy millet, whereas in the waxy millet, the node number and grain weight per plant together determined 78.6% of the yield variation. The correlation analysis showed that in both the non-waxy and waxy millet, panicle length and grain weight per plant were significantly correlated with yield per plant, however, the correlation among other traits were different between non-waxy millet and waxy millet. The cluster analysis showed that the non-waxy cultivars were grouped into 2 categories, whereas it could be divided into 3 categories for the waxy cultivars. 【Conclusion】 The yield of non-waxy and waxy millet in China were increased steadily from 1998 to 2014, which indicated that the breeding ability of the institutions in China has increased. However, the breeding method is relatively simple and the diversity of the breeding method is low. Broomcorn millet breeders ignored the importance of the yield related traits and quality traits. As for the broomcorn millet breeding direction in the future, the cultivars with high yield, high quality, good palatability, good cooking quality, high resistant starch content, strong resistance to shattering and good adaptability for mechanized cultivation should be developed. Multiple breeding methods including the traditional breeding methods such as hybrid breeding, distant hybridization, mutation breeding, doubled haploid and polyploidy breeding technology, introducing the methodology of genome research and molecular breeding, and combining traditional breeding with modern biotechnology are the most important strategy for improving the breeding technology of broomcorn millet.

Key words: broomcorn millet, regional adaptation test, yield, agronomic traits, cultivar improvement

[1]    LU H Y, ZHANG J P, LIU K B, WU N Q, LI Y M, ZHOU K S, YE M L, ZHANG T Y, ZHANG H J, YANG X Y, SHEN L C, XU D K, LI Q. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10 000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7367-7372.
[2]    SAKAMOTO S. Origin and dispersal of common millet and foxtail millet. Japan Agricultural Research Quarterly,1987(21): 84-89.
[3]    林汝法, 柴岩, 廖琴, 孙世贤. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002.
LIN R F, CHAI Y, LIAO Q, SUN S X. Minor Grain Crops in China. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[4]    ARAKI M, NUMAOKA A, KAWASE M, FUKUNAGA K. Origin of waxy common millet, Panicum miliaceum L. in Japan. Genetic Resources and Crop Evolution, 2012, 59(7): 1303-1308.
[5]    徐冉, 张礼凤, 王彩洁, 李伟. 山东省审定大豆品种的产量、品质及株型演变. 中国油料作物学报, 2007, 29(3): 242-247.
XU R, ZHANG L F, WANG C J, LI W. Development of yield, quality and plant type released and registered summer-sowing soybean varieties in Shandong province. Chinese Journal of Oil Science, 2007, 29(3): 242-247. (in Chinese)
[6]    张立媛, 杨恒山, 王显瑞, 琦明玉, 赵敏. 10个糜子品种产量与农艺性状的灰色关联度分析. 种子, 2014, 33(11): 68-69.
ZHANG L Y, YANG H S, WANG X R, QI M Y, ZHAO M. Gray correlation analysis of yield and agronomic traits of broom millet. Seed, 2014, 33(11): 68-69. (in Chinese)
[7]    冯佰利. 杂粮市场前景好品种改良往哪走. 农家参谋, 2016(10): 56.
FENG B L. Grain market prospects are good and what is the breeding objective. Adviser of Peasant Families, 2016(10): 56. (in Chinese)
[8]    李辛村, 张恩和, 董孔军, 何继红, 杨天育. 用AMMI双标图分析糜子品种的产量稳定性及试点代表性. 中国生态农业学报, 2012, 20(4): 422-426.
LI X C, ZHANG E H, DONG K J, HE J H, YANG T Y. AMMI-Biplot analysis of yield stability and test-site representativeness of proso-millet cultivars. Chinese Journal of Eco-Agriculture, 2012, 20(4): 422-426. (in Chinese)
[9]    ZHANG P P, SONG H, KE X W, JIN X J, YIN L H, LIU Y, QU Y, SU W, FENG N J, ZHENG D F, FENG B L. GGE biplot analysis of yield stability and test location representativeness in proso millet (Panicum miliaceum L.) genotypes. Journal of Integrative Agriculture, 2016, 15(6): 1218-1227.
[10]   陆大雷, 孙世贤, 陆卫平. 国家鲜食甜玉米区域试验品种产量和品质性状分析. 中国农学通报, 2016, 32(13): 164-171.
LU D L, SUN S X, LU W P. Yield and quality of fresh sweet maize in national regional test. Chinese Agicultural Science Bulletin, 2016, 32(13): 164-171. (in Chinese)
[11]   陆大雷, 孙世贤, 陈国清, 陆卫平. 国家鲜食糯玉米区域试验品种产量和品质性状分析. 玉米科学, 2016, 24(3): 62-68,77.
LU D L, SUN S X, CHEN G Q, LU W P. Analysis of yield and quality for fresh waxy maize in national regional test. Journal of Maize Science, 2016, 24(3): 62-68,77. (in Chinese)
[12]   苏义臣, 苏桂华, 金明华, 王秀芬, 周洪亮. GGE双标图在玉米区域试验中的应用. 吉林农业科学, 2015, 40(3): 4-7.
SU Y C, SU G H, JIN M H, WANG X F, ZHOU H L. Application of GGE biplot in maize regional trail. Journal of Jilin Agricultural Science, 2015, 40(3): 4-7. (in Chinese)
[13]   文才东. 玉米品种区域试验性状分析. 农技服务, 2014, 31(7): 103.
WEN C D. Character analysis of maize varieties in regional trials. Agricultural Machinery Service, 2014, 31(7): 103. (in Chinese)
[14]   常磊, 岳云, 柴守玺, 包正育, 黄彩霞, 逄蕾, 杨长刚. 品种稳定性不同分析模型在西北小麦区域试验中应用探讨. 干旱地区农业研究, 2013, 31(2): 13-18.
CHANG L, YUE Y, CHAI S X, BAO Z Y, HUANG C X, FENG L, YANG C G. Application of different models for crop stability analysis in regional trials of wheat in northwest China. Agricultural Research in the Arid Areas, 2013, 31(2): 13-18. (in Chinese)
[15]   郭瑞林, 刘亚飞, 吴秋芳, 毛光志, 刘彦珍, 王景顺. 小麦品种区域试验四种分析方法的比较研究. 麦类作物学报, 2011, 31(4): 776-779.
GUO R L, LIU Y F, WU Q F, MAO G Z, LIU Y Z, WANG J S. Comparative study on the four analysis methods for wheat variety regional test. Journal of Triticeae Crops, 2011, 31(4): 776-779. (in Chinese)
[16]   王洁, 廖琴, 胡小军, 万建民. 北方稻区国家水稻品种区域试验精确度分析. 作物学报, 2010, 36(11): 1870-1876.
WANG J, LIAO Q, HU X J, WAN J M. Precision evaluation of rice variety regional trials in northern China. Acta Agronomica Sinica, 2010, 36(11): 1870-1876. (in Chinese)
[17]   杨福, 梁正伟, 王志春, 张军, 陈渊. 水稻耐盐碱品种(系)筛选试验与省区域试验产量性状的比较. 吉林农业大学学报, 2007, 29(6): 596-600.
YANG F, LIANG Z W, WANG Z C, ZHANG J, CHEN Y. Comparison of yield characters between screening test of saline-alkali tolerant rice varieties and regional experiment. Journal of Jilin Agricultural University, 2007, 29(6): 596-600. (in Chinese)
[18]   杨仕华, 廖琴, 谷铁城, 胡小军, 程本义. 南方稻区国家水稻品种区域试验进展及建议. 中国种业, 2009(12): 12-14.
YANG S H, LIAO Q, GU T C, HU X J, CHENG B Y. Progress and recommendations of the national rice regional trials in southern China. China Seed Industry, 2009(12): 12-14. (in Chinese)
[19]   何孟霞, 刘立峰, 李玉荣, 程增书, 徐桂真, 齐丽雅. 河北省花生区域试验各参试品系与对照品种农艺性状分析. 中国农学通报, 2008, 24(4): 192-194.
HE M X, LIU L F, LI Y R, CHENG Z S, XU G Z, QI L Y. Analysis of the agronomic traits for the tested lines and the controls of peanut regional test in Hebei province. Chinese Agricultural Science Bulletin, 2008, 24(4): 192-194. (in Chinese)
[20]   陈新军, 戚存扣, 张洁夫, 浦惠明, 胡茂龙, 高建芹, 傅寿仲. 19792007年江苏省油菜区域试验参试品种品质性状分析. 江苏农业科学, 2008, 24(5): 44-45.
CHEN X J, QI C K, ZHANG J F, PU H M, HU M L, GAO J Q, FU S Z. Quality analysis of the regional test cole varieties in Jiangsu Province, 1979-2007. Jiangsu Agricultural Science, 2008, 24(5): 44-45. (in Chinese)
[21]   库丽霞. 黄淮海糯玉米区域试验品种品质评价的分析与研究. 中国农学通报, 2009, 25(8): 127-131.
KU L X. Analysis and study of variety quality appraisement in waxy maize regional trials in Huanghuaihai Region. Chinese Agricultural Science Bulletin, 2009, 25(8): 127-131. (in Chinese)
[22]   张亚东, 阙金华, 吉健安, 朱镇, 赵凌, 陈涛, 王才林. 江苏省杂交粳稻区域试验组合的品质和抗性分析. 江苏农业学报, 2008, 24(5): 565-568.
ZHANG Y D, QUE J H, JI J A, ZHU Z, ZHAO L, CHEN T, WANG C L. Grain quality and resistance of japonica hybrid rice combination in regional trial in Jiangsu province. Jiangsu Journal of Agricultural Science, 2008, 24(5): 565-568. (in Chinese)
[23]   赵乃新, 王乐凯, 兰静, 戴常军, 李辉, 李宛, 赵琳. 我国春小麦不同生态区域品种区域试验品质现状分析. 粮食加工, 2008, 33(4): 7-10, 21.
ZHAO N X, WANG L K, LAN J, DAI C J, LI H, LI W, ZHAO L. Analysis on regional quality of spring wheat varieties in different ecological regions in China. Grain Processing, 2008, 33(4): 7-10,21. (in Chinese)
[24]   金京花, 方秀琴, 沈海波, 全成哲. 浅谈吉林省新育成水稻品种()米质分析现状. 北方水稻, 2012, 42(5): 22-24.
JIN J H, FANG X Q, SHEN H B, QUAN C Z. Current situation of rice-quality on the new rice varieties or lines in Jilin province. North Rice, 2012, 42(5): 22-24. (in Chinese)
[25]   刘玲彦, 董彩华, 程晓晖, 刘越英, 黄军艳, 刘胜毅. 2009-2012年全国区域试验冬油菜品种菌核病抗性评价. 中国油料作物学报, 2013, 35(3): 331-333,40.
LIU L Y, DONG C H, CHENG X H, LIU Y Y, HUANG J Y, LIU S Y. Evaluation of winter rapeseed cultivar resistance to sclerotinia stem rot in national regiona trials from 2009 to 2012. Chinese Journal of Oil Crop Sciences, 2013, 35(3): 331-333,40. (in Chinese)
[26]   何琳, 何艳琴, 刘业丽, 邱强, 栾怀海, 韩雪, 胡国华. 2012年北方春大豆国家区试大豆品种纯度鉴定、分子ID构建及遗传多样性分析. 中国农学通报, 2014, 30(18): 277-282.
HE L, HE Y Q, LIU Y L, QIU Q, LUAN H H, HAN X, HU G H. Purity identification, molecular ID establishment and genetic diversity analysis of soybeans attending national regional test of north spring soybean in 2012. Chinese Agricultural Science Bulletin, 2014, 30(18): 277-282. (in Chinese)
[27]   朱德峰, 庞乾林, 何秀梅. 我国历年水稻产量增长因素分析与今后的发展对策. 中国稻米, 1997(1): 3-6.
ZHU D F, PANG Q L, HE X M. Analysis of factors for increasing rice production over the years and countermeasures for future development in China. China Rice, 1997(1): 3-6. (in Chinese)
[28]   REYNOLDS M P, RAJARAM S, SAYRE K D. Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Science, 1999, 39(6): 1611-1621.
[29]   PENG S, CASSMAN K G, VIRMANI S S, SHEEHY J, KHUSH G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Science, 1999, 39(6): 1552-1559.
[30]   MORRISON M J, VOLDENG H D, COBER E R. Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agronomy Journal, 1999, 91(4): 685-689.
[31]   COOPER M, SMITH O S, GRAHAM G, ARTHUR L, FENG L Z, PODLICH D W. Genomics, genetics, and plant breeding: A private sector perspective. Crop Science, 2004, 44(6): 1907-1913.
[32]   崔世友, 吴娟娟, 陈厚存. 作物品种改良的回顾与展望. 长江大学学报(自然科学版), 2011, 8(7): 231-235.
CUI S Y, WU J J, CHEN H C. Review and prospect of crop variety improvement. Journal of Yangtze University (Natural Science Edition) , 2011, 8(7): 231-235. (in Chinese)
[33]   孙占慧, 张树林, 徐正进. 辽宁省水稻产量构成因子的相关分析. 沈阳农业大学学报, 2003, 34(1): 8-11.
SUN Z H, ZHAGN S L, XU Z J. Correlation analysis of rice yield structure in Liaoning province. Journal of Shenyang Agricultural University, 2003, 34(1): 8-11. (in Chinese)
[34]   严斧. 从国家品种区试和审定结果看我国水稻育种格局的变化与发展. 作物研究, 2012, 26(2): 176-179.
YAN F. Change and development of rice breeding pattern in China based on variety regional trial and validation. Crop Research, 2012, 26(2): 176-179. (in Chinese)
[35]   杨扬, 王凤格, 赵久然, 刘亚维. 中国玉米品种审定现状分析. 中国农业科学, 2014, 47(22): 4360-4370.
YANG Y, WANG F G, ZHAO J R, LIU Y W. Analysis of the current situation of accredited maize varieties in China. Scientia Agricultura Sinica, 2014, 47(22): 4360-4370. (in Chinese)
[36]   付亮, 蒋志凯, 李洋, 刘朝辉, 马华平. 河南省“十一五”期间省审小麦品种的品质分析. 山东农业科学, 2013, 45(7): 29-32.
FU L, JIANG Z K, LI Y, LIU Z H, MA H P. Quality analysis of wheat varieties approved in Henan province during the 11th five- year plan. Shandong Agricultural Science, 2013, 45(7): 29-32. (in Chinese)
[37]   武小金. 稻米蒸煮品质性状的遗传研究. 湖南农学院学报, 1989, 15(4): 6-10.
WU X J. Genetic studies on the cooking quality of rice. Journal of Hunan Agricultural College, 1989, 15(4): 6-10. (in Chinese)
[38]   高金锋, 刘瑞, 晁桂梅, 王鹏科, 高小丽, 冯佰利. 荞麦、糜子与玉米淀粉理化性质比较研究. 中国粮油学报, 2014, 29(10): 16-22.
GAO J F, LIU R, CHAO G M, WANG P K, GAO X L, FEGN B L. Comparative on physicochemical properties of buckwheat, broomcorn millet and maize starches. Journal of the Chinese Cereals and Oils Association, 2014, 29(10): 16-22. (in Chinese)
[39]   朱平, 孔祥礼, 包劲松. 抗性淀粉在食品中的应用及功效研究进展. 核农学报, 2015, 29(2): 327-336.
ZHU P, KONG X L, BAO J S. Current progress on the applications and health benefits of resistant starch in foods. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 327-336. (in Chinese)
[40] 宋晓燕, 杨天奎. 天然维生素E的功能及应用. 中国油脂, 2000, 25(6): 45-48.
SONG X Y, YANG T K. Function and application of natural vitamin E. China Oils and Fats, 2000, 25(6): 45-48. (in Chinese)
[41]   汪德义, 周雪, 陈敬民, 陈辉强, 陈浩, 王正清, 李文政. 水稻全程机械化品种筛选及配套关键生产环节技术集成. 中国种业, 2015(12): 55-57.
WANG D Y, ZHOU X, CHEN J M, CHEN H Q, CHEN H, WANG Z Q, LI W Z. Selection of whole mechanized rice varieties and integration of key production links. China Seed Industry, 2015, (12): 55-57. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!