Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2523-2537.doi: 10.3864/j.issn.0578-1752.2021.12.004
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
ZHANG ZhiXing1,2(),MIN XiuMei1,SONG Guo1,CHEN Hua1,XU HaiLong1,LIN WenXiong1,2()
[1] | THOMAS D, GUTHRIDGE M, WOODCOCK J, LOPEZ A. 14-3-3 protein signaling in development and growth factor responses. Current Topics in Developmental Biology, 2005,67:285-303. |
[2] |
COBLITZ B, SHIKANO S, WU M, GABELLI S B, COCKRELL L M, SPIEKER M, HANYU Y, FU H, AMZEL L M, LI M. C-terminal recognition by 14-3-3 proteins for surface expression of membrane receptors. Journal of Biological Chemistry, 2005,280(43):36263-36272.
doi: 10.1074/jbc.M507559200 |
[3] | DENISON F C, PAUL A L, ZUPANSKA A K, FERL R J. 14-3-3 proteins in plant physiology. Seminars in Cell & Developmental Biology, 2011,22(7):720-727. |
[4] | WIILSON R S, SWATEK K N, THELEN J J. Regulation of the Regulators: Post-translational modifications, subcellular, and spatiotemporal distribution of plant 14-3-3 proteins. Frontiers in Plant Science, 2016,7:611. |
[5] |
HIMMELBACH A, YANG Y, GRILL E. Relay and control of abscisic acid signaling. Current Opinion in Plant Biology, 2003,6(5):470-479.
doi: 10.1016/S1369-5266(03)00090-6 |
[6] |
YIN Y H, VAFEADOS D, TAO Y, YOSHIDA S, ASAMI T, CHORY J. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 2005,120(2):249-259.
doi: 10.1016/j.cell.2004.11.044 |
[7] |
YAO Y, DU Y, JIANG L, LIU J Y. Interaction between ACC synthase 1 and 14-3-3 proteins in rice: a new insight. Biochemistry-Moscow, 2007,72(9):1003-1007.
doi: 10.1134/S000629790709012X |
[8] |
DIAZ C, KUSANO M, SULPICE R, ARAKI M, REDESTIG H, SAITO K, STITT M, SHIN R. Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes. BMC Systems Biology, 2011,5(1):192.
doi: 10.1186/1752-0509-5-192 |
[9] |
SWATEK K N, GRAHAM K, AGRAWAL G K, THELEN J J. The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing Arabidopsis seed. Journal of Proteome Research, 2011,10(9):4076-4087.
doi: 10.1021/pr200263m |
[10] |
DOU Y, LIU X, YIN Y, HAN S, LU Y, LIU Y, HAO D. Affinity chromatography revealed insights into unique functionality of two 14-3-3 protein species in developing maize kernels. Journal of Proteomics, 2015,114:274-286.
doi: 10.1016/j.jprot.2014.10.019 |
[11] | 宋健民, 戴双, 李豪圣, 刘爱峰, 程敦公, 楚秀生, TETLOW I J, Michael J E. 小麦胚乳 14-3-3 蛋白的表达及其淀粉体淀粉合成酶的互作. 作物学报, 2009,35(8):1445-1450. |
SONG J M, DAI S, LI H S, LIU A F, CHENG D G, CHU X S, TETLOW I J, Michael J E. Expression of a wheat endosperm 14-3-3 protein and its interactions with starch biosynthetic enzymes in amyloplasts. Acta Agronomica Sinica, 2009,35(8):1445-1450. (in Chinese) | |
[12] |
YANG J C, ZHANG J H. Grain-filling problem in 'super' rice. Journal of Experimental Botany, 2010,61(1):1-4.
doi: 10.1093/jxb/erp348 |
[13] | 康国章, 王永华, 郭天财, 朱云集, 官春云. 植物淀粉合成的调控酶. 遗传, 2006,28(1):110-116. |
KANG G Z, WANG Y H, GUO T C, ZHU Y J, GUAN C Y. Key enzymes in strach synthesis in plants. Hereditas(Beijing), 2006,28(1):110-116. (in Chinese) | |
[14] | 黄锦文, 梁康迳, 梁义元, 林文雄. 不同类型水稻籽粒灌浆过程内源激素含量变化的研究. 中国生态农业学报, 2003,11(2):11-13. |
HUANG J W, LIANG K J, LIANG Y Y, LIN W X. Changes of endogenous hormone contents during grain development in different types of rice. Chinese Journal of Eco-Agriculture, 2003,11(2):11-13. (in Chinese) | |
[15] |
ZHANG H, LI H W, YUAN L M, WANG Z Q, YANG J C, ZHANG J H. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany, 2012,63(1):215-227.
doi: 10.1093/jxb/err263 |
[16] |
YANG J C, ZHANG J H, WANG Z Q, LIU K, WANG P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany, 2006,57(1):149-160.
doi: 10.1093/jxb/erj018 |
[17] | 杨建昌, 王志琴, 朱庆森, 苏宝林. ABA 与 GA 对水稻籽粒灌浆的调控. 作物学报, 1999,25(3):341-348. |
YANG J C, WANG Z Q, ZHU Q S, SU B L. Regulation of ABA and GA to the grain filling of rice. Acta Agronomica Sinica, 1999,25(3):341-348.(in Chinese) | |
[18] | ZHANG Z X, CHEN J, LIN S S, LI Z, CHENG R H, FANG C X, CHEN H F, LIN W X. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. Plant Science, 2012,185(1):259-273. |
[19] | ZHANG Z X, ZHAO H, HUANG F L, LONG J F, SONG G, LIN W X. The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice (Oryza sativa L.). The Plant Journal, 2019,99:344-358. |
[20] | YOU C, ZHU H, XU B, HUANG W, WANG S, DING Y, LIU Z, LI G, CHEN L, DING C, TANG S. Effect of removing superior spikelets on grain filling of inferior spikelets in rice. Frontiers in Plant Science, 2016,7:1161. |
[21] |
CHEN F, LI Q, SUN L, HE Z. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Research, 2006,13:53-63.
doi: 10.1093/dnares/dsl001 |
[22] | YAO Y, DU Y, JIANG L, LIU J. Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza Sativa. Journal of Biochemistry and Molecular Biology, 2007,40(3):349-357. |
[23] |
YASHVARDHINI N, BHATTACHARYA S, CHAUDHURI S, SENGUPTA D N. Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress. Planta, 2018,247:229-253.
doi: 10.1007/s00425-017-2779-4 |
[24] |
YANG J C, ZHANG J H, WANG Z Q, ZHU Q S. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation, 2003,41:185-195.
doi: 10.1023/B:GROW.0000007503.95391.38 |
[25] |
ZHANG H, TAN G L, YANG L N, YANG J C, ZHANG J H, ZHAO B H. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiology and Biochemistry, 2009,47(3):195-204.
doi: 10.1016/j.plaphy.2008.11.012 |
[26] | 李赞堂, 王士银, 姜雯宇, 张帅, 张少斌, 徐江. 穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制. 作物学报, 2018,44(4):581-590. |
LI Z T, WANG S Y, JIANG W Y, ZHANG S, ZHANG S B, XU J. Physiological mechanisms of promoting source, sink, and grain filling by 24-epibrassinolide (EBR) applied at panicle initiation stage of rice. Acta Agronomica Sinica, 2018,44(4):581-590. (in Chinese) | |
[27] |
ALEXANDER R D, MORRIS P C. A proteomic analysis of 14-3-3 binding proteins from developing barley grains. Proteomics, 2006,6:1886-1896.
doi: 10.1002/(ISSN)1615-9861 |
[28] |
LIU J, SUN X, LIAO W, ZHANG J, LIANG J, XU W. Involvement of OsGF14b adaptation in the drought resistance of rice plants. Rice, 2019,12:82.
doi: 10.1186/s12284-019-0346-2 |
[29] |
PURWESTRI Y A, OGAKI Y, TAMAKI S, TSUJI H, SHIMAMOTO K. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant and Cell Physiology, 2009,50(3):429-438.
doi: 10.1093/pcp/pcp012 |
[30] |
MANOSALVA P M, BRUCE M, LEACH J E. Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance. The Plant Journal, 2011,68(5):777-787.
doi: 10.1111/j.1365-313X.2011.04728.x |
[31] |
YAFFE M B, RITTINGER K, VOLINIA S, CARON P R, AITKEN A, LEFFERS H, GAMBLIN S J, SMERDON S J, CANTLEY L C. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell, 1997,91(7):961-971.
doi: 10.1016/S0092-8674(00)80487-0 |
[32] |
FU H, SUBRAMANIAN R R, MASTERS S C. 14-3-3 proteins: Structure, function, and regulation. Annual Review of Pharmacology and Toxicology, 2000,40(1):617-647.
doi: 10.1146/annurev.pharmtox.40.1.617 |
[33] |
DE BOER A H, VAN KLEEFF P J, GAO J. Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma, 2013,250(2):425-440.
doi: 10.1007/s00709-012-0437-z |
[34] | ZHU G H, YE N H, YANG J C, PENG X X, ZHANG J H. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. Journal of Experimental Botany , 2011,11(62):3907-3916. |
[35] |
SEHNKE P C, FERL R J. Plant metabolism: Enzyme regulation by 14-3-3 proteins. Current Biology, 1996,6(11), 1403-1405.
doi: 10.1016/S0960-9822(96)00742-7 |
[36] |
CHUANG H J, SEHNKE P C, FERL R J. The 14-3-3 proteins: Cellular regulators of plant metabolism. Trends in Plant Science, 1999,4(9):367-371.
doi: 10.1016/S1360-1385(99)01462-4 |
[37] | SEHNKE P C, CHUNG H J, WU K, FERL R J. Regulation of starch accumulation by granule-associated plant 14-3-3 proteins. Proceedings of the National Academy of Sciences of the United States, 2001,98(2):765-770. |
[38] |
BUSTOS D M, IGLESIAS A A. Phosphorylated non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from heterotrophic cells of wheat interacts with 14-3-3 proteins. Plant Physiology, 2003,133(4):2081-2088.
doi: 10.1104/pp.103.030981 |
[39] |
ISHIDA S, FUKAZAWA J, YUASA T, TAKAHASHI Y. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator repression of shoot growth by gibberellins. The Plant Cell, 2004,16(10):2641-2651.
doi: 10.1105/tpc.104.024604 |
[40] |
ISHIDA S, YUASA T, NAKATA M, TAKAHASHI Y. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor repression of shoot growth in response to gibberellins. The Plant Cell, 2008,20(12):3273-3288.
doi: 10.1105/tpc.107.057489 |
[41] | AITKEN A. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Seminars in Cell & Developmental Biology, 2011,22(7):673-680. |
[42] | OBSIOVA V, SILHAN J, BOURA E, TEISINGER J, OBSIL T. 14-3-3 proteins: a family of versatile molecular regulators. Physiological Research, 2008,57(3):S11-S21 |
[1] | XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248. |
[2] | ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263. |
[3] | ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45. |
[4] | FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63. |
[5] | SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491. |
[6] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[7] | LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556. |
[8] | HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567. |
[9] | GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588. |
[10] | ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. |
[11] | ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836. |
[12] | JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889. |
[13] | ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640. |
[14] | WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679. |
[15] | CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478. |
|