Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (10): 1852-1861.doi: 10.3864/j.issn.0578-1752.2017.10.010

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Expression Analysis of Cadmium Tolerance Related Gene CsNAC019 in Cucumber

LI HuiYuan, TIAN ChunYu, ZHENG YuYing, WU Tao   

  1. Horticultural and Landscape Architecture College, Northeast Agricultural University/Key Laboratory of Biology and Germplasm Creation for Horticultural Crops, Harbin 150030
  • Received:2016-11-25 Online:2017-05-16 Published:2017-05-16

Abstract: 【Objective】 To understand the molecular mechanism of Cd tolerance in cucumber, a NAC transcription factor CsNAC019 was obtained by using bioinformatics analysis. CsNAC019 was cloned and its expression was analyzed under Cd stress. The results of the present study will provide an experimental foundation for breeding of cucumber cultivars with high capacity for Cd tolerance.【Method】The full length sequence of CsNAC019 was cloned by PCR. Sequence comparison and conserved domain were analyzed by NCBI and DNAMAN. Amino acid composition, stability coefficient, and hydrophilic coefficient were analyzed by online software Expasy and TMHMM. The promoter region was analyzed by online software PlantCARE. Phylogenic tree was constructed by MEGA 6.0 according to the NJ method. The real-time PCR (qRT-PCR) was used to analyze the expression pattern of CsNAC019 under Cd treatments. The variance and significance were analyzed by DPS 7.05.【Result】CsNAC019 contained a typical conserved NAC domain. BLAST analysis revealed that CsNAC019 had 60% homology with NAC019 in the amino acid sequence, and the five relatively conserved regions of its amino acid sequences, A, B, C, D and E, were highly consistent between them from the N-terminal to the C-terminal. The full-length CDS of CsNAC019 was 960 bp, which encoded 319 amino acids with a molecular weight of 35.66 kD. The theoretical isoelectric point is 8.72, the instability coefficient is 68.18, and the average hydrophilic coefficient is -0.483. Besides the eukaryotic promoter TATA and CAAT natural elements, promoter analysis showed that the promoter sequence of CsNAC019 also had cis elements in response to stress, such as G-box, ABRE, W-box, P-box, TCA-element, TC-richrepeats, and HSE, etc. Phylogenetic analysis showed that CsNAC019 had 64%-96% homology with NAC transcription factors of other 15 plants (melon, peach, apple, citrus, grape and soybean, etc). CsNAC019 had the highest homology, 96%, with the NAC sequence of melon. qRT-PCR analysis revealed that the expression of CsNAC019 was significantly increased (8.2 folds) compared with the control under Cd tolerance condition.【Conclusion】CsNAC019 is a Cd tolerance induced gene. It was speculated that CsNAC019 may regulate the cucumber to response to Cd tolerance by regulating the expression of downstream genes.

Key words: cucumber, Cd, CsNAC019, gene clone, expression analysis

[1]    Christensen T H. Cadmium soil sorption at low concentrations: V. Evidence of competition by other heavy metals. Water Air & Soil Pollution, 1987, 34(3): 293-303.
[2]    李婧, 周艳文, 陈森, 高小杰. 我国土壤Cd污染现状、危害及其治理方法综述. 安徽农学通报, 2015, 21(24):104-107.
LI J, Zhou y w, chen S, GAO X J. Actualities, damage and management of soil cadmium pollution in china. Anhui Agricultural Science Bulletin, 2015, 21(24):104-107. (in Chinese)
[3]    Moreno-Caselles J, Moral R, Pérez-Espinosa A, Pérez-Murcia M D. Cadmium accumulation and distribution in cucumber plant. Journal of Plant Nutrition, 2000, 23(23): 243-250.
[4]    和莉莉, 李冬梅, 吴钢. 我国城市土壤重金属污染研究现状和展望. 土壤通报, 2008, 39(5): 1210-1216.
HE L L, LI D M, WU G. Current status and prospect of heavy metal pollution in urban soils of China. Chinese Journal of Soil Science, 2008, 39(5): 1210-1216. (in Chinese)
[5]    Gong W Q, Pan G X. Issues of grain Cd uptake and the potential health risk of rice production sector of China. Science and Technology Review, 2006, 24(5): 43-48.
[6]    刘明浩, 陈光辉, 王悦. 植物耐镉机制研究进展. 作物研究, 2015(1): 101-105.
LIU M H, CHEN G H, WANG Y. Research progress on mechanisms of plant resistance to cadmium. Crop Research, 2015(1): 101-105. (in Chinese)
[7]    Weber M, Deinlein U, Fischer S, ROGOWSKI M, GEIMER S,TENHAKEN R, CLEMENS S. A mutation in the Arabidopsis thaliana cell wall biosynthesis gene pectin methylesterase 3 as well as its ab-errant expression cause hypersensitivity specifically to Zn. The Plant Journal, 2013, 76(1): 151-164.
[8]    Bhuiyan M S U, Min S R, Jeong W J, SULTANA S, CHOI K W, LEE Y, LIU J R. Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell, Tissue and Organ Culture, 2011, 107(1): 69-77.
[9]    Shigaki T, Sreevidya C, Hirschi K D. Analysis of the Ca2 + domain in the Arabidopsis H+/Ca2+ antiporters CAX1 and CAX3. Plant Molecular Biology, 2002, 50(3): 475-483.
[10]   Arazi T, Sunkar R, Kaplan B, FROMM H. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. The Plant Journal, 1999, 20(2): 171-182.
[11]   Vroemen C W, Mordhorst A P, Albrecht C, KWAAITAAL M A, VRIES S C.The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. The Plant Cell, 2003, 15: 1563-1577.
[12]   Kim Y S, Kim S G, Park J E, PARK H Y, LIM M H, CHUA N H, PARK C M. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. The Plant Cell, 2006, 18: 3132-3144.
[13]   Hao Y J, Wei W, Song Q X, CHEN H W, ZHANG Y Q, WANG F, ZOU H F, LEI G, TIAN A G, ZHANG W K, MA B, ZHANG J S, CHEN S Y. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plantsThe Plant Journal, 2011, 68: 302-313.
[14]   Jensen M K, Kjaersgaard T, Nielsen M M, GALBERG P, PETERSEN K, OSHEA C, SKRIVER K. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signaling. Biochemical Journal, 2010, 426(2) : 183-196.
[15]   Zhao Q, Gallego-Giraldo L, Wang H, ZENG Y, DING S Y, CHEN F, DIXON R. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. The Plant Journal, 2010, 63(1): 100-114.
[16]   申玉华, 徐振军, 杨晓坡, 相吉山, 文静, 黄文婕. 紫花苜蓿NAC转录因子MsNAC1基因的克隆、生物信息学分析及非生物逆境胁迫下的表达分析. 植物遗传资源学报, 2014, 15(6): 1312-1319.
SHEN Y H, XU Z J, YANG X P, XIANG J S, WEN J, HUANG W J. Cloning and bioinformatics analysis of an novel NAC transcription factor MsNAC1 from Medicago sativa L.and detection of its expression under abiotic stresses. Journal of Plant Genetic Resources, 2014, 15(6): 1312-1319. (in Chinese)
[17]   李小兰, 胡玉鑫, 杨星, 于晓东, 李秋莉. 非生物胁迫相关NAC转录因子的结构及功能. 植物生理学报, 2013, 49(10): 1009-1017.
LI X L, HU Y X, YANG X, YU X D, LI Q L. Structure and functions of NAC transcription factors involved in abiotic stress. Plant Physiology Journal, 2013, 49(10): 1009-1017. (in Chinese)
[18]   孙利军, 李大勇, 张慧娟, 宋凤鸣. NAC转录因子在植物抗病和抗非生物胁迫反应中的作用. 遗传, 2012, 34(8): 993-1002.
SUN L J, LI D Y, ZHANG H J, SONG F M. Functions of NAC transcription factors in biotic and abiotic stress responses in plants. Hereditas, 2012, 34(8): 993-1002. (in Chinese)
[19]   Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi S K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 2010, 284(3): 173-183.
[20]   Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Choi D Y, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 2010, 153(1): 185-197.
[21]   杜敏敏, 邓磊, 李传友. 番茄中两个高度同源的NAC类转录因子通过不同的机制调控病原菌诱导的气孔子关闭和重新开张. 遗传, 2014, 36(8): 847.
DU M M, DENG L, LI C Y. Two highly homologous NAC transcription factors in tomato are regulated by different mechanisms to regulate pathogen-induced stomatal closure and reopening. Hereditas, 2014, 36(8): 847. (in Chinese)
[22]   Zhu M, Hu Z , Zhou S, Wang L, Dong T. Molecular characterization of six tissue-specific or stress-inducible genes of NAC transcription factor family in tomato (Solanum lycopersicum). Journal of Plant Growth Regulation, 2014, 33(4): 730-744.
[23]   Jensen M K, Kjaersgaard T, Nielsen M M, Galberg P, Petersen K. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochemical Journal, 2010, 426(2): 183-196.
[24]   Bu Q, Jiang H, Li C B, Zhai Q, Zhang J. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Research, 2008, 18(7): 756-767.
[25]   Jiang H, Li H, Bu Q, Li C. The RHA2a-interacting proteins ANAC019and ANAC055 may play a dual role in regulating ABA response and jasmonate response. Plant Signaling & Behavior, 2009, 4(5): 464-466.
[26]   Welner D H, Ernst H A, Olsen A N, Grossmann J G, Helgstrand C. Structural characterization of ANAC019, a member of the NAC family of plant transcription factors. Acta Crystallographica, 2001, 64(a1): C306-C307.
[27]   Fujiwara T, Hirai M Y, Chino M, KOMEDA Y, NAITO S. Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiology, 1992, 99(1): 263-268.
[28]   何访, 梅文莉, 郭冬, 李辉亮, 彭世清. 植物激素应答元件研究进展. 热带作物学报, 2015, 36(1): 211-218.
HE F, MEI W L, GUO D, LI H L, PENG S Q. Advancement of phytohormone response cis-elements. Chinese Journal of Tropical Crops, 2015, 36(1): 211-218. (in Chinese)
[29]   张毅, 尹辉, 李丹, 朱巍巍, 李秋莉. 植物启动子的化学因素诱导元件. 植物生理学报, 2007, 43(4): 787-794.
ZHANG Y, YIN H, LI D, ZHU W W, LI Q L. The Cis-elements of plant chemic inducible promoters. Plant Physiology and Molecular Biology, 2007, 43(4): 787-794. (in Chinese)
[30]   Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D B, Sherman K, Yu G L. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
[31]   Ernst H A, Olsen A N, Skriver K, Larsen S, Leggio L L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. Embo Reports, 2004, 5(3): 297-303.
[32]   Jensen M K, Rung J H, Gregersen P L, Gjetting T, Fuglsang A T, Hansen M, Joehnk N, Lyngkjaer M F, Collinge D B. The HvNAC6 transcription factor: A positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 2007, 65 (1/2): 137-150.
[33]   Tran L S P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress -inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell Online, 2004, 16(9): 2481-2498.
[34]   李伟, 韩蕾, 钱永强, 孙振元. 植物NAC转录因子的种类、特征及功能. 应用与环境生物学报, 2011(4): 596-606.
LI W, HAN L, QIAN Y Q, SUN Z Y. Characteristics and functions of NAC transcription factors in plants. Chinese Journal of Applied and Environmental Biology, 2011(4): 596-606. (in Chinese)
[1] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[4] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[5] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[6] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[7] ZHOU Liang,XIAO Feng,XIAO Huan,ZHANG YuSheng,AO HeJun. Effects of Lime on Cadmium Accumulation of Double-Season Rice in Paddy Fields with Different Cadmium Pollution Degrees [J]. Scientia Agricultura Sinica, 2021, 54(4): 780-791.
[8] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[9] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[10] HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
[11] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[12] SHI GuoLiang,WU Qiang,YANG NianWan,HUANG Cong,LIU WanXue,QIAN WanQiang,WAN FangHao. Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella [J]. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117.
[13] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[14] LI ZuRen,LUO DingFeng,BAI HaoDong,XU JingJing,HAN JinCai,XU Qiang,WANG RuoZhong,BAI LianYang. Cloning and Expression Analysis of Light Harvesting Chlorophyll a/b Protein Gene CcLhca-J9 in Conyza canadensis [J]. Scientia Agricultura Sinica, 2021, 54(1): 86-94.
[15] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!