Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (19): 3702-3713.doi: 10.3864/j.issn.0578-1752.2017.19.007

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Productivity and Water Use Efficiency of Maize-Peanut Intercropping Systems in the Semi-Arid Region of Western Liaoning Province

GAO YanLiang1,2,3, SUN ZhanXiang1, BAI Wei1, FENG LiangShan1, YANG Ning1, CAI Qian1,3, FENG Chen1, ZHANG Zhe1,3   

  1. 1Liaoning Academy of Agricultural Sciences/Liaoning Province Dry Saving Water Engineering Center, Shenyang 1101612No.1 High School in Wulate County, Wulate County 014400, Inner Mongolia; 3College of Land and Environment, Shenyang Agricultural University, Shenyang 110866
  • Received:2017-02-15 Online:2017-10-01 Published:2017-10-01

Abstract: 【Objective】In the experiments, the mechanism of maize-peanut intercropping in increase of land productivity and water use efficiency was studied through comparing yield, land equivalent ratio and water use efficiency, and the optimal maize-peanut intercropping systems in semi-arid region of western Liaoning province were proposed.【Method】Field experiments were conducted in 2015 and 2016 in Fuxin Scientific Observation Research Stations of Agricultural Environment and Cultivated Land Conservation. Four treatments were designed, 2 rows maize and 4 rows peanut (2M:4P), 4 rows maize and 4 rows peanut (4M:4P), sole maize (S-M) and sole peanut (S-P). Yield, land equivalent ratio, water distribution and water use equivalent ratio were calculated to analyze the positive effects on productivity and water use efficiency. 【Result】 Yield of maize and peanut in intercropping system decreased compared with the sole system because of resource competition. But the land equivalent ratio (LER) in 2M:4P and 4M:4P were, respectively, 1.10-1.24 and 1.12-1.23, indicating the advantage of intercropping. The partial land equivalent ratio (LERp) of peanut in intercropping was 0.41-0.57, suggesting that peanut can decrease the disadvantage of intercropping with cereal crops. Soil water content in peanut strip was higher than that of maize strip but lower than the sole peanut. This finding showed that intercropped maize absorbed water from peanut strip. Water use equivalent ratio (WER) was 1.12-1.23 in 2M:4P intercropping system and 1.16-1.17 in 4M:4P intercropping system. Water use efficiency in intercropping system was increased.【Conclusion】The results indicated that maize-peanut intercropping can increase land and use efficiency in the semi-arid region of western Liaoning province. 2M:4P intercropping system performed better in 2015 with less rain. But in 2016 with more rain, 4M:4P intercropping system had higher land and water use efficiency. And the yield of 4M:4P intercropping system remained stable between two years. So in the semi-arid region of western Liaoning province, 4M:4P intercropping system can decrease climate risk. The results of this study contribute to optimize the field configuration.

Key words: maize-peanut intercropping, yield, soil moisture, LER, WER

[1]    高阳, 段爱旺, 刘浩, 刘战东, 申孝军. 间作条件下水分在作物间的分配与利用研究进展.农业工程学报, 2007, 23(7): 281-285.
Gao Y, Duan A W, Liu H, Liu Z D, Shen X J. Research progress of water partitioning and use in intercropping systems. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(7): 281-285. (in Chinese)
[2]    王旗, 丁留谦, 苏志诚, 张文婷, 高辉, 张立祯. 基于网络监测平台的农林间作耗水特征和灌溉制度.节水灌溉, 2014(10): 1-5.
Wang Q, Ding L Q, Su Z C, Zhang W T, Gao H, Zhang L Z. Water consumption characteristic and irrigation scheduling in agroforestry systems. Water Saving Irrigation, 2014(10): 1-5. (in Chinese)
[3]    贾微, 孙占祥, 白伟, 郑家明, 杜桂娟, 冯良山, 杨宁, 吕林友. 科尔沁沙地南缘旱作农田不同作物配置土壤水分效应及作物响应研究.干旱地区农业研究, 2014, 32(2): 91-98.
Jia W, Sun Z X, Bai W, Zheng J M, Du G J, Feng L S, YANG N, LÜ L Y. Soil water content and crop response under intercropping of different crops in dry farmland of the southern Kerqin sandy land. Agricultural Research in the Arid Areas, 2014, 32(2): 91-98. (in Chinese)
[4]    李楠, 任亮, 刘江. 玉米花生间作复合模式防风蚀技术研究.生物灾害科学, 2013, 36(2): 213-216.
Li N, Ren L, Liu J. Technology of wind erosion resistance in maize/peanut intercropping. Biological Disaster Science, 2013, 36(2): 213-216. (in Chinese)
[5]    苟芳, 张立祯, 董宛麟, 于洋, 邸万通, 赵沛义, 妥德宝, 潘学标. 农牧交错带不同间套作模式的土地生产力.农业工程学报, 2013, 29(6): 129-141.
Gou F, Zhang L Z, Dong W L, Yu Y, Di W T, Zhao P Y, Tuo D B, Pan X B. Productivity of strip intercropping systems in agro-pastoral ecotone. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(6): 129-141. (in Chinese)
[6]    左元梅, 张立祯, 李隆. 西北干旱区利用间套作促进能源植物的高产高效.生命科学, 2014, 26(5): 447-450.
Zuo Y M, Zhang L Z, Li L. Intercropping for enhancing bioenergy crops productivity with efficient resource use in arid area of North-West China. Chinese Bulletin of Life Sciences, 2014, 26(5): 447-450. (in Chinese)
[7]    Fan F L, Zhang F S, Song Y N, Sun J H, Bao X G, Guo T W, Li L. Nitrogen fixation of faba bean(Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant and Soil, 2006, 283(1): 275-286.
[8]    Li Q Z, Sun J H, Wei X J, Christie P, Zhang F S, Li L. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant and Soil, 2011, 339(1): 147-161.
[9]    Liu S, Yang J Y, Zhang X Y, Drury C F, Reynolds W D, Hoogenboom G. Modelling crop yield, soil water content and soil temperature for a soybean-maize rotation under conventional and conservation tillage systems in Northeast China. Agricultural Water Management, 2013, 123(10): 32-44.
[10]   Zuo Y M, Zhang F S, Li X L, Cao Y P. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant and Soil, 2000, 220(1/2): 13-25.
[11]   叶优良, 肖焱波, 黄玉芳, 李隆. 小麦/玉米和蚕豆/玉米间作对水分利用的影响.中国农学通报, 2008, 24(3): 445-449.
Ye Y L, Xiao Y B, Huang Y F, Li L. Effect of wheat/maize and faba bean/maize inter cropping on water use. Chinese Agricultural Science Bulletin, 2008, 24(3): 445-449. (in Chinese)
[12]   李来祥, 刘广才, 李隆. 小麦/玉米间作优势及地上部与地下部因素的相对贡献研究.干旱地区研究, 2008, 26(1): 74-80.
Li L X, Liu G C, Li L. Intercropping advantage and contribution of above-ground and under-ground interactions in wheat-maize intercropping. Agricultural Research in the Arid Areas, 2008, 26(1): 74-80. (in Chinese)
[13]   Zhang L, Werf W V D, Zhang S, Li B, Spiertz H. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research, 2007, 103(3): 178-188.
[14]   高阳, 段爱旺, 刘战东, 王和洲, 陈金平, 刘安能. 玉米/大豆间作条件下的作物根系生长及水分吸收.应用生态学报, 2009, 20(2): 307-313.
Gao Y, Duan A W, Liu Z D, Wang H Z, Chen J P, Liu A N. Crop root growth and water uptake in maize/soybean strip intercropping. Chinese Journal of Applied Ecology, 2009, 20(2): 307-313. (in Chinese)
[15]   谢运河, 李小红, 王业建, 李立, 周虹. 玉米大豆间作行比对早熟春大豆农艺性状及产量的影响.湖南农业科学, 2011(5): 26-28.
Xie Y H, Li X H, Wang Y J, Li L, Zhou H. Influences of different intercropping row-ratios between maize and soybean on agronomic characters and yield of precocious spring soybean. Hunan Agricultural Sciences, 2011(5): 26-28. (in Chinese)
[16]   魏镇泽, 柴强, 黄鹏, 于爱忠. 玉米间作豌豆水分利用效率对供水水平和种植密度的响应.西北农业学报, 2012, 21(8): 135-138.
Wei Z Z, Chai Q, Huang P, Yu A Z. The Responses of WUE to irrigation and plant density level under maize pea intercropping. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(8): 135-138. (in Chinese)
[17]   焦念元, 宁堂原, 杨萌珂, 付国占, 尹飞, 徐国伟, 李增嘉. 玉米花生间作对玉米光合特性及产量形成的影响.生态学报, 2013, 33(14): 4324-4330.
Jiao N Y, Ning T Y, Yang M K, Fu G Z, Yin F, Xu G W, Li Z J. Effects of maize-peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecologica Sinica, 2013, 33(14): 4324-4330. (in Chinese)
[18]   房增国, 左元梅, 李隆, 张福锁. 玉米-花生混作对系统内氮营养的影响研究.中国生态农业学报, 2005, 13(3): 63-64.
Fang Z G, Zuo Y M, Li L, Zhang F S. Effects of mixed cropping of maize and peanut on the N nutrition in cropping system. Chinese Journal of Eco-Agriculture, 2005, 13(3): 63-64. (in Chinese)
[19]   Ding H, Duan L, Wu H, Yang R, Ling H, Li W X, Zhang F. Regulation of ahfro1, an fe(Ⅲ)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize. Physiologia Plantarum, 2009, 136(3): 274-283.
[20]   Zuo Y, Zhang F. Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil. Plant and Soil, 2008, 306(1): 23-36.
[21]   焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013, 37(11): 1010-1017.
Jiao N Y, Yang M K, Ning T Y, Yin F, Xu G W, Fu G Z, Li Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Journal of Plant Ecology, 2013, 37(11): 1010-1017. (in Chinese)
[22]   左元梅, 李晓林. 玉米花生间作对花生铁营养的影响.植物营养与肥料学报, 1997, 3(2): 153-159.
Zuo Y M, Li X L. Effect of maize/peaunt intercropping on iron nutrition of peanut. Plant Nutrition and Fertilizer Science, 1997, 3(2): 153-159. (in Chinese)
[23]   Zhang L, Spiertz H, Zhang S, Li B, Werf W V D. Nitrogen economy in relay intercropping systems of wheat and cotton. Plant and Soil, 2008, 303(1): 55-68.
[24]   董宛麟, 张立祯, 于洋, 苟芳, 赵沛义, 妥德宝, 潘学标. 向日葵和马铃薯间作模式的生产力及水分利用.农业工程学报, 2012, 28(18): 127-133.
Dong W L, Zhang L Z, Yu Y, Gou F, Zhao P Y, Tuo D B, Pan X B. Productivity and water use in sunflower intercropped with potato. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(18): 127-133. (in Chinese).
[25]   Yang F, Liao D, Wu X, Gao R, Fan Y, Raza M A, WANG X, YONG T, LIU W, LIU J, DU J, SHU K, YANG W. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203(3): 16-23.
[26]   张莹, 孙占祥, 李爽, 冯良山, 杨宁, 刘洋, 侯志研, 白伟, 文凤. 辽西半干旱区玉米/大豆单间作田间耗水规律研究.干旱地区农业研究, 2010, 28(5): 43-46.
Zhang Y, Sun Z X, Li S, Feng L S, Yang N, Liu Y, Hou Z Y, Bai W, Wen F. Study on water consumption of corn and soybean in different cropping patterns on the semi-arid region of western Liaoning province. Agricultural Research in the Arid Areas, 2010, 28(5): 43-46. (in Chinese)
[27]   刘洋, 孙占祥, 白伟, 郑家明, 侯志研, 张莹, 文凤. 玉米大豆间作对辽西地区作物生长和产量的影响.大豆科学, 2011, 30(2): 224-228.
Liu Y, Sun Z X, Bai W, Zheng J M, Hou Z Y, Zhang Y, Wen F. Effect of maize and soybean interplanting on crops growth and yield in western Liaoning province. Soybean Science, 2011, 30(2): 224-228. (in Chinese)
[28]   焦念元, 李亚辉, 杨潇, 尹飞, 马超, 齐付国, 刘领, 熊瑛. 玉米/花生间作行比和施磷对玉米光合特性的影响.应用生态学报, 2016, 27(9): 2959-2967.
Jiao N Y, Li Y H, Yang X, Yin F, Ma C, Qi F G, Liu L, Xiong Y. Effects of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chinese Journal of Applied Ecology, 2016, 27(9): 2959-2967. (in Chinese)
[29]   高砚亮, 孙占祥, 白伟, 冯良山, 蔡倩, 冯晨, 张哲. 玉米‖花生间作系统作物产量及根系空间分布特征的影响.玉米科学, 2016, 24(6): 79-87.
Gao Y L, Sun Z X, Bai W, Feng L S, Cai Q, Feng C, Zhang Z. Spatial distribution characteristics of root system and the yield in maize‖peanut intercropping system. Journal of Maize Sciences, 2016, 24(6): 79-87. (in Chinese)
[30]   张绪成, 王红丽, 于显枫, 侯慧芝, 方彦杰, 马一凡. 半干旱区全膜覆盖垄沟间作种植马铃薯和豆科作物的水热及产量效应.中国农业科学, 2016, 49(3): 468-481.
Zhang X C, Wang H L, Yu X F, Hou H Z, Fang Y J, Ma Y F. The study on the effect of potato and beans intercropping with whole field plastics mulching and ridge-furrow planting on soil thermal- moisture status and crop yield on semi-arid area. Scientia Agricultura Sinica, 2016, 49(3): 468-481. (in Chinese)
[31]   柴强, 杨彩红, 黄高宝. 交替灌溉对西北绿洲区小麦间作玉米水分利用的影响.作物学报, 2011, 37(9): 1623-1630.
Chai Q, Yang C H, HUang G B. Water use characteristics of alternately irrigated wheat/maize intercropping in Oasis region of Northwestern China. Acta Agronomica Sinica, 2011, 37(9): 1623-1630. (in Chinese)
[32]   苏本营, 陈圣宾, 李永庚, 杨文钰. 间套作种植提升农田生态系统服务功能.生态学报, 2013, 33(14): 4505-4514.
Su B Y, Chen S B, Li Y G, Yang W Y. Intercropping enhances the farmland ecosystem services. Acta Ecologica Sinica, 2013, 33(14): 4505-4514. (in Chinese)
[33]   高砚亮, 孙占祥, 白伟, 郑家明, 冯良山, 杨宁, 冯晨, 蔡倩, 张哲. 玉米花生间作效应研究进展.辽宁农业科学, 2016(1): 41-46.
Gao Y L, Sun Z X, Bai W, Zheng J M, Feng L S, Yang N, Feng C, Cai Q, Zhang Z. The research progress on the interspecific interaction of the peanut-maize intercropping system. Liaoning Agricultural Sciences, 2016(1): 41-46. (in Chinese)
[34]   云雷, 毕华兴, 任怡, 马雯静, 田晓玲. 晋西黄土区核桃玉米间作界面土壤水分变化规律及其对玉米产量的影响.西北林学院学报, 2010, 25(1): 47-51.
Yun L, Bi H X, Ren Y, Ma W J, Tian X L. Soil moisture distribution and the effects to grain production in walnut-maize agroforestry system on the Loess Plateau in West Shanxi province. Journal of Northwest Forestry University, 2010, 25(1): 47-51. (in Chinese)
[35]   Sekiya N, Araki H, Yano K. Applying hydraulic lift in an agroecosystem: Forage plants with shoots removed supply water to neighboring vegetable crops. Plant and Soil, 2011, 341(1/2): 39-50.
[36]   赵雪娇, 孙东宝, 王庆锁. 玉米‖甘蓝间作对土壤水分时空分布及水分利用效率的影响.中国农业气象, 2012, 33(3): 374-381.
Zhao X J, Sun D B, Wang Q S. Effect of intercropped models of maize and cabbage on the temporal and spatial distribution of soil moisture and water use efficiency. Chinese Journal of Agrometeorology, 2012, 33(3): 374-381. (in Chinese)
[37]   叶优良, 李隆, 孙建好. 三种豆科作物与玉米间作对水分利用的影响.灌溉排水学报, 2008, 27(4): 33-36.
Ye Y L, Li L, Sun J H. Effect of beans intercropped with maize on water use. Journal of Irrigation and Drainage, 2008, 27(4): 33-36. (in Chinese)
[38]   Zhang W P, Liu G C, Sun J H, Zhang L Z, Weiner J, Li L. Growth trajectories and interspecific competitive dynamics in wheat/maize and barley/maize intercropping. Plant and Soil, 2015, 397(1/2): 227-238.
[39]   Xia H Y, Zhao J H, Sun J H, Bao X G, Christie P, Zhang F  S, Li L. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013, 150(15): 52-62.
[40]   Mao L, Zhang L, Li W, Werf W V D, Sun J, Spiertz H, Li L. Yield advantage and water saving in maize/pea intercrop. Field Crops Research, 2012, 138(3): 11-20.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!