Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (10): 2105-2117.doi: 10.3864/j.issn.0578-1752.2021.10.007

• PLANT PROTECTION • Previous Articles     Next Articles

Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella

SHI GuoLiang1,2(),WU Qiang2,3,YANG NianWan2,HUANG Cong3,LIU WanXue2,QIAN WanQiang3,WAN FangHao1,2,3()   

  1. 1College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong
    2State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences/Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs/Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518120, Guangdong
  • Received:2020-05-27 Accepted:2020-07-03 Online:2021-05-16 Published:2021-05-24
  • Contact: FangHao WAN E-mail:577389695@qq.com;wanfanghao@caas.cn

Abstract:

【Objective】In order to provide a scientific basis for the selection of novel target for pest control, molecular characterization and expression patterns of chitin deacetylase 2 genes (CpCDA2) of the codling moth (Cydia pomonella) were studied. 【Method】The cDNA sequences of chitin deacetylase 2 genes were identified from the transcriptome data of C. pomonella by bioinformatic methods, and the conserved domain was analyzed, the homologous sequences from other insects were selected to construct phylogenetic tree by using neighbor-joining (NJ) method of MEGA7 software. The protein properties including molecular weight (Mw), theoretical isoelectric point (pI), glycosylation site and hydrophilic/hydrophobic properties were analyzed by online software. RT-qPCR was performed to detect the relative expression levels of CpCDA2a and CpCDA2b in different tissues and developmental stages. To explore the functions of these genes in the process of larval molting, the ecdysone (20E) was injected to the 5th instar larvae, and the expression dynamics of them were detected by RT-qPCR.【Result】The full length cDNA sequences of CpCDA2a and CpCDA2b, alternative splicing variants of C. pomonella CDA2, were identified. The amino acid analysis showed that both variants of CpCDA2 possess the signal peptide, and the open reading frames contain three conserved domains, including chitin binding domain (ChBD), low-density lipoprotein receptor class A domain (LDLa) and chitin deacetylase catalytic domain (CDA). The multi-sequence alignment analysis revealed that the CpCDA2a and CpCDA2b are similar to other insect, and the phylogenetic tree showed that the sequences of insect in the same order are clustered into a clade with high confidence. Three-dimensional structure simulation and comparison revealed that the ChBD functional domains of the two splicing variants are different in structure. Physical and chemical properties analysis showed that there are also differences in hydrophilic/hydrophobic properties and glycosylation site of the two splicing variants. Developmental expression patterns showed that the CpCDA2a expression was high in larval stage, CpCDA2b in early and middle stages of pupae, and the expression of CpCDA2a and CpCDA2b was significantly up-regulated before and after larval molting. Tissue-specific expression analysis indicated that the expression of CpCDA2a and CpCDA2b was the highest in integument, and the expression of CpCDA2b in head was also higher. Expression dynamics of the larvae after injection of ecdysone (20E) indicated that both CpCDA2a and CpCDA2b were up-regulated, but with very different levels.【Conclusion】The CpCDA2 has two alternatively spliced variants, namely CpCDA2a and CpCDA2b, which plays a key role in the development of C. pomonella. While, according to the comprehensive analysis of molecular characterization, developmental stages and tissue expression profiles, and expression trends after ecdysone injection, it is deduced that the differences in protein structure and physical and chemical properties of CpCDA2a and CpCDA2b caused by alternative splicing, resulted in the differentiation of function between them.

Key words: Cydia pomonella, chitin deacetylase 2, alternative splicing variant, molecular characterization, expression pattern, ecdysone, functional differentiation

Table 1

Information of primers used in this study"

基因名称 Gene name 引物序列 Primer sequence (5′-3′) 产物长度 Product length (bp) 用途 Application
CpCDA2a/CpCDA2b F: CAGTCCTCGGCGAGCGTTAT 1858/1841 cDNA克隆
cDNA cloning
R: CCACGCAAAAGGCATTCCAA
CpCDA2a qFc: TGTTGCTTGCTTGCTTCGTTAG 176 荧光定量PCR
RT-qPCR
qRa: GTTCTCGCCGCCCTTGTC
CpCDA2b qFc: TGTTGCTTGCTTGCTTCGTTAG 233
qRb: CCAGTCGCAGGTTTGTTTATCG
Cpβ-tubulin qF: GCGGGAACCAGATTGGAGCTAA 267
qR: ACTGGCCGAACACGAAGTTGTC

Fig. 1

Genome structure and protein domain analysis of CpCDA2a and CpCDA2b"

Fig. 2

Multiple alignment of CDA2 with partial amino acid sequences among different insects The black box indicates chitin binding domain (ChBD), green box indicates the 3rd exon (E3), red box indicates the 4th exon (E4)"

Fig. 3

Analysis of evolutionary relationship among CDA2 amino acid sequences of different insects"

Fig. 4

Three-dimensional structure of CpCDA2a and CpCDA2b proteins"

Table 2

Protein property of CpCDA2a and CpCDA2b"

蛋白性质
Protein property
蛋白名称 Protein name
CpCDA2a CpCDA2b
氨基酸长度Amino acid length 542 aa 536 aa
分子量Molecular weight 61.58354 kD 60.94991 kD
等电点Theoretical pI 5.30 5.30
N-糖基化位点N-glycosylation N30, N296 N30, N290
O-糖基化位点O-glycosylation S19, T37*, T174, T273, S274, T383 S19, T168, T267, S268, T377

Fig. 5

Hydrophilic/hydrophobic analysis of CpCDA2a and CpCDA2b Gray boxes indicate the difference of CpCDA2a and CpCDA2b, the abscissa is the sequence position and the ordinate is the scale value of the amino acid (>0 means hydrophobicity, <0 means hydrophilicity)"

Fig. 6

The relative expressions of CpCDA2a and CpCDA2b at different developmental stages of C. pomonella β-tubulin is the reference, different letters on the bars mean significant difference of the same gene among different samples (P<0.05). The same as below"

Fig. 7

The relative expressions of CpCDA2a and CpCDA2b in different tissues of C. pomonella 4th instar larvae"

Fig. 8

Gene expression levels of CpCDA2 and CpCDA2b after 20E injection"

[1] 申建茹, 武强, 万方浩. 苹果蠹蛾的综合防控和遗传控制研究进展. 生物安全学报, 2015,24(4):256-264.
SHEN J R, WU Q, WAN F H. The status of the integrated pest management of the codling moth, Cydia pomonella (L.) in China, and the prospects for the application of genetically modified insects. Journal of Biosafety, 2015,24(4):256-264. (in Chinese)
[2] 张润志, 王福祥, 张雅林, 陈汉杰, 罗进仓, 王勤英, 刘万学, 艾尼瓦尔·木沙, 蒲崇建, 严勇敢, 等. 入侵生物苹果蠹蛾监测与防控技术研究. 应用昆虫学报, 2012,49(1):37-42.
ZHANG R Z, WANG F X, ZHANG Y L, CHEN H J, LUO J C, WANG Q Y, LIU W X, AINIWAER M S, PU C J, YAN Y G, et al. Progress on monitoring and control of the codling moth, Cydia pomonella (L.). Chinese Journal of Applied Entomology, 2012,49(1):37-42. (in Chinese)
[3] WAN F H, YIN C L, TANG R, CHEN M H, WU Q, HUANG C, QIAN W Q, ROTA-STABELLI O, YANG N W, WANG S P., et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nature Communications, 2019,10(1):4237.
doi: 10.1038/s41467-019-12175-9
[4] MESCE K A, FAHRBACH S E. Integration of endocrine signals that regulate insect ecdysis. Frontiers in Neuroendocrinology, 2002,23(2):179-199.
doi: 10.1006/frne.2002.0228
[5] 李大琪, 杜建中, 张建琴, 郝耀山, 刘晓健, 王亦学, 马恩波, 张建珍, 孙毅. 东亚飞蝗几丁质酶家族基因的表达特性与功能研究. 中国农业科学, 2011,44(3):485-492.
LI D Q, DU J Z, ZHANG J Q, HAO Y S, LIU X J, WANG Y X, MA E B, ZHANG J Z, SUN Y. Study on expression characteristics and functions of chitinase family genes from Locusta migratoria manilensis (Meyen). Scientia Agricultura Sinica, 2011,44(3):485-492. (in Chinese)
[6] 于荣荣, 丁国伟, 郭亚平, 马恩波, 张建珍. 中华稻蝗几丁质脱乙酰基酶2基因的分子特性和生物学功能. 中国农业科学, 2014,47(7):1321-1329.
YU R R, DING G W, GUO Y P, MA E B, ZHANG J Z. Molecular characterization and functional analysis of chitin deacetylase 2 gene in Oxya chinensis. Scientia Agricultura Sinica, 2014,47(7):1321-1329. (in Chinese)
[7] 丁国伟, 于荣荣, 杨美玲, 马恩波, 杨静, 张建珍. 中华稻蝗几丁质脱乙酰基酶1基因的分子特性及功能. 昆虫学报, 2014,57(11):1265-1271.
DING G W, YU R R, YANG M L, MA E B, YANG J, ZHANG J Z. Molecular characterization and functional analysis of chitin deacetylase 1 gene in Oxya chinensis (Orthoptera: Acrididae). Acta Entomologica Sinica, 2014,57(11):1265-1271. (in Chinese)
[8] 郝威, 何旭玲, 徐豫松. 家蚕几丁质脱乙酰基酶基因结构及mRNA选择性剪接与表达差异的研究. 蚕业科学, 2010,36(6):921-929.
HAO W, HE X L, XU Y S. Gene structure, mRNA alternative splicing and expression pattern of chitin deacetylases in silkworm, Bombyx mori. Science of Sericulture, 2010,36(6):921-929. (in Chinese)
[9] 刘晓健, 刘卫敏, 赵小明, 张建珍, 马恩波. 昆虫表皮发育研究进展及展望. 应用昆虫学报, 2019,56(4):625-638.
LIU X J, LIU W M, ZHAO X M, ZHANG J Z, MA E B. Progress in the study of insect cuticle development and prospects for future research. Chinese Journal of Applied Entomology, 2019,56(4):625-638. (in Chinese)
[10] 张建珍. 昆虫几丁质代谢与植物保护. 中国农业科学, 2014,47(7):1301-1302.
ZHANG J Z. Insect chitin metabolism and plant protection. Scientia Agricultura Sinica, 2014,47(7):1301-1302. (in Chinese)
[11] HERRERA-ESTRELLA A, CHET I. Chitinases in biological control. EXS, 1999,87:171-184.
[12] JAKUBOWSKA A K, CACCIA S, GORDON K H, FERRE J, HERRERO S. Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. Journal of Virology, 2010,84(5):2547-2555.
doi: 10.1128/JVI.01860-09
[13] KRAMER K J, MUTHUKRISHNAN S. Insect chitinases: Molecular biology and potential use as biopesticides. Insect Biochemistry and Molecular Biology, 1997,27(11):887-900.
doi: 10.1016/S0965-1748(97)00078-7
[14] LIU L, ZHOU Y, QU M B, QIU Y, GUO X M, ZHANG Y B, LIU T, YANG J, YANG Q. Structural and biochemical insights into the catalytic mechanisms of two insect chitin deacetylases of the carbohydrate esterase 4 family. The Journal of Biological Chemistry, 2019,294(15):5774-5783.
doi: 10.1074/jbc.RA119.007597
[15] MERZENDORFER H, KIM H S, CHAUDHARI S S, KUMARI M, SPECHT C A, BUTCHER S, BROWN S J, MANAK J R, BEEMAN R W, KRAMER K J, MUTHUKRISHNAN S. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2012,42(4):264-276.
doi: 10.1016/j.ibmb.2011.12.008
[16] TSIGOS I, MARTINOU A, KAFETZOPOULOS D, BOURIOTIS V. Chitin deacetylases: New, versatile tools in biotechnology. Trends in Biotechnology, 2000,18(7):305-312.
doi: 10.1016/S0167-7799(00)01462-1
[17] ARAKANE Y, DIXIT R, BEGUM K, PARK Y, SPECHT C A, MERZENDORFER H, KRAMER K J, MUTHUKRISHNAN S, BEEMAN R W. Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2009,39(5/6):355-365.
doi: 10.1016/j.ibmb.2009.02.002
[18] DIXIT R, ARAKANE Y, SPECHT C A, RICHARD C, KRAMER K J, BEEMAN R W, MUTHUKRISHNAN S. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochemistry and Molecular Biology, 2008,38(4):440-451.
doi: 10.1016/j.ibmb.2007.12.002
[19] 刘霖. 家蚕外围食膜空间蛋白质组及几丁质脱乙酰基酶研究[D]. 大连: 大连理工大学, 2019.
LIU L. Proteomics of ectoperitrophic space and biochemical characterization of chitin deacetylases from Bombyx mori[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
[20] ZHANG Z Y, YAN J M, LIU Q, ZHANG Y H, GONG J, HOU Y. Genome-wide analysis and hormone regulation of chitin deacetylases in silkworm. International Journal of Molecular Sciences, 2019,20(7):1679.
doi: 10.3390/ijms20071679
[21] QUAN G X, LADD T, DUAN J, WEN F Y, DOUCET D, CUSSON M, KRELL P J. Characterization of a spruce budworm chitin deacetylase gene: Stage- and tissue-specific expression, and inhibition using RNA interference. Insect Biochemistry and Molecular Biology, 2013,43(8):683-691.
doi: 10.1016/j.ibmb.2013.04.005
[22] YAN X P, ZHAO D, ZHANG Y K, GUO W, WANG W, ZHAO K L, GAO Y J, WANG X J. Identification and characterization of chitin deacetylase2 from the American white moth, Hyphantria cunea (Drury). Gene, 2018,670:98-105.
doi: 10.1016/j.gene.2018.05.069
[23] 姚磊, 樊东, 王晓云, 高艳玲. 甘蓝夜蛾两种不同类型几丁质脱乙酰基酶基因的克隆与组织特异性表达. 应用昆虫学报, 2011,48(5):1417-1424.
YAO L, FAN D, WANG X Y, GAO Y L. Molecular cloning and tissue-specific expression of two different chitin deacetylase cDNA sequences from Mamestra brassicae. Chinese Journal of Applied Entomology, 2011,48(5):1417-1424. (in Chinese)
[24] GILBERT N M, BAKER L G, SPECHT C A, LODGE J K. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans. mBio, 2012,3(1):e00007-12.
[25] GRIFOLL-ROMERO L, PASCUAL S, ARAGUNDE H, BIARNÉS X, PLANAS A. Chitin deacetylases: Structures, specificities, and biotech applications. Polymers, 2018,10(4):E352.
[26] LUSCHNIG S, BATZ T, ARMBRUSTER K, KRASNOW M A. Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Current Biology, 2006,16(2):186-194.
doi: 10.1016/j.cub.2005.11.072
[27] 刘晓健, 崔淼, 李大琪, 张欢欢, 杨美玲, 张建珍. 飞蝗几丁质合成酶2基因的表达特性、功能及调控. 中国农业科学, 2014,47(7):1330-1340.
LIU X J, CUI M, LI D Q, ZHANG H H, YANG M L, ZHANG J Z. Expression, function and regulation of chitin synthase 2 gene in Locusta migratoria. Scientia Agricultura Sinica, 2014,47(7):1330-1340. (in Chinese)
[28] XI Y, PAN P L, YE Y X, YU B, ZHANG C X. Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Molecular Biology, 2014,23(6):695-705.
doi: 10.1111/imb.2014.23.issue-6
[29] LIU S H, LI H F, YANG Y, YANG R L, YANG W J, JIANG H B, DOU W, SMAGGHE G, WANG J J. Genome-wide identification of chitinase and chitin deacetylase gene families in the oriental fruit fly, Bactrocera dorsalis (Hendel). Comparative Biochemistry and Physiology. Part D Genomics Proteomics, 2018,27:13-22.
doi: 10.1016/j.cbd.2018.04.005
[30] WU J J, CHEN Z C, WANG Y W, FU K Y, GUO W C, LI G Q. Silencing chitin deacetylase 2 impairs larval-pupal and pupal-adult molts in Leptinotarsa decemlineata. Insect Molecular Biology, 2019,28(1):52-64.
doi: 10.1111/imb.v28.1
[31] YU R R, LIU W M, LI D Q, ZHAO X M, DING G W, ZHANG M, MA E B, ZHU K Y, LI S, MOUSSIAN B, ZHANG J Z. Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase2 enzyme (LmCDA2). The Journal of Biological Chemistry, 2016,291(47):24352-24363.
doi: 10.1074/jbc.M116.720581
[32] 赵盼, 张学尧, 刘晓健, 赵小明, 于荣荣, 董玮, 马恩波, 张建珍, 张敏. 飞蝗几丁质脱乙酰基酶的真核表达、亲和纯化及酶活性. 中国农业科学, 2017,50(6):1057-1066.
ZHAO P, ZHANG X Y, LIU X J, ZHAO X M, YU R R, DONG W, MA E B, ZHANG J Z, ZHANG M. Eukaryotic expression, affinity purification and enzyme activity of chitin deacetylase in Locusta migratoria. Scientia Agricultura Sinica, 2017,50(6):1057-1066. (in Chinese)
[33] WANG J D, GU L Q, IRELAND S, GARCZYNSKI S F, KNIPPLE D C. Phenotypic screen for RNAi effects in the codling moth Cydia pomonella. Gene, 2015,572(2):184-190.
doi: 10.1016/j.gene.2015.07.006
[1] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[2] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[3] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[4] XING QiKai,LI LingXian,CAO Yang,ZHANG Wei,PENG JunBo,YAN JiYe,LI XingHong. Prediction and Analysis of Candidate Secreted Proteins from the Genome of Lasiodiplodia theobromae [J]. Scientia Agricultura Sinica, 2020, 53(24): 5027-5038.
[5] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[6] XIAO LuoDan, TANG Lei, WANG WeiDong, GAO YueFang, HUANG YiFan, MENG Yang, YANG YaJun, XIAO Bin. Cloning and Functional Analysis of CsWRKYIIcs Transcription Factors in Tea Plant [J]. Scientia Agricultura Sinica, 2020, 53(12): 2460-2476.
[7] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[8] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[9] WANG Jia,WANG Pan,FAN Huan,LIU YingHong. Comparison of Metabolic Profile Between Diapause-Destined and Non-Diapause-Destined Pupae of Bactrocera minax [J]. Scientia Agricultura Sinica, 2019, 52(6): 1021-1031.
[10] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[11] WEI HaiDian, CHEN XueQiu, HUANG Yan, SHI HengZhi, ZHOU JingRu, WU Fei, DU AiFang, YANG Yi. The Expression Pattern and Ligand Binding Ability of Hc-FAR-4 Protein of Haemonchus contortus [J]. Scientia Agricultura Sinica, 2019, 52(17): 3059-3068.
[12] Yue CHEN,TianXingZi WANG,Shuo YANG,Tong ZHANG,JinJiao MA,GaoWei YAN,YuQing LIU,Yan ZHOU,JiaNan SHI,JinPing LAN,Jian WEI,ShiJuan DOU,LiJuan LIU,Ming YANG,LiYun LI,GuoZhen LIU. Expression Profiling and Functional Characterization of Rice Transcription Factor OsWRKY68 [J]. Scientia Agricultura Sinica, 2019, 52(12): 2021-2032.
[13] YANG YaTing, ZHAO XiaoMing, QIN ZhongYu, LIU WeiMin, MA EnBo, ZHANG JianZhen. Molecular Characteristics and Function Analysis of Cuticle Protein Gene LmNCP1 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2018, 51(7): 1303-1314.
[14] ZHANG TingTing, LIU WeiWei, GAO Lu, LI RenJian, FU SuiYe, LIU XiaoJian, LI DaQi, LIU WeiMin, DONG Qing, ZHANG JianZhen. The antibody preparation and expression analysis of Chitinase 5-1 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2018, 51(12): 2418-2428.
[15] ZHANG WeiWei, DONG ZhaoMing, ZHANG Yan, ZHANG XiaoLu, ZHANG ShouYa, ZHAO Ping. Expression Pattern and Chitin-Binding Mode Analyses of Cuticle Protein BmCPAP3-G in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(9): 1723-1733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!