Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (21): 4138-4148.doi: 10.3864/j.issn.0578-1752.2017.21.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Influence Factor Analysis of Farmland Soil Heavy Metal Based on the Geographical Detector

LI Yu1,2, HAN Ping2, REN Dong1, LUO Na2, WANG JiHua1,2   

  1. 1Computer and Information College of Three Gorges University, Yichang 443002, Hubei; 2Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
  • Received:2017-06-05 Online:2017-11-01 Published:2017-11-01

Abstract: 【Objective】To study the correlation between soil heavy metals and influencing factors and heavy metals in different soils, as well as to provide a more comprehensive auxiliary variable for soil heavy metal spatial prediction model.【Method】The spatial distributions of heavy metals Pb, Cd, As, Cr and Hg in five soils in five towns of Xiangtan County, Hunan Province were analyzed by using the geophysical model and the spatial interpolation technique. The correlation and interaction of spatial distributions of heavy metals and 6 factors, as well as that of five heavy metals, were studied.【Result】The results showed that Gross Domestic Product (GDP), the average temperature and relative humidity had a greater explanatory power to the five kinds of soil heavy metals to (PD, H values are above 0.5). Soil pH, soil type, elevation and soil heavy metals were less explanatory (PD, H values below 0.3). The soil type had the lowest explanatory power to five kinds of soil heavy metals (PD, H values were below 0.1). Among the five soil heavy metals, Cr has the strongest explanatory effect on Cd (PD, H = 0.95), and As is the least (PD, H = 0.20). The effects of average temperature, relative humidity and GDP on soil heavy metals were significantly higher than those of other Influence factors, while the difference of explanatory power between other influence factors was not significant. There are mutually reinforcing or non-linear enhancement effects between the Influence factors and between the five heavy metal elements. 【Conclusion】The spatial distribution of heavy metals in soil is the result of the interaction of multiple influence factors. Based on the geographical exploration model, the Influence factors, such as GDP, average precipitation, average temperature and relative humidity, have strong explanatory power for the spatial distribution of heavy metals of research area in soils. These influence factors can be used as the soil heavy metal space in the study area predictive model of the auxiliary variable. Geographic detector model can provide a more comprehensive analysis of various influence factors, and provide an effective basis for the establishment of soil heavy metal spatial prediction model.

Key words: geographical detector, soil heavy metal, influence factor, correlation analysis, interaction

[1]    张景雄. 空间信息的尺度、不确定性与融合. 武汉: 武汉大学出版社, 2008: 116-118.
ZHANG J X. The Scale of the Spatial Information, Uncertainty and the Fusion. Wuhan: Wuhan University Press, 2008: 116-118. (in Chinese)
[2]    张仁铎. 空间变异理论及应用. 北京: 科学出版社, 2005: 57-72.
ZHANG R D. Spatial Variation Theory and Application. Beijing: Science Press, 2005: 57-72. (in Chinese)
[3]    章清, 张海涛, 郭龙, 杜佩颖, 李林蔚, 李锐娟, 唐晓霏. 基于主成分分析的协同克里格插值模型对土壤铜含量的空间分布预测. 华中农业大学学报, 2016, 1: 60-68.
ZHANG Q, ZHANG H T, GUO L, DU P Y, LI L W, LI R J, TANG X F. Collaborative kriging interpolation model based on principal component analysis of the spatial distribution of soil Cu content prediction. Journal of Huazhong Agricultural University, 2016, 1: 60-68. (in Chinese)
[4]    郭龙, 张海涛, 陈家赢, 李锐娟, 秦聪. 基于协同克里格插值和地理加权回归模型的土壤属性空间预测比较. 土壤学报, 2012, 49(5): 1037-1042.
GUO L, ZHANG H T, CHEN J Y, LI R J, QIN C. Comparison between co-kriging model and geographically weighted regression model in spatial prediction of soil attributes. Acta Pedologica Sinica, 2012, 49(5): 1037-1042. (in Chinese)
[5]    孙波, 宋歌, 曹尧东. 丘陵区水稻Cu污染空间变异的协同克里格分析. 农业环境科学学报, 2009, 5: 865-870.
SUN B, SONG G, CAO Y D. Spatial variability of hilly rice Cu pollution collaborative kriging analysis. Agricultural Journal of Environmental Science, 2009, 5: 865-870. (in Chinese)
[6]    朱鹤, 刘家明, 陶慧, 李玏, 王润. 北京城市休闲商务区的时空分布特征与成因. 地理学报, 2015, 70(8): 1215-1228.
ZHU H, LIU J M, TAO H, LI L, WANG R. Temporal-spatial pattern and contributing factors of urban RBDs in Beijing. Acta Geographica Sinica, 2015, 70(8): 1215-1228. (in Chinese)
[7]    Wang J F, Li X H, Christakos G, LIAO Y L, ZHANG T, GU X, ZHENG X Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science, 2010, 24(1):107-127.
[8]    杨忍, 刘彦随, 龙花楼, 王洋,  张怡筠. 中国村庄空间分布特征及空间优化重组解析. 地理科学, 2016, 36(2): 170-179.
YANG R, LIU Y S, LONG H L,WANG Y, ZHANG Y Y. Chinese village space distribution characteristics and spatial optimization reorganization analysis. Journal of Geographical Science, 2016, 36(2): 170-179. (in Chinese)
[9]    周磊, 武建军, 贾瑞静, 梁念, 张凤英, 倪永, 刘明. 京津冀PM_(2.5)时空分布特征及其污染风险因素. 环境科学研究, 2016(4): 483-493.
ZHOU L, WU J J, JIA R J, LIANG N, ZHANG F Y, NI Y, LIU M. Beijing-Tianjin-Hebei PM_(2.5) in time and space distribution characteristics and its pollution risk factors. Journal of Environmental Science Research, 2016(4): 483-493. (in Chinese)
[10]   农业部环境监测总站. NY/T 395-2000 农田土壤环境质量监测技术规范[S]. 北京: 中国标准出版社, 2000.
Ministry of Agriculture Environmental Monitoring Station. NY/T 395-2000 Procedural regulations regarding the environment quality monitoring of soil [S]. Beijing: China standard press, 2000. (in Chinese)
[11]   罗娜, 陆安祥, 王纪华. 基于空间插值的土壤重金属污染评估分析系统设计与实现. 食品安全质量检测学报, 2016, 7(2): 497-504.
LUO N, LU A X, WANG J H. Based on the spatial interpolation of soil heavy metal pollution assessment analysis system design and implementation. Journal of Food Safety and Quality Testing, 2016, 7(2): 497-504.  (in Chinese)
[12]   王劲峰, 徐成东. 地理探测器:原理与展望. 地理学报, 2017, 72(1): 116-134.
WANG J F, XU C D. Geographical detector: principle and prospect. Journal of Geographical, 2017, 72(1): 116-134. (in Chinese)
[13]   HU Y, WANG J, LI X, REN D, ZHU J. Geographical detector-based risk assessment of the under-five mortality in the 2008 Wenchuan earthquake, China. Plos One ,2011, 6(6): 2592-2599.
[14]   吴堑虹, 戴塔根, 方建武, 张建新, 邢旭东, 郭定良. 长沙、株洲、湘潭三市土壤中重金属元素的来源. 地质通报, 2007, 26(11): 1453-1458.
WU Q H, DAI T G, FANG J W, ZHANG J X, XING X D, GUO D L. Changsha, Zhuzhou and Xiangtan city, the source of heavy metals in soil. Geological Bulletin, 2007, 26(11): 1453-1458. (in Chinese)
[15]   肖小平, 彭科林, 周孟辉. 城市郊区水稻土重金属污染状况调查与评价——以湘潭市郊响水乡为例. 中国生态农业学报, 2008, 16(3): 680-685.
XIAO X P, PENG K L, ZHOU M H. City suburbs paddy soil heavy metal pollution condition investigation and evaluation - A case study of Xiangshui Township in Xiangtan Suburb. Journal of Chinese Ecological Agriculture, 2008, 16(3): 680-685. (in Chinese)
[16]   刘建国. 水稻品种对土壤重金属镉铅吸收分配的差异及其机理[D]. 扬州: 扬州大学, 2004.
LIU J G. Rice varieties of soil heavy metal cadmium lead absorption differences in distribution and its mechanism[D]. Yangzhou: Yangzhou university, 2004. (in Chinese)
[17]   于佳, 刘吉平. 基于地理探测器的东北地区气温变化影响因素定量分析. 湖北农业科学, 2015, 54(19): 4682-4687.
YU J, LIU J P. Based on geographical probe temperature in northeast China influence factors of quantitative analysis. Journal of Hubei Agricultural Science, 2015, 54(19): 4682-4687. (in Chinese)
[18]   丁悦, 蔡建明, 任周鹏, 杨振山. 基于地理探测器的国家级经济技术开发区经济增长率空间分异及影响因素. 地理科学进展, 2014, 33(5): 657-666.
DING Y, CAI J M, REN Z P, YANG Z S.State-level economic and technological development zone based on geographical detector growth space differentiation and influencing factors. Journal of Geographical Science and Progress, 2014, 33(5): 657-666. (in Chinese)
[19]   徐秋蓉, 郑新奇. 一种基于地理探测器的城镇扩展影响机理分析法. 测绘学报, 2015(S1): 96-101.
XU Q R, ZHENG X Q. Based on urban expansion influence mechanism of the geographical probe analysis. Journal of Surveying and Mapping, 2015(S1): 96-101. (in Chinese)
[20]   Li F Z, ZHANG F, Li X, WANG P, LIANG J H, MEI Y T, CHENG W W, QIAN Y. Spatiotemporal patterns of the use of urban green spaces and external factors contributing to their use in central Beijing. International Journal of Environmental Research and Public Health, 2017, 14: 237.
[21]   WANG J J, MA J J, LIU J P , ZENG D J, SONG C, CAO Z D. Prevalence and risk factors of comorbidities among hypertensive patients in China. International Journal of Medical Sciences, 2017, 14(3): 201-212.
[22]   WANG Y, WANG S J, Li G D, ZHANG H G, JIN L X, SU Y X, WU K M. Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique. Applied Geography, 2017, 79 (2017): 26-36.
[23]   国家环境保护总局. 土壤环境监测技术规范: HJ/T 166-2004. 北京:中国环境科学出版社, 2004: 35-45.
The State Environmental Protection Administration.Soil Environmental Monitoring Technical Specification: HJ/T 166-2004. Beijing: China Environmental Science Press, 2004: 35-45. (in Chinese)
[24]   彭晓春, 陈志良, 董家华, 杨兵. 长株潭城市群的土壤重金属分布特征. 贵州农业科学, 2011(9): 213-216.
PENG X C, CHEN Z L, DONG J H, YANG B. The soil heavy metal distribution characteristics of Changsha-Zhuzhou-Xiangtan urban agglomeration. Journal of Guizhou Agricultural Science, 2011(9): 213-216. (in Chinese)
[25]   岳建华. 长株潭城市群土壤pH与重金属污染的研究. 中国农学通报, 2012, 28(2): 267-272.
YUE J H. Soil pH of Changsha-Zhuzhou-Xiangtan urban agglomeration and heavy metal pollution research. Chinese Agricultural Science Bulletin, 2012, 28(2): 267-272. (in Chinese)
[26]   郭雯. 湘潭市酸雨污染状况、化学组成及其防治对策. 环境科学导刊, 2007, 26(5): 63-66.
GUO W. Xiangtan acid rain pollution condition, chemical composition and its countermeasures. Journal of Environmental Science Tribune, 2007, 26(5): 63-66. (in Chinese)
[27]   钟晓兰, 周生路, 黄明丽, 赵其国. 土壤重金属的形态分布特征及其影响因素. 生态环境学报, 2009, 18(4): 1266-1273.
ZHONG X L, ZHOU S L, HUANG M L, ZHAO Q G. The configuration of soil heavy metal distribution characteristics and influencing factors. Journal of Ecological Environment, 2009, 18(4): 1266-1273. (in Chinese)
[28]   龙永珍, 戴塔根, 邹海洋. 长沙、株洲、湘潭地区土壤重金属污染现状及评价. 地球与环境, 2008, 36(3): 231-236.
LONG Y Z, DAI T G, ZOU H Y. Changsha, Zhuzhou and Xiangtan area of soil heavy metal pollution and assessment. Journal of Earth and the Environment, 2008, 36(3): 231-236. (in Chinese)
[29]   陆安祥, 王纪华, 潘瑜春, 马智宏赵春江. 小尺度农田土壤中重金属的统计分析与空间分布研究. 环境科学, 2007, 28(7): 1578-1583.
LU A X, WANG J H, PAN Y C, MA Z H, ZHAO C J. Small scale statistical analysis and spatial distribution of heavy metals in soil research. Journal of Environmental Science, 2007, 28(7): 1578-1583. (in Chinese)
[30]   罗娜, 陆安祥, 王纪华. 基于Flex和REST服务的产地重金属安全等级WebGIS系统开发——以湖南省湘潭县为例. 农产品质量与安全, 2016, 1: 67-72.
LUO N, LU A X, WANG J H. Based on Flex and REST services WebGIS system development, the origin of heavy metal security levels in Xiangtan county of Hunan province, for example. Journal of Quality and Safety of Agricultural Products, 2016, 1: 67-72. (in Chinese)
[31]   荆文龙, 杨雅萍. 中国1 km栅格年平均气候要素数据集(2000-2010年). 国家地球系统科学数据共享平台, 2014.
JING W L, YANG Y P. China 1 km grid average annual climate data sets (2000-2010). National Earth System Science Data Sharing Platform, 2014. (in Chinese)
[32]   《中国1﹕100万土地资源图》编图委员会, 中国科学院、国家计划委员.《中国1﹕100万土地资源图》. 北京: 中国人民大学出版社, 1991年.
Figure 1:1 Million Land Resources in China Compilation Committee of the Chinese Academy of Sciences, National Planning Committee Members. 1:10 00000 Map of Land Resources of the People's Republic of China. Beijing: The Chinese People's University Press, 1991. (in Chinese)
[33]   石玉林. 中国土地资源图集. 北京: 中国大地出版社, 2006.
SHI Y L. Atlas of China's Land Resources. Beijing: China Land Publishing House, 2006. (in Chinese)
[34]   王新, 梁仁禄, 周启星. Cd-Pb复合污染在土壤-水稻系统中生态效应的研究. 农村生态环境, 2001, 17: 41-44.
WANG X, LIANG R L, ZHOU Q X. Study on ecological effects of Cd-Pb combined pollution in soil-rice system. Rural Ecological Environment, 2001, 17: 41-44. (in Chinese)
[1] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[4] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[5] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[6] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[7] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[8] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[9] WANG Bing,LI HuiMin,CAO HaiQun,WANG GuiRong. Mechanisms and Applications of Plant-Herbivore-Natural Enemy Tritrophic Interactions Mediated by Volatile Organic Compounds [J]. Scientia Agricultura Sinica, 2021, 54(8): 1653-1672.
[10] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[11] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[12] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[13] YANG FengKe,HE BaoLin,DONG Bo,WANG LiMing. Effects of Black Film Mulched Ridge-Furrow Tillage on Soil Water- Fertilizer Environment and Potato Yield and Benefit Under Different Rainfall Year in Semiarid Region [J]. Scientia Agricultura Sinica, 2021, 54(20): 4312-4325.
[14] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[15] ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!