Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (18): 3482-3493.doi: 10.3864/j.issn.0578-1752.2017.18.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect of Vertically Cutting Roots at Different Horizontal Distances from Plant on Leaf Photosynthetic Characteristics and Yield of Summer Maize with Different Root Types

LU DuXu1,2, XU ZhenHe1, LIU Mei1, LIU Peng1, DONG ShuTing1, ZHANG JiWang1, ZHAO Bin1, LI Geng1, LIU ShaoKun3, LI QinFang4   

  1. 1College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong; 2Zibo Academy of Agricultural Sciences, Zibo 255033, Shandong; 3Shandong Denghai Seeds Co. Ltd./Shandong Provincial Key Laboratory of Corn Breeding and Cultivation Technology, Laizhou 261448, Shandong; 4Linyi Agriculture and Forest Department, Linyi 251500, Shandong
  • Received:2017-02-06 Online:2017-09-16 Published:2017-09-16

Abstract: 【Objective】This study was conducted to evaluate the regulating effects of root in different distances to plant center on leaf photosynthetic characteristics and yield, aimed to provide theoretical supports for screening ideal root system architecture to obtain further yield increase. 【Method】Two summer maize cultivars with different root types, Denghai 661 (DH661, deep root type) and Zhengdan 958 (ZD958, shallow root type) were chosen as experimental materials. At the V12 stage, roots were cut vertically at different horizontal distance of 10 cm (T-10), 20 cm (T-20) from maize plant center at 60 cm soil depth, while no roots cutting as control (CK), to investigate the role of root in different soil profiles in regulating yield and leaf photosynthetic characteristics. 【Result】Results shows that, roots of these maize varieties were mainly located within a horizontal area 0-10 cm from the plant center and in this area, 83.13% of total root biomass, 69.55% of total root length, 68.74% of root surface area and 66.44% of root volume were located for DH661, but for the ZD958, percentage of these index were 75.19%, 51.17%, 53.85%, 56.49%, respectively. Compared to ZD958, the root distribution in horizontal of DH 661 was more compact and less impact caused by cutting root in both sides of plant in the distance of 10 cm or 20 cm to plant center. Roots excision made a prominent impact on the photosynthetic characteristics of the two maize varieties leaves, being followed by inhibiting the growth of leaves before anthesis and accelerating senescence after bloom. Root pruning reduced chlorophyll content of two maize varieties and net photosynthetic rate in two years, at tasseling stage (VT), the chlorophyll content of T-20 treatment of DH661 decreased by 4.29% and 6.32%, respectively, the net photosynthetic rate decreased by 5.16% and 4.66%, the reduced rate of T-10 were 6.37% and 6.86%, 6.47% and 8.66%. The reduced photosynthetic rate of T-20 treatment of ZD958 were 6.52% and 9.91%, 6.48% and 9.15%, in T-10 treatments were 15.40% and 15.01%, 11.89% and 15.49%. At the same time, resulted in significant root shoot biomass and grain yield decreased, the index decline was T-10 > T-20, and the deep root type of DH661 was significantly less than the shallow one ZD958. 【Conclusion】Cutting the roots vertically decreased the ability of net photosynthetic of ear leaf, shoot biomass and final yield of the two maize varieties with different root architecture significantly. The range of reduce increases when the cutting position is close to the main stem. The impact of T-20 on DH661 is obviously weaker than that on ZD958. Compare the root architecture, distribution and the root ability of two maize reserved after cutting vertically, the root performance of deep type is more adaptable to greater planting density.

Key words: summer maize, root, root excision, leaf photosynthetic characteristic, yield

[1]    李耕. 不同保绿类型玉米叶片光合特性与蛋白质组差异及氮素调控[D]. 山东: 山东农业大学, 2013.
Li G. Changes on photosynthetic characteristics and differential proteomics of leaf in different stay green type corn and N-fertilizer regulation[D]. Shandong: Shandong Agricultural University, 2013. (in Chinese)
[2]    刘晶淼, 安顺清, 廖荣伟, 任三学, 梁宏. 玉米根系在土壤剖面中的分布研究. 中国生态农业学报, 2009, 17(3): 517-521.
Liu J M, An S Q, Liao R W, Ren S X, Liang H. Temporal variation and spatial distribution of the root system of corn in a soil profile. Chinese Journal of Eco-Agriculture, 2009, 17(3): 517-521. (in Chinese)
[3]    Tokatlidis I S, Koutroubas S D. A review of maize hybrids' dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 2004, 88(2/3): 103-114.
[4]    Rubio G, Walk T, Ge Z Y, Yan X, Liao H, Lynch J P. Root gravitropism and below-ground competition among neighboring plants: a modelling approach. Annals of Botany, 2001, 88(5): 929-940.
[5]    王敬锋, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵明, 杨吉顺, 李耕. 不同基因型玉米根系特性与氮素吸收利用的差异. 中国农业科学, 2011, 44(4): 699-707.
Wang J F, Liu P, Zhao B Q, Dong S T, Zhang J W, Zhao M, Yang J S, Li G. Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes. Scientia Agricultura Sinica, 2011, 44(4): 699-707. (in Chinese)
[6]    Teare I D, Peet M M. Crop-Water Relations. New York: A. Wiley Interscience Publication, 1982: 186-208.
[7]    李少昆, 涂华玉, 张旺峰, 杨刚. 玉米根系在土壤中的分布及与地上部分的关系. 新疆农业科学, 1992(3): 99-103.
Li S K, Tu H Y, Zhang W F, Yang G. The root distribution of maize in soil profile and its relationship to the shoot. Xinjiang Agricultura Sciences, 1992(3): 99-103. (in Chinese)
[8]    Hammer G L, Dong Z S, Mclean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? Crop Science, 2009, 49(1): 299-312.
[9]    王空军, 郑洪建, 刘开昌, 张吉旺, 董树亭, 胡昌浩. 我国玉米品种更替过程中根系时空分布特性的演变. 植物生态学报, 2001, 25(4): 472-475.
Wang K J, Zheng H J, Liu K C, Zhang J W, Dong S T, Hu C H. Evolution of maize root distribution in space-time during maize varieties replacing in China. Acta Phytoecologica Sinica, 2001, 25(4): 472-475. (in Chinese)
[10]   宋日, 吴春胜, 马丽艳, 牟金明, 徐克章, 郭继勋. 有机无机肥料配合施用对玉米根系的影响. 作物学报, 2002, 28(3): 393-396.
Song R, Wu C S, Ma L Y, MOU J M, XU K Z, GUO J X. Effect of application of combined fertilizers on the root system of maize. Acta Agronomica Sinica, 2002, 28(3): 393-396. (in Chinese)
[11]   王彦荣, 华泽田, 陈温福, 代贵金, 郝宪彬, 王岩, 张忠旭, 隋国民. 粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响. 作物学报, 2003, 29(6): 892-898.
Wang Y R, Hua Z T, Chen W F, Dai G J, Hao X B, Wang Y, Zhang Z X, Sui G M. Relation between root and leaf senescence and their effects on grain-filling in Japonica rice. Acta Agronomica Sinica, 2003, 29(6): 892-898. (in Chinese)
[12]   Qi W Z, Liu H H, Liu P, Dong S T, Zhao B Q, Hwat B S, Li G, Liu H D, Zhang J W, Zhao B. Morphological and physiological characteristics of corn ( Zea mays L.) roots from cultivars with different yield potentials. European Journal of Agronomy, 2012, 38(2): 54-63.
[13]   王飞飞, 张善平, 邵立杰, 李耕, 陈晓璐, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵斌. 夏玉米不同土层根系对花后植株生长及产量形成的影响. 中国农业科学, 2013, 46(19): 4007-4017.
Wang F F, Zhang S P, Shao L J, Li G, Chen X L, Liu P, Zhao B Q, Dong S T, Zhang J W, Zhao B. Effect of root in different soil layers on plant growth and yield formation after anthesis in summer maize. Scientia Agricultura Sinica, 2013, 46(19): 4007-4017. (in Chinese)
[14]   宋日, 吴春胜, 王成己, 郭继勋. 玉米深层根系对地上部营养生长和产量的影响. 玉米科学, 2002, 10(3): 63-66.
Song R, Wu C S, Wang C J, Guo J X. Effects of deep root system on above-ground vegetative growth and yield in maize. Journal of Maize Sciences, 2002, 10(3): 63-66. (in Chinese)
[15]   WANG X B, ZHOU B Y, SUN X F, YUE Y, MA W, ZHAO M. Soil tillage management affects maize grain yield by regulating spatial distribution coordination of roots, soil moisture and nitrogen status. PLoS ONE, 2015, 10(6): e0129231.
[16]   吕丽华, 赵明, 赵久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008, 41(9): 2624-2632.
LÜ L H, Zhao M, Zhao J R, Tao H B, Wang P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008, 41(9): 2624-2632. (in Chinese)
[17]   赵世杰, 史国安, 董新纯. 植物生理实验指导. 北京: 中国农业科学技术出版社, 1998: 55-60.
Zhao S J, Shi G A, Dong X C. Experimental Guide for Plant Physiology. Beijing: China Agricultural Science and Technology Press, 1998: 55-60. (in Chinese)
[18]   Lynch J P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013, 112(2): 347-357.
[19]   慕自新, 张岁岐, 郝文芳, 梁爱华, 梁宗锁. 玉米根系形态性状和空间分布对水分利用效率的调控. 生态学报, 2005, 25(11): 2895-2900.
Mu Z X, Zhang S Q, Hao W F, Liang A H, Liang Z S. The effect of root morphological traits and spatial distribution on WUE in maize. Acta Ecologica Sinica, 2005, 25(11): 2895-2900. (in Chinese)
[20]   米国华, 陈范骏, 吴秋平, 赖宁薇, 袁力行, 张福锁. 玉米高效吸收氮素的理想根构型. 中国科学(生命科学), 2010, 40(12): 1112-1116.
Mi G H, Chen F J, Wu Q P, Lai N W, Yuan L X, Zhang F S. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Scientia Sinica Vitae (Life Science), 2010, 40(12): 1112-1116. (in Chinese)
[21]   Rogers E D, Benfey P N. Regulation of plant root system architecture: Implications for crop advancement. Current Opinion in Biotechnology, 2015, 32: 93-98.
[22]   彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较: 模拟与应用. 中国农业科学, 2009, 42(3): 843-853.
Peng Y F, Zhang W P, Li C J. Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application. Scientia Agricultura Sinica, 2009, 42(3): 843-853. (in Chinese)
[23]   蔡红光, 刘剑钊, 张秀芝, 闫孝贡, 张洪喜, 袁静超, 盖嘉慧, . 不同根构型玉米的根系形态及其对密度的响应. 玉米科学, 2014, 22(5): 81-85.
Cai H G, Liu J Z, Zhang X Z, Yan X G, Zhang H X, Yuan J C, Gai J H, Ren J. Root morphology and its response to planting density in different genotypes with root architecture. Journal of Maize Sciences, 2014, 22(5): 81-85. (in Chinese)
[24]   杨罗锦, 陶洪斌, 王璞. 种植密度对不同株型玉米生长及根系形态特征的影响. 应用与环境生物学报, 2012, 18(6): 1009-1013.
Yang L J, Tao H B, Wang P. Effect of planting density on plant growth and root morphology of maize. Chinese Journal Applied and Environmental Biology, 2012, 18(6): 1009-1013. (in Chinese)
[25]   李宗新, 陈源泉, 王庆成, 刘开昌, 高旺盛, 隋鹏. 高产栽培条件下种植密度对不同类型玉米品种根系时空分布动态的影响. 作物学报, 2012, 38(7): 1286-1294.
Li Z X, Chen Y Q, Wang Q C, Liu K C, Gao W S, Sui P. Influence of planting density on root spatio-temporal distribution of different types of maize under high-yielding cultivation conditions. Acta Agronomica Sinica, 2012, 38(7): 1286-1294. (in Chinese)
[26]   Ehlers W, Hamblin A P, Tennant D, Vanderploeg R R. Root system parameters determining water uptake of field crops. Irrigation Science, 1991, 12(3): 115-124.
[27]   Doussan C, Pierret A, Garrigues E, Pages L. Water uptake by plant roots: II. Modelling of water transfer in the soil root- system with explicit account of flow within the root system- comparison with experiments. Plant Soil, 2006, 283(1): 99-117.
[28]   徐振和, 梁明磊, 路笃旭, 刘梅, 刘鹏, 董树亭, 张吉旺, 赵斌, 李耕, 杨金胜. 在植株不同水平距离处垂直断根对夏玉米产量形成和籽粒库容特性的影响. 作物学报, 2016, 42(12): 1805-1816.
Xu Z H, Liang M L, Lu D X, Liu M, Liu P, Dong S T, Zhang J W, Zhao B, Li G, Yang J S. Effect of cutting roots vertically at a place with different horizontal distance from plant on yield and gain storage capacity of summer maize. Acta Agronomica Sinica, 2016, 42(12): 1805-1816. (in Chinese)
[29]   赵全志, 乔江方, 刘辉, 田志强. 水稻根系与叶片光合特性的关系. 中国农业科学, 2007, 40(5): 1064-1068.
Zhao Q Z, Qiao J F, Liu H, Tian Z Q. Relationship between root and leaf photosynthetic characteristic in rice. Scientia Agricultura Sinica, 2007, 40(5): 1064-1068. (in Chinese)
[30]   刘胜群, 宋凤斌, 王燕. 玉米根系性状与地上部性状的相关性研究. 吉林农业大学学报, 2007, 29(1): 1-6.
Liu S Q, Song F B, Wang Y. Correlations between characters of roots and those of aerial parts of maize varieties. Journal of Jilin Agricultural University, 2007, 29(1): 1-6. (in Chinese)
[31]   王才斌, 郑亚萍, 成波, 孙彦浩. 高产花生冠层光截获和光合、呼吸特性研究. 作物学报, 2004, 30(3): 274-278.
Wang C B, Zhen Y P, Cheng B, Sun Y H. Study on light interception, photosynthesis and respiration in high-yielding peanut canopies. Acta Agronomica Sinica, 2004, 30(3): 274-278. (in Chinese)
[32]   王玉莲, 杜震宇, 童淑媛. 玉米叶片自然衰老过程中光合特性变化的研究进展. 黑龙江八一农垦大学学报, 2010, 22(2):12-14.
Wang Y L, Du Z Y, Tong S Y. Research advance on the changes of photosynthetic characteristicsin naturally senescence of maize leaves. Journal of Heilongjiang Bayi Agricultural University, 22(2): 12-14. (in Chinese)
[33]   曹娜, 于海秋, 王绍斌, 于挺, 曹敏建. 高产玉米群体的冠层结构及光合特性分析. 玉米科学, 2006, 14(5): 94-97.
Cao N, Yu H Q, Wang S B, Yu T, Cao M J. Analysis on canopy structure and photosynthetic characteristics of high yield maize population. Journal of Maize Sciences, 2006, 14(5): 94-97. (in Chinese)
[34]   宋海星, 李生秀. 限根条件下供氮对玉米光合作用有关生理特性的影响. 干旱地区农业研究, 2004, 22(4): 28-32.
Song H X, Li S X. Effects of nitrogen supply on photosynthetic characteristics of maize under limiting conditions. Agricultural Research in the Arid Areas, 2004, 22(4): 28-32. (in Chinese)
[35]   李耕, 高辉远, 赵斌, 董树亭, 张吉旺, 杨吉顺, 王敬锋, 刘鹏. 灌浆期干旱胁迫对玉米叶片光系统活性的影响. 作物学报, 2009, 35(10): 1916-1922.
Li G, Gao H Y, Zhao B, Dong S T, Zhang J W, Yang J S, Wang J F, Liu P. Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage. Acta Agronomica Sinica, 2009, 35(10): 1916-1922. (in Chinese)
[36]   李耕, 高辉远, 刘鹏, 杨吉顺, 董树亭, 张吉旺, 王敬锋. 氮素对玉米灌浆期叶片光合性能的影响. 植物营养与肥料学报, 2010, 16(3): 536-542.
Li G, Gao H Y, Liu P, Yang J S, Dong D T, Zhang J W, Wang J F. Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage. Plant Nutrition and Fertilizer Science, 2010, 16(3): 536-542. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[3] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[4] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[5] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[6] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[7] LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian. Advances and Perspectives of Approaches to Phenotyping Crop Root System [J]. Scientia Agricultura Sinica, 2022, 55(3): 425-437.
[8] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[9] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[10] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[11] LIU ShuSen,SUN Hua,SHI Jie,GUO Ning,MA HongXia,ZHANG HaiJian. Grading Criterion of Maize Root Rot Based on Aboveground Symptoms and the Relationship Between Severity and Agronomic Traits [J]. Scientia Agricultura Sinica, 2022, 55(20): 3939-3947.
[12] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[13] ZHOU LiPing,YUAN Liang,ZHAO BingQiang,LI YanTing. Effects of Single-Sided Application of Humic Acid on Maize Root Growth [J]. Scientia Agricultura Sinica, 2022, 55(2): 339-349.
[14] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[15] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!