Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1653-1672.doi: 10.3864/j.issn.0578-1752.2021.08.007

• PLANT PROTECTION • Previous Articles     Next Articles

Mechanisms and Applications of Plant-Herbivore-Natural Enemy Tritrophic Interactions Mediated by Volatile Organic Compounds

WANG Bing1(),LI HuiMin1,2(),CAO HaiQun2,WANG GuiRong1()   

  1. 1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    2College of Plant Protection, Anhui Agricultural University, Hefei 230036
  • Received:2020-05-27 Accepted:2020-07-06 Online:2021-04-16 Published:2021-04-25
  • Contact: GuiRong WANG E-mail:bwang@ippcaas.cn;1092883329@qq.com;wangguirong@caas.cn

Abstract:

The complicated interaction among plant, herbivore, and natural enemy is widespread in an agroecosystem. Volatile organic compounds (VOCs) play an important role in tritrophic interactions. Herbivores precisely distinguish and locate host plant through the emission of chemical cues. It is a research priority and highlight that herbivore-induced plant volatiles (HIPVs) acting as a key chemical cue play an indispensable role in regulating interactions. Moreover, floral attractants are the chemical cues used by pollinators to locate flowers and the food reward such as pollen and nectar that flowering plants offer, and they help to increase the probability of pollination and their development and fecundity. Over the last four decades, the novel research concepts and techniques are rapidly developed with the deep progress of traditional chemical ecology, especially improving in method and sensibility of chemical analysis, and widespread penetration of electrophysiological techniques. In tritrophic interactions, a large of chemosensory genes of insects involve in the process of chemoreception to VOCs. Hence, the discovery of putative chemosensory genes and further functional characterizations give the way for elucidating the molecular basis of chemoreception, and developing high-efficiency behavior regulation products for reasonable and environmentally friendly control of agricultural pest. It matters a great deal to the agroecosystem protection. This article summarized behavioural effects of herbivore, natural enemy and pollinator to VOCs, and illustrated mechanism and research status of tritrophic interactions mediated by VOCs, and reviewed applications in environmentally friendly prevention and control of insect pests. The last part is to look into the future of key issues.

Key words: herbivore-induced plant volatile, herbivore, natural enemy, tritrophic interaction, pollinator, odorant receptor

Table 1

Ecological regulation of volatile organic compounds in tritrophic interactions"

化合物名称
Chemical name
来源Source 物种及调控作用 Species and regulation effect 参考文献Reference
普通植物
挥发物
Plant volatile
虫害诱导的
植物挥发物
Herbivore-
induced plant volatile
花挥发物
Flower volatile
植食性昆虫
Herbivore
天敌昆虫
Natural enemy
传粉昆虫
Pollinator
(反式)-α-法尼烯、(反式)-2-(顺式)-4-癸二烯酸乙酯
(E)-α-farnesene, ethyl (2E, 4Z)-decadienoate
西洋梨
Pyrus communis
苹果蠹蛾
Cydia pomonella
[19]
2, 5-己二醇、异戊酸叶醇酯
2, 5-Hexanediol, (Z)-3-hexenyl isovalerate
油菜
Brassica campestris
小菜蛾
Plutella xylostella◆●
[20]
莰烯、苯乙醇、(+)-α-蒎烯
Camphene, 2-phenylethanol, (+)-α-pinene
蓝桉树
Eucalyptus globulus
普来特象鼻虫
Gonipterus platensis
[23]
(1R)-(+)-α-蒎烯、α-石竹烯、β-石竹烯(1R)-(+)-α-pinene, α-caryophyllene, β- caryophyllene 芸香科植物
Rutaceae
柑橘木虱
Diaphorina citri
[24-25]
β-石竹烯β-caryophyllene 马铃薯
Solanum tuberosum
烟粉虱
Bemisia tabaci
[48]
己醛、甲基丙基二硫醚、1-辛烯-3-醇Hexanal, methyl propyl disulfide, 1-octen- 3-ol 葱属和侧耳属植物Allium and Pleurotus 韭菜迟眼蕈蚊3龄幼虫和雌成虫
3rd instar larva and female adult of Bradysia odoriphaga
[26]
(顺式)-3-己烯醇、正己醇、苯甲醛、(反式)-β-法尼烯、水杨酸甲酯等混合物
Mixture of (Z)-3-hexen-1-ol, 1-hexanol, benzaldehyde, (E)-β-farnesene and methyl salicylate, et al.
蚕豆植株
Vicia faba
蚕豆蚜
Aphis fabae
[31]
(顺式)-茉莉酮
(Z)-jasmone
桑叶
Mulberry leaves
棉铃虫
Helicoverpa armigera
[21]
乙醇﹕醋酸﹕苯乙醇
Ethanol﹕acetic acid﹕2-phenylethanol
(1﹕22﹕5)
芒果
Mangifera indica
黑腹果蝇
Drosophila melanogaster
[32]
(反式)-β-石竹烯﹕4, 8-二甲基-1, 3, 7壬三烯﹕(反式)-β-法尼烯(E)-β-caryophyllene﹕DMNT﹕(E)-β-farnesene (100﹕78﹕9) 葡萄
Vitis vinifera
葡萄花翅小卷蛾
Lobesia botrana
[33-34]
化合物名称
Chemical name
来源Source 物种及调控作用 Species and regulation effect 参考文献Reference
普通植物
挥发物
Plant volatile
虫害诱导的
植物挥发物
Herbivore-
induced plant volatile
花挥发物
Flower volatile
植食性昆虫
Herbivore
天敌昆虫
Natural enemy
传粉昆虫
Pollinator
棕榈酸乙酯﹕亚油酸乙酯﹕亚油酸甲酯﹕亚油酸Ethyl palmitate﹕ethyl linoleate﹕methyl linoleate﹕linoleic acid (10﹕24﹕6﹕0.2) 麦麸发酵物
Wheat bran fermentation
家蝇
Musca domestica
[35]
(反式, 反式)-α-法尼烯、(反式)-β-法尼烯、(顺式)-β-法尼烯、(顺式, 反式)-α-法尼烯
(Z, E)-α-farnesene (49%)、(E)-β-farnesene (26%) , (Z)-β-farnesene (18%), (Z, E)-α-farnesene (7%)

烟草
Nicotiana tabacum
烟青虫
Helicoverpa assulta
[54]
1-辛烯-3-醇
1-Octen-3-ol
蘑菇、三叶草等Matsutake pine mushroom, shamrock, et al. 按蚊属和伊蚊属
Anopheles and Aedes◆;致倦库蚊Culex quinquefasciatus
[29-30]
2-乙基己醇、壬醛
2-Ethyl-1-hexanol, nonanal
乌桕植物
Triadica sebifera
红胸律点跳甲
Bikasha collaris
[49]
吲哚
Indole
水稻
Oryza sativa
草地贪夜蛾
Spodoptera frugiperda
[17]
玉米
Zea mays
海灰翅夜蛾
Spodoptera littoralis
[53]
(顺式)-3-己烯乙酸酯
(Z)-3-hexenyl acetate
玉米
Z. mays
甜菜夜蛾
Spodoptera exigua
[16]
(反式)-β-法尼烯
(E)-β-farnesene
玉米
Z. mays
玉米蚜
Rhopalosiphum maidis
[55]
烟碱
Nicotine
烟草植物
Nicotiana
西花蓟马
Frankliniella occidentalis
[58]
(顺式)-3-己烯丁酸、(顺式)-3-己烯乙酸酯(Z)-3-hexenyl butyrate, (Z)-3-hexenyl acetate 烟草植物
Nicotiana
烟芽夜蛾
Heliothis virescens
[51]
(3E)-4, 8-二甲基-1, 3, 7-壬三烯
DMNT
棉花Gossypium hirsutum 海灰翅夜蛾
S. littoralis
[52]
α-蒎烯、α-古巴烯
α-pinene, α-copaene
玉米
Z. mays
岛甲腹茧蜂
Chelonus insularis
[65]
(反式)-β-石竹烯
(E)-β-caryophyllene
玉米Z. mays 昆虫病原线虫
Heterorhabditis bacteriophora
[74]
D-柠檬烯、β-罗勒烯
D-limonene, β-ocimene
柑橘Citrus 印巴黄蚜小蜂
Aphytis melinus
[67]
(反式)-β-法尼烯、(E, E)-4, 8, 12-三甲基-1, 3, 7, 11-十三碳四烯
(E)-β-farnesene, TMTT
茄子Solanum melongena 矮小长脊盲蝽Macrolophus pygmaeus [73]
(3E)-4, 8-二甲基-1, 3, 7-壬三烯
DMNT
利马豆Phaseolus lunatus 智利小植绥螨Phytoseiulus persimilis [60,62]
(顺式)-3-己烯乙酸酯、(顺式)-3-己烯醇和芳樟醇等混合物
Mixture of (Z)-3-hexenyl acetate, (Z)-3- hexen-1-ol and linalool, et al.
玉米
Z. mays
缘腹盘绒茧蜂
Cotesia marginiventris
[63]
化合物名称
Chemical name
来源Source 物种及调控作用 Species and regulation effect 参考文献Reference
普通植物
挥发物
Plant volatile
虫害诱导的
植物挥发物
Herbivore-
induced plant volatile
花挥发物
Flower volatile
植食性昆虫
Herbivore
天敌昆虫
Natural enemy
传粉昆虫
Pollinator
(顺式)-3-己烯醛、(反式)-2-己烯醛、(反式)-3-己烯醇和(顺式)-3-己烯乙酸酯与少量单萜芳樟醇和β-月桂烯的混合物Mixture of (Z)-3-hexenal, (E)-2-hexenal, (E)-3-hexen-1-ol and (Z)-3-hexenyl acetate with a small amount of linalool and β-myrcene 玉米
Z. mays
短管赤眼蜂
Trichogramma pretiosum
[64]
6-甲基-5-庚烯-2-酮、β-榄香烯
6-Methyl-5-hepten-2-one, β-elemene
反枝苋Amaranthus retroflexus 中红侧沟茧蜂
Microplitis mediator
[66]
(顺式)-3-己烯乙酸酯、水杨酸甲酯(Z)-3-hexenyl acetate, methyl salicylate 小麦等植物Triticum aestivum, et al. 黑带食蚜蝇、异色瓢虫、多异瓢虫、七星瓢虫、食螨瓢虫Episyrphus balteatus, Harmonia axyridis, Hippodamia variegate, Coccinella septempunctata, Stethorus punctum picipes [69-72]
(反式, 反式)-α-法尼烯、苯甲醛、茶香酮、2, 2, 6-三甲基-1, 4-环己二酮、氧化异佛尔酮
(E, E)-α-farnesene, benzaldehyde, 4- oxoisophorone, 2, 2, 6-trimethylcyclohexane- 1,4-dione, oxoisophorone oxide
大叶醉鱼草
Buddleja davidii
甘蓝尺蠖Trichoplusia ni [89]
1, 4-对苯二甲醚、苯乙醇、2-甲氧基苯甲醛等混合物
Mixture of 1,4-dimethoxybenzene, 2- phenylethanol and 2-methoxybenzaldehyde, et al.
神后鸢尾
Iris planifolia
熊蜂、意大利蜜蜂、黑带食蚜蝇 Bombus ruderatus, Apis mellifera ligustica, E. balteatus [85]
(顺式)-茉莉酮(Z)-jasmone 万年青属植物
Dieffenbachia aurantiaca
夜行性盲蝽Neella floridula [88]
α-蒎烯、β-蒎烯、β-月桂烯和β-水芹烯等混合物Mixture of α-pinene, β-pinene, β-myrcene and β-phellandrene, et al. 疏花火烧兰
Epipactis veratrifolia
黑带食蚜蝇
E. balteatus
[91-93]
柠檬烯Limonene 甜叶菊
Stevia rebaudiana
蜜蜂、黑带食蚜蝇等
A. mellifera, E. balteatus, et al.
[86]
(反式)-β-罗勒烯和芳樟醇等混合物Mixture of (E)-β-ocimene and linalool, et al. 巴西香可可
Paullinia cupana
隧蜂Megalopta genalis [87]
丁香酚、α-古巴烯、甲基丁香酚的混合物Mixture of eugenol, α-copaene and methyleugenol;苯甲酸甲酯、苯甲酸乙酯、(反式)-α-法尼烯、γ-癸内酯和(反式)-金合欢醇的混合物 Mixture of methyl benzoate, ethyl benzoate, (E)-α-farnesene, γ-decalactone and (E)-farnesol 刺萼龙葵
Solanum rostratum
东方熊蜂Bombus impatiens [81]
苯乙醛、水杨酸甲酯、2-甲氧基苯甲酸甲酯Phenylacetaldehyde, methyl salicylate, dimethyl salicylate 丝路蓟
Cirsium arvense
黑带食蚜蝇
E. balteatus
[83]
2-乙基-5-丙基-1, 3-环己二酮
2-Ethyl-5-propylcyclohexan-1, 3- dione
澳大利亚兰花
Chiloglottis trapeziformis
黄蜂
Neozeleboria cryptoides
[94-95]
(反式)-β-香柑油烯
(E)-β-bergamotene
猴面花
Mimulus guttatus
东方熊蜂
B. impatiens
[100]
[1] PRICE P W, BOUTON C E, GROSS P, MCPHERON B A, THOMPSON J N, WEIS A E. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 1980,11:41-65.
[2] TURLINGS T C J, ERB M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annual Review of Entomology, 2018,63:433-452.
doi: 10.1146/annurev-ento-020117-043507 pmid: 29324043
[3] GUO H, WANG C Z. The ethological significance and olfactory detection of herbivore-induced plant volatiles in interactions of plants, herbivorous insects, and parasitoids. Arthropod-Plant Interactions, 2019,13:161-179.
[4] 蔡晓明, 李兆群, 潘洪生, 陆宴辉. 植食性害虫食诱剂的研究与应用. 中国生物防治学报, 2018,34(1):8-35.
CAI X M, LI Z Q, PAN H S, LU Y H. Research and application of food-based attractants of herbivorous insect pests. Chinese Journal of Biological Control, 2018,34(1):8-35. (in Chinese)
[5] 闫凤鸣, 陈巨莲, 张永军, 汤清波, 周海波. 昆虫化学生态学学科发展研究//2012-2013植物保护学学科发展报告. 北京: 中国科学技术出版社, 2014.
YAN F M, CHEN J L, ZHANG Y J, TANG Q B, ZHOU H B. Advances in the insect chemical ecology//2012-2013 Report on Advance in Plant Protection. Beijing: Science and Technology of China Press, 2014. (in Chinese)
[6] 闫凤鸣, 陈巨莲, 汤清波. 昆虫化学生态学研究进展及未来展望. 植物保护, 2013,39(5):9-15.
YAN F M, CHEN J L, TANG Q B. Advances and perspectives in insect chemical ecology. Plant Protection, 2013,39(5):9-15. (in Chinese)
[7] DICKE M. Volatile spider-mite pheromone and host-plant kairomone, involved in spaced-out gregariousness in the spider mite Tetranychus urticae. Physiological Entomology, 1986,11:251-262.
[8] DICKE M. Prey preference of the phytoseiid mite Typhlodromus pyri 1. Response to volatile kairomones. Experimental and Applied Acarology, 1988,4(1):1-13.
[9] NORDLUND D A, CHALFANT R B, LEWIS W J. Response of Trichogramma pretiosum females to extracts of two plants attacked by Heliothis zea. Agriculture, Ecosystems and Environment, 1985,12(2):127-133.
[10] BRUCE T J, WADHAMS L J, WOODCOCK C M. Insect host location: A volatile situation. Trends in Plant Science, 2005,10(6):269-274.
doi: 10.1016/j.tplants.2005.04.003 pmid: 15949760
[11] BLANDE J D. Plant communication with herbivores. Advances in Botanical Research, 2017,82:281-304.
[12] 向玉勇, 刘同先, 张世泽. 植物挥发物在植食性昆虫寄主选择行为中的作用及应用. 安徽农业科学, 2015,43(28):92-94, 183.
XIANG Y Y, LIU T X, ZHANG S Z. Effect and application of plant volatiles on host selecting behavior of phytophagous insects. Journal of Anhui Agricultural Science, 2015,43(28):92-94, 183. (in Chinese)
[13] KIM J, TOOKER J F, LUTHE D S, DE MORAES C M, FELTON G W. Insect eggs can enhance wound response in plants: A study system of tomato Solanum lycopersicum L. and Helicoverpa zea Boddie. PLoS ONE, 2012,7(5):e37420.
pmid: 22616005
[14] HELMS A M, DE MORAES C M, MESCHER M C, TOOKER J F. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding. BMC Plant Biology, 2014,14:173.
doi: 10.1186/1471-2229-14-173 pmid: 24947749
[15] 郝娅, 娄永根. 虫害诱导植物挥发物的研究进展. 长江大学学报(自然科学版), 2013,10(11):12-15.
HAO Y, LOU Y G. Research progress of herbivore-induced plant volatile. Journal of Yangtze University (Natural Science Edition), 2013,10(11):12-15. (in Chinese)
[16] ENGELBERTH J, ALBORN H T, SCHMELZ E A, TUMLISON J H. Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(6):1781-1785.
[17] YE M, GLAUSER G, LOU Y, ERB M, HU L. Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. The Plant Cell, 2019,31(3):687-698.
doi: 10.1105/tpc.18.00569 pmid: 30760558
[18] XU H, TURLINGS T C J. Plant volatiles as mate-finding cues for insects. Trends in Plant Science, 2018,23(2):100-111.
pmid: 29229187
[19] KNIGHT A L, LIGHT D M. Attractants from bartlett pear for codling moth, Cydia pomonella (L.), larvae. Naturwissenschaften, 2001,88(8):339-342.
doi: 10.1007/s001140100244 pmid: 11572015
[20] HAN B, ZHANG Z N, FANG Y L. Electrophysiology and behavior feedback of diamondback moth, Plutella xylostella, to volatile secondary metabolites emitted by Chinese cabbage. Chinese Science Bulletin, 2001,46(24):2086-2088.
[21] DI C, NING C, HUANG L Q, WANG C Z. Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm. Insect Biochemistry and Molecular Biology, 2017,84:48-62.
[22] CUI W C, WNAG B, GUO M B, LIU Y, JACQUIN-JOLY E, YAN S C, WANG G R. A receptor-neuron correlate for the detection of attractive plant volatiles in Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology, 2018,97:31-39.
doi: 10.1016/j.ibmb.2018.04.006 pmid: 29698698
[23] BRANCO S, MATEUS E P, DA SILVA M D R G, MENDES D, ROCHA S, MENDEL Z, SCHÜTZ S, PAIVA M R. Electrophysiological and behavioural responses of the Eucalyptus weevil, Gonipterus platensis, to host plant volatiles. Journal of Pest Science, 2019,92(1):221-235.
[24] GRAFTON-CARDWELL E E, STELINSKI L L, STANSLY P A. Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annual Review of Entomology, 2013,58:413-432.
doi: 10.1146/annurev-ento-120811-153542 pmid: 23317046
[25] WANG H, CHEN H, WANG Z, LIU J, ZHANG X Y, LI C F, ZENG X N. Molecular identification, expression, and functional analysis of a general odorant-binding protein 1 of Asian citrus psyllid. Environmental Entomology, 2019,48(1):245-252.
[26] ZHANG Y, REN Y, WANG X, LIU Y, WANG N. Responses to host plant volatiles and identification of odorant binding protein and chemosensory protein genes in Bradysia odoriphaga. ACS Omega, 2019,4(2):3800-3811.
[27] MIYAZAKI H, OTAKE J, MITSUNO H, OZAKI K, KANZAKIi R, CHIENG A C T, HEE A K W, NISHIDA R, ONE H. Functional characterization of olfactory receptors in the oriental fruit fly Bactrocera dorsalis that respond to plant volatiles. Insect Biochemistry and Molecular Biology, 2018,101:32-46.
doi: 10.1016/j.ibmb.2018.07.002 pmid: 30026095
[28] WALLINGFORD A K, CHA D H, LINN JR C E, WOLFIN M S, LOEB G M. Robust manipulations of pest insect behavior using repellents and practical application for integrated pest management. Environmental Entomology, 2017,46(5):1041-1050.
doi: 10.1093/ee/nvx125 pmid: 28981656
[29] KLINE D L, ALLAN S A, BERNIER U R, WELCH C H. Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, U.S.A. Medical and Veterinary Entomology, 2007,21(4):323-331.
pmid: 18092970
[30] XU P X, ZHU F, BUSS G K, LEAL W S. 1-Octen-3-ol—The attractant that repels [version 1; referees: 4 approved]. F1000 Research, 2015,4:156.
doi: 10.12688/f1000research.6646.1 pmid: 26543554
[31] WEBSTER B, BRUCE T, DUFOUR S, BIRKEMEYER C, BIRKETT M, HARDIE J, PICKETT J. Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. Journal of Chemical Ecology, 2008,34(9):1153-1161.
pmid: 18584254
[32] ZHU J, PARK K C, BAKER T C. Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster. Journal of Chemical Ecology, 2003,29(4):899-909.
doi: 10.1023/a:1022931816351 pmid: 12775150
[33] BRUCE T J, PICKETT J A. Perception of plant volatile blends by herbivorous insects—Finding the right mix. Phytochemistry, 2011,72(13):1605-1611.
doi: 10.1016/j.phytochem.2011.04.011 pmid: 21596403
[34] TASIN M, BACKMAN A C, BENGTSSON M, ORIATTI C, WITZGALL P. Essential host plant cues in the grapevine moth. Naturwissenschaften, 2006,93(3):141-144.
doi: 10.1007/s00114-005-0077-7 pmid: 16450082
[35] TANG R, ZHANG F, KONE N, CHEN J H, ZHU F, HAN R C, LEI C L, KENIS M, HUANG L Q, WANG C Z. Identification and testing of oviposition attractant chemical compounds for Musca domestica. Scientific Reports, 2016,6:33017.
pmid: 27667397
[36] AUSUBEL F M. Are innate immune signaling pathways in plants and animals conserved? Nature Immunology, 2005,6(10):973-979.
doi: 10.1038/ni1253 pmid: 16177805
[37] KACHROO A, ROBIN G P. Systemic signaling during plant defense. Current Opinion in Plant Biology, 2013,16(4):527-533.
pmid: 23870750
[38] 穆丹, 付建玉, 刘守安, 韩宝瑜. 虫害诱导的植物挥发物代谢调控机制研究进展. 生态学报, 2010,30(15):4221-4233.
MU D, FU J Y, LIU S A, HAN B Y. Advances in metabolic regulation mechanism of herbivore-induced plant volatiles. Acta Ecologica Sinica, 2010,30(15):4221-4233. (in Chinese)
[39] 陈澄宇, 康志娇, 史雪岩, 高希武. 昆虫对植物次生物质的代谢适应机制及其对昆虫抗药性的意义. 昆虫学报, 2015,58(10):1126-1139.
CHEN C Y, KANG Z J, SHI X Y, GAO X W. Metabolic adaptation mechanisms of insects to plant secondary metabolites and their implications for insecticide resistance of insects. Acta Entomologica Sinica, 2015,58(10):1126-1139. (in Chinese)
[40] THALER J S, HUMPHREY P T, WHITEMAN N K. Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science, 2012,17(5):260-270.
pmid: 22498450
[41] LIU J L, CHEN X, ZHANG H M, YANG X, WONG A. Effects of exogenous plant growth regulator abscisic acid-induced resistance in rice on the expression of vitellogenin mRNA in Nilaparvata lugens (Hemiptera: Delphacidae) adult females. Journal of Insect Science, 2014,14:213.
doi: 10.1093/jisesa/ieu075 pmid: 25502025
[42] TIAN D, PEIFFER M, DE MORAES C M, FELTON G W. Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea. Planta, 2014,239(3):577-589.
[43] BIGEARD J, HIRT H. Nuclear signaling of plant MAPKs. Frontiers in Plant Science, 2018,9:469.
[44] XIN Z J, CAI X M, CHEN S L, LUO Z X, BIAN L, LI Z Q, GE L G, CHEN Z M. A disease resistance elicitor laminarin enhances tea defense against a piercing herbivore Empoasca (Matsumurasca) onukii Matsuda. Scientific Reports, 2019,9:814.
doi: 10.1038/s41598-018-37424-7 pmid: 30692583
[45] 许冬, 张永军, 陈洋, 郭予元. 虫害诱导植物间接防御机制. 植物保护, 2009,35(1):13-21.
XU D, ZHANG Y J, CHEN Y, GUO Y Y. Mechanisms of indirect defenses in plants induced by herbivores. Plant Protection, 2009,35(1):13-21.(in Chinese)
[46] HELMS A M, DE MORAES C M, TOOKER J F, MESCHER M C. Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(1):199-204.
[47] HELMS A M, RAY S, MATULIS N L, KUZEMCHAK M C, GRISALES W, TOOKER J F, ALI J G. Chemical cues linked to risk: Cues from below-ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Functional Ecology, 2019,33(5):798-808.
[48] ZHANG P J, WEI J N, ZHAO C, ZHANG Y F, LI C Y, LIU S S, DICKE M, YU X P, TURLINGS T C J. Airborne host-plant manipulation by whiteflies via an inducible blend of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(15):7387-7396.
[49] SUN X, SIEMANN E, LIU Z, WANG Q, WANG D, HUANG W, ZHANG C J, DING J Q. Root-feeding larvae increase their performance by inducing leaf volatiles that attract above-ground conspecific adults. Journal of Ecology, 2019,107:2713-2723.
[50] MCCORMICK A C, ARRIGO L, EGGENBERGER H, MESCHER M C, DE MORAES C M. Divergent behavioural responses of gypsy moth (Lymantria dispar) caterpillars from three different subspecies to potential host trees. Scientific Reports, 2019,9:8953.
doi: 10.1038/s41598-019-45201-3 pmid: 31222054
[51] DE MORAES C M, MESCHER M C, TUMLINSON J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature, 2001,410(6828):577-580.
doi: 10.1038/35069058 pmid: 11279494
[52] HATANO E, SAVEER A M, BORRERO-ECHEVERRY F, STRAUCH M, ZAKIR A, BENGTSSON M, IGNELL R, ANDERSON P, BECHER P G, WITZGALL P, DEKKER T. A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways. BMC Biology, 2015,13:75.
pmid: 26377197
[53] VEYRAT N, ROBERT C A M, TURLINGS T C J, ERB M. Herbivore intoxication as a potential primary function of an inducible volatile plant signal. Journal of Ecology, 2016,104(2):591-600.
[54] WU H, LI R T, DONG J F, JIANG N J, HUANG LQ, WANG C Z. An odorant receptor and glomerulus responding to farnesene in Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology, 2019,115:103106.
doi: 10.1016/j.ibmb.2018.11.006 pmid: 30468768
[55] BERNASCONI M L, TURLINGS C J T, AMBROSETTI L, BASSETTI P, DORN S. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomologia Experimentalis et Applicata, 1998,87(2):133-142.
[56] 李时荣, 尚哲明, 刘德广, 崔晓宁. 麦长管蚜对蚜害诱导小麦挥发物及蚜虫报警信息素的行为反应. 西北农林科技大学学报(自然科学版), 2017,45(10):94-100, 110.
LI S R, SHANG Z M, LIU D G, CUI X N. Behavioral responses of Sitobion avenae to aphid alarm pheromone and wheat volatiles induced by aphid feeding. Journal of Northwest A&F University (Natural Science Edition), 2017,45(10):94-100, 110. (in Chinese)
[57] SUN X L, WANG G C, GAO Y, ZHANG X Z, XIN Z J, CHEN Z M. Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths. Journal of Chemical Ecology, 2014,40(10):1080-1089.
pmid: 25378120
[58] DELPHIA C M, MESCHER M C, DE MORAES C M. Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. Journal of Chemical Ecology, 2007,33(5):997-1012.
doi: 10.1007/s10886-007-9273-6 pmid: 17415625
[59] TURLINGS T C, TUMLINSON J H. Systemic release of chemical signals by herbivore-injured corn. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(17):8399-8402.
[60] DICKE M, VAN BAARLEN P, WESSELS R, DIJKMAN H. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: Extraction of endogenous elicitor. Journal of Chemical Ecology, 1993,19(3):581-599.
pmid: 24248958
[61] 李威, 林拥军, 周菲. 萜烯同系物DMNT和TMTT的研究进展. 植物保护学报, 2018,45(5):946-953.
LI W, LIN Y J, ZHOU F. The recent research progress on DMNT and TMTT in plants. Journal of Plant Protection, 2018,45(5):946-953. (in Chinese)
[62] DICKE M, VAN BEEK T A, POSTHUMUS M A, DOM N B, VAN BOKHOVEN H, DE GROOT A. Isolation and identification of volatile kairomone that affects acarine predatorprey interactions involvement of host plant in its production. Journal of Chemical Ecology, 1990,16(2):381-396.
doi: 10.1007/BF01021772 pmid: 24263497
[63] TURLINGS T C, TUMLINSON J H, HEATH R R, PROVEAUX A T, DOOLITTLE R E. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. Journal of Chemical Ecology, 1991,17(11):2235-2251.
[64] PENAFLOR M F, ERB M, MIRANDA L A, WERNEBURG A G, BENTO J M. Herbivore-induced plant volatiles can serve as host location cues for a generalist and a specialist egg parasitoid. Journal of Chemical Ecology, 2011,37(12):1304-1313.
doi: 10.1007/s10886-011-0047-9 pmid: 22170346
[65] ORTIZ-CARREON F R, ROJAS J C, CISNEROS J, MALO E A. Herbivore-induced volatiles from maize plants attract Chelonus insularis, an egg-larval parasitoid of the fall armyworm. Journal of Chemical Ecology, 2019,45(3):326-337.
pmid: 30746603
[66] YU H L, ZHANGY J, LI Y L, LU Z Y, LI X J. Herbivore- and MeJA- induced volatile emissions from the redroot pigweed Amaranthus retroflexus Linnaeus: Their roles in attracting Microplitis mediator (Haliday) parasitoids. Arthropod-Plant Interactions, 2018,12:575-589.
[67] MOHAMMED K, AGARWAL M, DU X B, NEWMAN J, REN Y. Behavioural responses of the parasitoid Aphytis melinus to volatiles organic compounds (VOCs) from Aonidiella aurantii on its host fruit Tahitian lime fruit Citrus latifolia. Biological Control, 2019,133:103-109.
[68] LI F, LI W, LIN Y J, PICKETT J A, BIRKETT M A, WU K, WANG G, ZHOU J. Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest. Plant, Cell and Environment, 2018,41(1):111-120.
doi: 10.1111/pce.12959 pmid: 28370092
[69] XIE H C, DELPHINE D, FAN J, LIU Y, CLAUDE B, ERIC H, SUN J R, FRÉDÉRIC F, CHEN J L. Effect of wheat plant volatiles on aphids and associated predator behavior: Selection of efficient infochemicals for field study. Chinese Journal of Applied Entomology, 2014,51(6):1470-1478.
[70] YU H, ZHANG Y, WU K, GAO X W, GUO Y Y. Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environmental Entomology, 2008,37(6):1410-1415.
doi: 10.1603/0046-225X-37.6.1410 pmid: 19161683
[71] GENÇER N S, KUMRAL N A, SEIDI M, PEHLEVAN B. Attraction responses of ladybird beetle Hippodamia variegata (Goeze, 1777) (Coleoptera: Coccinellidae) to single and binary mixture of synthetic herbivore-induced plant volatiles in laboratory tests. Turkish Journal of Entomology, 2017,41(1):17-26.
[72] MAEDA T, KISHIMOTO H, WRIGHT L C, JAMES D G. Mixture of synthetic herbivore-induced plant volatiles attracts more Stethorus punctum picipes (Casey) (Coleoptera: Coccinellidae) than a single volatile. Journal of Insect Behavior, 2015,28(2):126-137.
[73] MASELOU D A, ANASTASAKI E, MILONAS P G. The role of host plants, alternative food resources and herbivore induced volatiles in choice behavior of an omnivorous predator. Frontiers in Ecology and Evolution, 2019,6:241.
[74] RASMANN S, TURLINGS T C. Root signals that mediate mutualistic interactions in the rhizosphere. Current Opinion in Plant Biology, 2016,32:62-68.
[75] 武鹏峰, 郑国. 双翅目昆虫传粉研究进展. 昆虫学报, 2019,62(4):516-526.
WU P F, ZHENG G. Progress in pollination by dipteran insects. Acta Entomologica Sinica, 2019,62(4):516-526. (in Chinese)
[76] OLLERTON J, WINFREE R, TARRANT S. How many flowering plants are pollinated by animals? Oikos, 2011,120(3):321-326.
[77] ROSATI L, ROMANO V A, CERONE L, FASCETTI S, POTENZA G, BAZZATO E, CILLO D, MECCA M, RACIOPPI R, D’AURIA M, FARRIS E. Pollination features and floral volatiles of Gymnospermium scipetarum (Berberidaceae). Journal of Plant Research, 2018,132(1):49-56.
doi: 10.1007/s10265-018-1073-2 pmid: 30456735
[78] POWNEY G D, CARVELL C, EDWARDS M, MORRIS R K A, ROY H E, WOODCOCK B A, ISAAC N J B. Widespread losses of pollinating insects in Britain. Nature Communications, 2019,10:1018.
[79] LARSON B M H, KEVAN P G, INOUYE D W. Flies and flowers: Taxonomic diversity of anthophiles and pollinators. The Canadian Entomologist, 2001,133(4):439-465.
[80] WOODCOCK T S, LARSON B M H, KEVAN P G, INOUYE D W, LUNAU K. Flies and flowers II: Floral attractants and rewards. Journal of Pollination Ecology, 2014,12(8):63-94.
[81] SOLÍS-MONTERO L, CÁCERES-GARCÍA S, ALAVEZ-ROSAS D, GARCÍA-CRISÓSTOMO J F, VEGA-POLANCO M, GRAJALES- CONESA J, CRUZ-LÓPEZ L. Pollinator preferences for floral volatiles emitted by dimorphic anthers of a buzz-pollinated herb. Journal of Chemical Ecology, 2018,44(11):1058-1067.
pmid: 30191434
[82] SCHIESTL F P. The evolution of floral scent and insect chemical communication. Ecology Letters, 2010,13(5):643-656.
doi: 10.1111/j.1461-0248.2010.01451.x pmid: 20337694
[83] PRIMANTE C, DOTTERL S. A syrphid fly uses olfactory cues to find a non-yellow flower. Journal of Chemical Ecology, 2010,36(11):1207-1210.
pmid: 20924654
[84] 苏宏华, 王桂荣, 吴孔明, 郭予元. 昆虫气味识别机制及SNMP的可能作用机理//农业生物灾害预防与控制研究. 2005: 432-434.
SU H H, WANG G R, WU K M, GUO Y Y. Mechanism of odorant detection in insect and function mechanism of SNMP//Study on Prevention and Control of Agricultural Biological Disasters. 2005: 432-434. (in Chinese)
[85] ZITO P, ROSSELLI S, BRUNO M, MAGGIO A, SAJEVA M. Floral scent in Iris planifolia (Iridaceae) suggests food reward. Phytochemistry, 2019,158:86-90.
doi: 10.1016/j.phytochem.2018.11.011 pmid: 30481663
[86] BENELLI G, CANALE A, ROMANO D, FLAMINI G, TAVARINI S, MARTINI A, ASCRIZZI R, GONTE G, MELE M, ANGELINI L G. Flower scent bouquet variation and bee pollinator visits in Stevia rebaudiana Bertoni (Asteraceae), a source of natural sweeteners. Arthropod-Plant Interactions, 2017,11(3):381-388.
[87] KRUG C, CORDEIRO G D, SCHÄFFLER I, SILVA C I, OLIVEIRA R, SCHLINDWEIN C, DÖTTERL S, ALVES-DOS-SANTOS I. Nocturnal bee pollinators are attracted to guarana flowers by their scents. Frontiers in Plant Science, 2018,9:1072.
[88] ETI F, BERGER A, WEBER A, SCHONENBERGER J, DOTTERL S. Nocturnal plant bugs use cis-jasmone to locate inflorescences of an Araceae as feeding and mating site. Journal of Chemical Ecology, 2016,42(4):300-304.
doi: 10.1007/s10886-016-0688-9 pmid: 27074793
[89] GUÉDOT C, LANDOLT P J, SMITHHISLER C L. Odorants of the flowers of butterfly bush, Buddleja davidii, as possible attractants of pest species of moths. Florida Entomologist, 2008,91(4):576-582.
[90] MEAGHER R L, LANDOLT P J. Attractiveness of binary blends of floral odorant compounds to moths in Florida, USA. Entomologia Experimentalis et Applicata, 2008,128(2):323-329.
[91] STOKL J, BRODMANN J, DAFNI A, AYASSE M, HANSSON B S. Smells like aphids: Orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proceedings of the Royal Society B: Biological Sciences, 2011,278(1709):1216-1222.
[92] JIN X H, REN Z X, XU S Z, WANG H, LI D Z, LI Z Y. The evolution of floral deception in Epipactis veratrifolia (Orchidaceae): From indirect defense to pollination. BMC Plant Biology, 2014,14:63.
pmid: 24621377
[93] SCHIESTL F P. Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytologist, 2015,206(2):571-577.
[94] SCHIESTL F P, PEAKALL R, MANT J G, IBARRA F, SCHULZ C, FRANKE S, FRANCKE W. The chemistry of sexual deception in an orchid-wasp pollination system. Science, 2003,302(5644):437-438.
doi: 10.1126/science.1087835 pmid: 14564006
[95] SCHIESTL F P. On the success of a swindle: Pollination by deception in orchids. Naturwissenschaften, 2005,92(6):255-264.
doi: 10.1007/s00114-005-0636-y pmid: 15931514
[96] KOLOSOVA N, GORENSTEIN N, KISH C M, DUDAREVA N. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. The Plant Cell, 2001,13(10):2333-2347.
doi: 10.1105/tpc.010162 pmid: 11595805
[97] POTT M B, PICKERSKY E, PIECHULLA B. Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda. Journal of Plant Physiology, 2002,159(8):925-934.
[98] THEIS N, LERDAU M, RAGUSO R A. The challenge of attracting pollinators while evading floral herbivores: Patterns of fragrance emission in Cirsium arvense and Cirsium repandum (Asteraceae). International Journal of Plant Sciences, 2007,168(5):587-601.
[99] ZHOU W, KÜGLER A, MCGALE E, HAVERKAMP A, KNADEN M, GUO H, BERAN F, YON F, LI R, LACKUS N, et al. Tissue-specific emission of (E)-alpha-Bergamotene helps resolve the dilemma when pollinators are also herbivores. Current Biology, 2017,27(9):1336-1341.
doi: 10.1016/j.cub.2017.03.017 pmid: 28434859
[100] HABER A I, SIMS J W, MESCHER M C, DE MORAES C M, CARR D E. A key floral scent component (β-trans-bergamotene) drives pollinator preferences independently of pollen rewards in seep monkeyflower. Functional Ecology, 2019,33(2):218-228.
[101] 陆宴辉, 史晓利, 仲崇翔, 王红, 陈建, 余月书, 杨益众. 蜜露对天敌昆虫生长繁殖及搜寻行为的影响. 昆虫知识, 2005,42(4):379-385.
LU Y H, SHI X L, ZHONG C X, WANG H, CHEN J, YU Y S, YANG Y Z. Impacts of honeydew on the growth, fecundity and foraging behavior of natural enemies. Chinese Bulletin of Entomology, 2005,42(4):379-385. (in Chinese)
[102] LEROY P D, HEUSKIN S, SABRI A, VERHEGGEN F J, FARMAKIDIS J, LOGNAY G, THONART P, WATHELET J P, BROSTAUX Y, HAUBRUGE E. Honeydew volatile emission acts as a kairomonal message for the Asian lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). Insect Science, 2012,19(4):498-506.
[103] VERHEGGEN F J, ARNAUD L, BARTRAM S, GOHY M, HAUBRUGE E. Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly. Journal of Chemical Ecology, 2008,34(3):301-307.
[104] LEROY P D, VERHEGGEN F J, CAPELLA Q, FRANCIS F, HAUBRUGE E. An introduction device for the aphidophagous hoverfly Episyrphus balteatus (De Geer) (Diptera: Syrphidae). Biological Control, 2010,54(3):181-188.
[105] ZHU G, PAN L, ZHAO Y, ZHANG X, WANG F, YU Y, FAN W, LIU Q, ZHANG S, LI M. Chemical investigations of volatile kairomones produced by Hyphantria cunea (Drury), a host of the parasitoid Chouioia cunea Yang. Bulletin of Entomological Research, 2017,107(2):234-240.
doi: 10.1017/S0007485316000833 pmid: 27628497
[106] NOLDUS L P, VAN LENTEREN J C, LEWIS W J. How Trichogramma parasitoids use moth sex pheromones as kairomones: Orientation behaviour in a wind tunnel. Physiological Entomology, 1991,16(3):313-327.
[107] REDDY G V P, HOLOPAINEN J K, GUERRERO A. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles. Journal of Chemical Ecology, 2002,28(1):131-143.
doi: 10.1023/a:1013519003944 pmid: 11871395
[108] DWECK H K, SVENSSON G P, GUNDUZ E A, ANDERBRANT O. Kairomonal response of the parasitoid, Bracon hebetor Say, to the male-produced sex pheromone of its host, the greater waxmoth, Galleria mellonella (L.). Journal of Chemical Ecology, 2010,36(2):171-178.
[109] ZHU J, OBRYCKI J J, OCHIENG S A, BAKER T C, PICKETT J A, SMILEY D. Attraction of two lacewing species to volatiles produced by host plants and aphid prey. Naturwissenschaften, 2005,92(6):277-281.
doi: 10.1007/s00114-005-0624-2 pmid: 15812573
[110] 张峰, 阚炜, 张钟宁. 寄主植物-蚜虫-天敌三重营养关系的化学生态学研究进展. 生态学报, 2001,21(6):1025-1033.
ZHANG F, KAN W, ZHANG Z N. Progress in chemical ecology of tritrophic interactions among host plants, aphids and natural enemies. Acta Ecologica Sinica, 2001,21(6):1025-1033. (in Chinese)
[111] LEAL W S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 2013,58:373-391.
doi: 10.1146/annurev-ento-120811-153635 pmid: 23020622
[112] PELOSI P, IOVINELLA I, ZHU J, WANG G, DANI F R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biological Reviews of the Cambridge Philosophical Society, 2018,93(1):184-200.
[113] LEAL W S. Pheromone reception//Topics in Current Chemistry. 2005,240:1-36.
[114] SUH E, BOHBOT J D, ZWIEBEL L J. Peripheral olfactory signaling in insects. Current Opinion in Insect Science, 2014,6:86-92.
doi: 10.1016/j.cois.2014.10.006 pmid: 25584200
[115] YANG S, CAO D, WANG G, LIU Y. Identification of genes involved in chemoreception in Plutella xyllostella by antennal transcriptome analysis. Scientific Reports, 2017,7:11941.
doi: 10.1038/s41598-017-11646-7 pmid: 28931846
[116] CHENG J, WANG C Y, LYU Z H, CHEN J X, TANG L P, LIN T. Candidate olfactory genes identified in Heortia vitessoides (Lepidoptera: Crambidae) by antennal transcriptome analysis. Comparative Biochemistry and Physiology Part D Genomics Proteomics, 2019,29:117-130.
[117] LI J, WANG X, ZHANG L. Identification of putative odorant binding proteins in the peach fruit borer Carposina sasakii Matsumura (Lepidoptera: Carposinidae) by transcriptome analysis and their expression profile. Biochemical and Biophysical Research Communications, 2019,508(4):1024-1030.
doi: 10.1016/j.bbrc.2018.12.007 pmid: 30545637
[118] ROBERTSON H M, ROBERTSON E C N, WALDEN K K O, ENDERS L S, MILLER N J. The chemoreceptors and odorant binding proteins of the soybean and pea aphids. Insect Biochemistry and Molecular Biology, 2019,105:69-78.
doi: 10.1016/j.ibmb.2019.01.005 pmid: 30654011
[119] TANG Q F, SHEN C, ZHANG Y, YANG Z P, HAN R R, WANG J. Antennal transcriptome analysis of the maize weevil Sitophilus zeamais: Identification and tissue expression profiling of candidate odorant-binding protein genes. Archives of Insect Biochemistry and Physiology, 2019,101(1):e21542.
doi: 10.1002/arch.21542 pmid: 30820994
[120] WANG Q, ZHOU J J, LIU J T, HUANG G Z, XU W Y, ZHANG Q, CHEN J L, ZHANG Y J, LI X C, GU S H. Integrative transcriptomic and genomic analysis of odorant binding proteins and chemosensory proteins in aphids. Insect Molecular Biology, 2019,28(1):1-22.
doi: 10.1111/imb.12513 pmid: 29888835
[121] ZENG Y, YANG Y T, WU Q J, WANG S L, XIE W, ZHANG Y J. Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly, Bemisia tabaci. Insect Science, 2019,26(4):620-634.
doi: 10.1111/1744-7917.12576 pmid: 29441682
[122] XIU W M, DONG S L. Molecular characterization of two pheromone binding proteins and quantitative analysis of their expression in the beet armyworm, Spodoptera exigua Hübner. Journal of Chemical Ecology, 2007,33(5):947-961.
doi: 10.1007/s10886-007-9277-2 pmid: 17393279
[123] ZHANG Z C, WANG M Q, LU Y B, ZHANG G. Molecular characterization and expression pattern of two general odorant binding proteins from the diamondback moth, Plutella xylostella. Journal of Chemical Ecology, 2009,35(10):1188-1196.
pmid: 19823915
[124] ZHU J, BAN L, SONG L M, LIU Y, PELOSI P, WANG G. General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food. Insect Biochemistry and Molecular Biology, 2016,72:10-19.
doi: 10.1016/j.ibmb.2016.03.005 pmid: 27001069
[125] WANG B, LIU Y, WANG G R. Proceeding from in vivo functions of pheromone receptors: Peripheral-coding perception of pheromones from three closely related species, Helicoverpa armigera, H. assulta, and Heliothis virescens. Frontiers in Physiology, 2018,9:1188.
[126] LIU X L, SUN S J, KHUHRO S A, ELZAKI M E A, YAN Q, DONG S L. Functional characterization of pheromone receptors in the moth Athetis dissimilis (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 2019,158:69-76.
doi: 10.1016/j.pestbp.2019.04.011 pmid: 31378363
[127] ZHANG Y N, DU L X, XU J W, WANG B, ZHANG X Q, YAN Q, WANG G R. Functional characterization of four sex pheromone receptors in the newly discovered maize pest Athetis lepigone. Journal of Insect Physiology, 2019,113:59-66.
pmid: 30193842
[128] GUO J M, LIU X L, LIU S R, WEI Z Q, HAN W K, GUO Y, DONG S L. Functional characterization of sex pheromone receptors in the fall armyworm (Spodoptera frugiperda). Insects, 2020,11(3):193.
[129] TIAN Z, QIU G, LI Y, ZHANG H, YAN W, YUE Q, SUN L. Molecular characterization and functional analysis of pheromone binding proteins and general odorant binding proteins from Carposina sasakii Matsumura (Lepidoptera: Carposinidae). Pest Management Science, 2019,75(1):234-245.
doi: 10.1002/ps.5107 pmid: 29869368
[130] LIU N Y, ZHU J Y, ZHANG T, DONG S L. Characterization of two odorant binding proteins in Spodoptera exigua reveals functional conservation and difference. Comparative Biochemistry and Physiology, 2017,213:20-27.
[131] YANG K, LIU Y, NIU D J, WEI D, LI F, WANG G R, DONG S L. Identification of novel odorant binding protein genes and functional characterization of OBP8 in Chilo suppressalis (Walker). Gene, 2016,591(2):425-432.
doi: 10.1016/j.gene.2016.06.052 pmid: 27374155
[132] TANG B, TAI S, DAI W, ZHANG C. Expression and functional analysis of two odorant-binding proteins from Bradysia odoriphaga (Diptera: Sciaridae). Journal of Agricultural and Food Chemsitry, 2019,67(13):3565-3374.
[133] YIN J, WANG C, FANG C, ZHANG S, CAO Y, LI K, LEAL W S. Functional characterization of odorant-binding proteins from the scarab beetle Holotrichia oblita based on semiochemical-induced expression alteration and gene silencing. Insect Biochemistry and Molecular Biology, 2019,104:11-19.
[134] VIEIRA F G, FRET S, HE X, ROZAS J, FIELD L M, ZHOU J J. Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analyses. PLoS ONE, 2012,7(8):e43034.
doi: 10.1371/journal.pone.0043034 pmid: 22952629
[135] LI K, YANG X, XU G, CAO Y, LU B, PENG Z. Identification of putative odorant binding protein genes in Asecodes hispinarum, a parasitoid of coconut leaf beetle (Brontispa longissima) by antennal RNA-Seq analysis. Biochemical and Biophysical Research Communications, 2015,467(3):514-520.
doi: 10.1016/j.bbrc.2015.10.008 pmid: 26454175
[136] LI Z Q, ZHANG S, LUO J Y, WANG S B, WANG C Y, LV L M, DONG S L, CUI J J. Identification and expression pattern of candidate olfactory genes in Chrysoperla sinica by antennal transcriptome analysis. Comparative Biochemistry and Physiology Part D Genomics Proteomics, 2015,15:28-38.
[137] WANG S N, PENG Y, LU Z Y, DHILOO K H, GU S H, LI R J, ZHOU J J, ZHANG Y J, GUO Y Y. Identification and expression analysis of putative chemosensory receptor genes in Microplitis mediator by antennal transcriptome screening. International Journal of Biological Sciences, 2015,11(7):737-751.
[138] ZHOU C X, MIN S F, TANG Y L, WANG M Q. Analysis of antennal transcriptome and odorant binding protein expression profiles of the recently identified parasitoid wasp, Sclerodermus sp. Comparative Biochemistry and Physiology Part D Genomics Proteomics, 2015,16:10-19.
[139] AHMED T, ZHANG T, WANG Z, HE K, BAI S. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum. Scientific Reports, 2016,6:24078.
doi: 10.1038/srep24078 pmid: 27090020
[140] SHENG S, LIAO C W, ZHENG Y, ZHOU Y, XU Y, SONG W M, HE P, ZHANG J, WU F A. Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis. Comparative Biochemistry and Physiology Part D Genomics Proteomics, 2017,22:20-31.
[141] WANG B, LIU Y, WANG G R. Chemosensory genes in the antennal transcriptome of two syrphid species, Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae). BMC Genomics, 2017,18(1):586.
[142] LIU J B, WU H, YI J Q, SONG Z W, LI D S, ZHANG G R. Transcriptome characterization and gene expression analysis related to chemoreception in Trichogramma chilonis, an egg parasitoid. Gene, 2018,678:288-301.
doi: 10.1016/j.gene.2018.07.065 pmid: 30107229
[143] ZHANG S, CHEN L Z, GU S G, CUI J J, GAO X W, ZHANG Y J, GUO Y Y. Binding characterization of recombinant odorant-binding proteins from the parasitic wasp, Microplitis mediator (Hymenoptera: Braconidae). Journal of Chemical Ecology, 2011,37(2):189-194.
pmid: 21184151
[144] LI Z Q, ZHANG S, CAI X M, LUO J Y, DONG S L, CUI J J, CHEN Z M. Distinct binding affinities of odorant-binding proteins from the natural predator Chrysoperla sinica suggest different strategies to hunt prey. Journal of Insect Physiology, 2018,111:25-31.
doi: 10.1016/j.jinsphys.2018.10.004 pmid: 30336148
[145] KREHER S A, KWON J Y, CARLSON J R. The molecular basis of odor coding in the Drosophila larva. Neuron, 2005,46(3):445-456.
pmid: 15882644
[146] MCBRIDE C S, ARGUELLO J R, O’MEARA B C. Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics, 2007,177(3):1395-1416.
doi: 10.1534/genetics.107.078683 pmid: 18039874
[147] LIU Y, LIU C, LIN K, WANG G. Functional specificity of sex pheromone receptors in the cotton bollworm Helicoverpa armigera. PLoS ONE, 2013,8(4):e62094.
pmid: 23614018
[148] CHANG H, LIU Y, AI D, JIANG X, DONG S, WANG G. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Current Biology, 2017,27(11):1610-1615.
doi: 10.1016/j.cub.2017.04.035 pmid: 28528905
[149] YANG K, HUANG L Q, NING C, WANG C Z. Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. Elife, 2017,6:e29100.
doi: 10.7554/eLife.31101 pmid: 29271742
[150] JIANG X J, GUO H, DI C, YU S, ZHU L, HUANG L Q, WANG C Z. Sequence similarity and functional comparisons of pheromone receptor orthologs in two closely related Helicoverpa species. Insect Biochemistry and Molecular Biology, 2014,48:63-74.
pmid: 24632377
[151] CHANG H, GUO M, WANG B, LIU Y, DONG S, WANG G. Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components. Scientific Reports, 2016,6:18742.
doi: 10.1038/srep18742 pmid: 26744070
[152] WANG G, VASQUEZ G M, SCHAL C, ZWIEBEL L J, GOULD F. Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. Insect Molecular Biology, 2011,20(1):125-133.
doi: 10.1111/j.1365-2583.2010.01045.x pmid: 20946532
[153] ZHANG J, YAN S, LIU Y, JACQUIN-JOLY E, DONG S, WANG G. Identification and functional characterization of sex pheromone receptors in the common cutworm (Spodoptera litura). Chemical Senses, 2015,40(1):7-16.
[154] LIU C, LIU Y, WALKER W B, DONG S, WANG G. Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hübner). Insect Biochemistry and Molecular Biology, 2013,43(8):747-754.
doi: 10.1016/j.ibmb.2013.05.009 pmid: 23751753
[155] MONTAGNE N, CHERTEMPS T, BRIGAUD I, FRANCOIS A, FRANCOIS M C, DE FOUCHIER A, LUCAS P, LARSSON M C, JACQUIN-JOLY E. Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila. European Journal of Neuroscience, 2012,36(5):2588-2596.
[156] BASTIN-HÉLINE L, DE FOUCHIER A, CAO S, KOUTROUMPA F, CABALLERO-VIDAL G, ROBAKIEWICZ S, MONSEMPES C, FRANÇOIS M C, RIBEYRE T, MARIA A, et al. A novel lineage of candidate pheromone receptors for sex communication in moths. Elife, 2019,8:e49826.
[157] ZHANG J, LIU C C, YAN S W, LIU Y, GUO M B, DONG S L, WANG G R. An odorant receptor from the common cutworm (Spodoptera litura) exclusively tuned to the important plant volatile cis-3-hexenyl acetate. Insect Molecular Biology, 2013,22(4):424-432.
doi: 10.1111/imb.12033 pmid: 23679893
[158] YAN S W, ZHANG J, LIU Y, LI G Q, WANG G R. An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants. Journal of Insect Physiology, 2015,79:36-41.
pmid: 26050917
[159] ZHANG Z, ZHANG M, YAB S, WANG G, LIU Y. A female-biased odorant receptor from Apolygus lucorum (Meyer-Dur) tuned to some plant odors. International Journal of Molecular Sciences, 2016,17(8):1165.
[160] CAO S, LIU Y, GUO M, WANG G. A conserved odorant receptor tuned to floral volatiles in three Heliothinae species. PLoS ONE, 2016,11(5):e0155029.
doi: 10.1371/journal.pone.0155029 pmid: 27163122
[161] ZHANG R, WANG B, GROSSI G, FALABELLA P, LIU Y, YAN S, LU J, XI J, WANG G. Molecular basis of alarm pheromone detection in aphids. Current Biology, 2017,27(1):55-61.
[162] LI R T, HUANG L Q, DONG J F, WANG C Z. A moth odorant receptor highly expressed in the ovipositor is involved in detecting host-plant volatiles. Elife, 2020,9:e53706.
doi: 10.7554/eLife.53706 pmid: 32436842
[163] SUN Y L, DONG J F, NING C, DING P P, HUANG L Q, SUN J G, WANG C Z. An odorant receptor mediates the attractiveness of cis-jasmone to Campoletis chlorideae, the endoparasitoid of Helicoverpa armigera. Insect Molecular Biology, 2019,28(1):23-34.
pmid: 30058747
[164] WANG Y, CHEN Q, GUO J, LI J, WANG J, WEN M, ZHAO H, REN B. Molecular basis of peripheral olfactory sensing during oviposition in the behavior of the parasitic wasp Anastatus japonicus. Insect Biochemistry and Molecular Biology, 2017,89:58-70.
doi: 10.1016/j.ibmb.2017.09.001 pmid: 28912112
[165] PICKETT J A, KHAN Z R. Plant volatile-mediated signalling and its application in agriculture: Successes and challenges. New Phytologist, 2016,212(4):856-870.
[166] JAMES D G. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environmental Entomology, 2003,32(5):977-982.
[167] KAPLAN I. Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire? Biological Control, 2012,60(2):77-89.
[168] UEFUNE M, CHOH Y, ABE J, SHIOJIRI K, SANNO K, TAKABAYASHI J. Application of synthetic herbivore-induced plant volatiles causes increased parasitism of herbivores in the field. Journal of Applied Entomology, 2012,136(8):561-567.
[169] LEE J C. Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. Environmental Entomology, 2010,39(2):653-660.
pmid: 20388299
[170] THALER J S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature, 1999,399:686-688.
[171] LOU Y G, DU M H, TURLINGS T C, CHENG J A, SHAN W F. Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. Journal of Chemical Ecology, 2005,31(9):1985-2002.
doi: 10.1007/s10886-005-6072-9 pmid: 16132208
[172] MORAES M C, LAUMANN R A, PAREJA M, SERENO F T, MICHEREFF M F, BIRKETT M A, PICKETT J A, BORǴES M. Attraction of the stink bug egg parasitoid Telenomus podisito defence signals from soybean activated by treatment with cis-jasmone. Entomologia Experimentalis et Applicata, 2009,131(2):178-188.
[173] XIN Z, YU Z, ERB M, TURLINGS T C J, WANG B, QI J, LIU S, LOU Y. The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp. New Phytologist, 2012,194(2):498-510.
[174] DEGENHAR J, GERSHENZON J, BALDWIN I T, KESSLER A. Attracting friends to feast on foes: Engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology, 2003,14(2):169-176.
doi: 10.1016/s0958-1669(03)00025-9 pmid: 12732318
[175] DICKE M, BALDWIN I T. The evolutionary context for herbivore- induced plant volatiles: Beyond the ‘cry for help’. Trends in Plant Science, 2010,15(3):167-175.
doi: 10.1016/j.tplants.2009.12.002 pmid: 20047849
[176] GIBSON R, PICKETT J. Wild potato repels aphids by release of aphids alarm pheromone. Nature, 1983,302(5909):608-609.
[177] PICKETT J. Production of behaviour-controlling chemicals by crop plants. Philosophical Transactions of the Royal Society of London, 1985,310(1144):235-239.
[178] BEALE M H, BIRKETT M A, BRUCE T J, CHAMBERLIN K, FIELD L M, HUTTLY A K, MARTIN J L, PARKER R, PHILLIPS A L, PICKETT J A, et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(27):10509-10513.
[179] BRUCE T J, ARADOTTIR G I, SMART L E, MARTIN J L, CAULFIELD J C, DOHERTY A, SPARKS C A, WOODCOCK C M, BIRKETT M A, NAPIER J A, JONES H D, PICKETT J A. The first crop plant genetically engineered to release an insect pheromone for defence. Scientific Reports, 2015,5:11183.
doi: 10.1038/srep11183 pmid: 26108150
[180] DEGEN T, DILLMANN C, MARION-POLL F, TURLINGS T C. High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiology, 2004,135(4):1928-1938.
[181] HOBALLAH M E, TAMO C, TURLINGS T C. Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid cotesia marginiventris: Is quality or quantity important? Journal of Chemical Ecology, 2002,28(5):951-968.
doi: 10.1023/a:1015253600083 pmid: 12049233
[182] MILLER J R, COWLES R S. Stimulo-deterrent diversion: A concept and its possible application to onion maggot control. Journal of Chemical Ecology, 1990,16(11):3197-3212.
doi: 10.1007/BF00979619 pmid: 24263303
[183] COOK S M, KHAN Z R, PICKETT J A. The use of push-pull strategies in integrated pest management. Annual Review of Entomology, 2007,52:375-400.
pmid: 16968206
[184] EIGENBRODE S D, BIRCH A N, LINDZEY S, MEADOW R, SNYDER W E. A mechanistic framework to improve understanding and applications of push-pull systems in pest management. Journal of Applied Ecology, 2016,53:202-212.
[185] KHAN Z R, AMPONG-NYARKO K, CHILISWA P, HASSANALI A, KIMANI S, LWANDE W, OVERHOLT W A, PICKETT J A, SMART L E, WADHAMS L J, WOODCOCK C M. Intercropping increases parasitism of pests. Nature, 1997,388:631-632.
[186] PICKETT J A, WOODCOCK C M, MIDEGA C A, KHAN Z R. Push-pull farming systems. Current Opinion in Biotechnology, 2014,26:125-132.
doi: 10.1016/j.copbio.2013.12.006 pmid: 24445079
[1] ZHAO Man, TANG JinRong, NIU LinLin, CHEN Lin, LIANG GeMei. Ecological Safety Evaluation of Different Bt Proteins on the Predator Chrysopa pallens [J]. Scientia Agricultura Sinica, 2019, 52(9): 1541-1552.
[2] WANG Ye, HAN Lei, DONG Jie, HUANG JiaXing, WU Jie. Identification and Characteristics of Odorant Receptors in Bumblebee, Bombus lantschouensis [J]. Scientia Agricultura Sinica, 2017, 50(10): 1904-1913.
[3] ZHAO Hui-ting, GAO Peng-fei, ZHANG Gui-xian, TIAN Song-hao, YANG Shan-shan, MENG Jiao, JIANG Yu-suo. Expression and Localization Analysis of the Odorant Receptor Gene Orco in Drones Antennae of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2015, 48(4): 796-803.
[4] ZHANG Fan, LI Shu, XIAO Da, ZHAO Jing, WANG Ran, GUO Xiao-jun, WANG Su. Progress in Pest Management by Natural Enemies in Greenhouse Vegetables in China [J]. Scientia Agricultura Sinica, 2015, 48(17): 3463-3476.
[5] KONG Chang-Yi-1, WANG Gui-Rong-2, LIU Yang-2, YAN Shan-Chun-1. Gene Cloning and Expression Analysis of Three Odorant Receptors in the Diamondback Moth (Plutella xylostella) [J]. Scientia Agricultura Sinica, 2014, 47(9): 1735-1742.
[6] LIU Cheng-Cheng-12, LIU Yang-2, ZHANG Jin-12, WANG Gui-Rong-2, DONG Shuang-Lin-1. Cloning and Localization of an Odorant Receptor Gene OR18 in the Antenna of Spodoptera exigua [J]. Scientia Agricultura Sinica, 2013, 46(20): 4263-4271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!