Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3134-3143.doi: 10.3864/j.issn.0578-1752.2022.16.006

• PLANT PROTECTION • Previous Articles     Next Articles

Identification and Functional Analysis of StSCD Family in Setosphaeria turcica

HAO YuBin1,2(),LI HaiXiao1,2,ZHANG Sai1,LIU Ning1,2,LIU YingZi3,CAO ZhiYan1,2(),DONG JinGao1,2()   

  1. 1College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
    2State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071001, Hebei
    3Garden Management Centre of Chengde City, Hebei Province, Chengde 067000, Hebei
  • Received:2022-03-11 Accepted:2022-04-02 Online:2022-08-16 Published:2022-08-11
  • Contact: ZhiYan CAO,JinGao DONG E-mail:839970427@qq.com;caozhiyan@hebau.edu.cn;shmdjg@hebau.edu.cn

Abstract:

【Objective】Scytalone dehydratase (SCD) is a key enzyme in melanin synthesis. The objective of this study is to identify the StSCD gene family of Setosphaeria turcica, and to analyze the differences in the expression of StSCD gene family during the appressorium development of S. turcica and the effect of SCD inhibitors on melanin synthesis, which will lay a foundation for further study on the important role of StSCD gene family in melanin synthesis and appressorium development. 【Method】Using the whole genome data of the wild-type strain 01-23 of S. turcica, the complete sequence of the StSCD gene family was obtained, and the protein sequences were compared with the SCD of Cochlibolus heterostrophus, Pyricularia oryzae, Colletotrichum lagenaria and other fungi. Materials from different appressorium developmental stages were collected for qRT-PCR analysis to obtain the expression levels of different StSCD genes at different stages, so as to determine the important dehydratase genes closely related to pathogen infection and appressorium melanization. Carpropamid, an inhibitor of SCD, was used to treat S. turcica, and the colony growth rate, melanin production and appressorium turgor pressure were measured, so as to determine the important function of SCD in appressorium development. 【Result】Four StSCD genes were found by searching the whole genome of S. turcica, the encoded protein of them has SCD conserved domain and conserved catalytic and substrate binding amino acid residues. StSCD3 protein has high homology with the functionally redundant SCD2 protein of Botrytis cinerea, and StSCD4 has high homology with SCD protein of Corynespora cassiicola. By analyzing the expression levels of StSCD genes at different stages during the growth and development of the pathogen, it was found that the expression levels of four StSCD genes were all up-regulated at the appressorium stage, and the expression levels of StSCD3 and StSCD4 were particularly up-regulated. The expression levels of StSCD3 and StSCD4 in the regenerated hyphae of the appressorium were significantly decreased, and the expression levels of StSCD4 were higher during the whole period of appressorium induction. The melanin synthesis was blocked and the appressorium turgor pressure was significantly reduced after carpropamid treatment. 【Conclusion】There are four StSCD genes in S. turcica. It is speculated that StSCD4 is involved in the synthesis of DHN melanin, and then affects the accumulation of appressorium turgor pressure.

Key words: Setosphaeria turcica, StSCD family, melanin, carpropamid

Table 1

The StSCD primers used for qRT-PCR"

引物名称
Primer name
序列
Sequence (5′-3′)
StSCD1DL-F GCTCTCAAAGACGCTTGCAC
StSCD1DL-R TACCAAGCCATGACCGTGTC
StSCD2DL-F CATCCAGCCCCAAGTTCCTT
StSCD2DL-R CCAGCAAATTTCCACTCGCC
StSCD3DL-F GGTGTTCAGTCTTTCACGCG
StSCD3DL-R TCCATCGCTCTCCTCTCCAA
StSCD4DL-F AGCTTCAACACGCACTGGTA
StSCD4DL-R CTAGGCCTTTTCCGGGATCC
Tubulin-F GGGAACTCCTCACGGATGTTG
Tubulin-R TAACAACTGGGCAAAGGGTCA

Table 2

Sequence characterization of StSCD gene family"

基因名称
Gene name
基因编号
Gene number
基因长度
Gene length (bp)
ORF长度
ORF length (bp)
氨基酸数量
Number of amino acid (aa)
基因组位置
Genomic location
StSCD1 gene_12136 688 525 175 scaffold_29:99576-100263 (-)
StSCD2 gene_9587 639 486 162 scaffold_14:439746-440384 (-)
StSCD3 gene_4774 590 531 177 scaffold_6:14708-15297 (-)
StSCD4 gene_41 865 540 180 scaffold_1:164410-165274 (+)

Fig. 1

StSCD protein domain composition"

Fig. 2

Bioinformatic analysis of StSCD proteins"

Fig. 3

Relative expression level of StSCDs at different stages The values are mean±SE, different lowercases above the bars represent significant differences (P<0.05). The same as Fig. 5"

Fig. 4

Effects of different concentrations of carpropamid on melanin synthesis and colony growth of S. turcica"

Fig. 5

Melanin production of S. turcica under different concentrations of carpropamid"

Table 3

Effect of carpropamid on the appressorium turgor pressure of S. turcica"

环丙酰菌胺浓度
<BOLD>C</BOLD>arpropamid concentration (μg·mL-1)
0 5.0 10.0
膨压
Turgor pressure (MPa)
5.60±0a 5.32±0.16b 5.06±0.16c
[1] 张庆贺, 孟玲敏, 张伟, 陈立玲, 吴宏斌, 高月波, 苏前富. 吉林省玉米大斑病发生防控现状与展望. 东北农业科学, 2020, 45(6): 86-88.
ZHANG Q H, MENG L M, ZHANG W, CHEN L L, WU H B, GAO Y B, SU Q F. Review and prospect on controlling northern corn leaf blight in Jilin Province. Journal of Northeast Agricultural Sciences, 2020, 45(6): 86-88. (in Chinese)
[2] 苏前富, 贾娇, 李红, 陈立军, 张伟, 孟玲敏, 马莹莹, 晋齐鸣. 玉米大斑病暴发流行对玉米产量和性状表征的影响. 玉米科学, 2013, 21(6): 145-147.
SU Q F, JIA J, LI H, CHEN L J, ZHANG W, MENG L M, MA Y Y, JIN Q M. Effect of heavy damage caused by Exserohium turicum, to corn yield and characteristics. Journal of Maize Sciences, 2013, 21(6): 145-147. (in Chinese)
[3] GIOVANNETTI M, SBRANA C, CITERNESI A S, AVIO L, GOLLOTTE A, GIANINAZZI-PEARSON V, GIANINAZZI S. Recognition and infection process, basis for host specificity of arbuscular mycorrhizal fungi//Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Springer, 1994: 61-72.
[4] GUO X Y, LIU N, LIU B H, ZHOU L H, CAO Z Y, HAN J M, DONG J G. Melanin, DNA replication, and autophagy affect appressorium development in Setosphaeria turcica by regulating glycerol accumulation and metabolism. Journal of Integrative Agriculture, 2022, 21(3): 762-773.
doi: 10.1016/S2095-3119(21)63679-1
[5] 曹志艳, 贾慧, 朱显明, 董金皋. DHN黑色素与玉米大斑病菌附着胞膨压形成的关系. 中国农业科学, 2011, 44(5): 925-932.
CAO Z Y, JIA H, ZHU X M, DONG J G. Relationship between DHN melanin and formation of appressorium turgor pressure of Setosphaeria turcica. Scientia Agricultura Sinica, 2011, 44(5): 925-932. (in Chinese)
[6] CHEN Z, NUNES M A, SILVA M C, JR RODRIGUES C J. Appressorium turgor pressure of Colletotrichum kahawae might have a role in coffee cuticle penetration. Mycologia, 2004, 96(6): 1199-1208.
doi: 10.1080/15572536.2005.11832868
[7] ASAKURA M, OKUNO T, TAKANO Y. Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium. Applied and Environmental Microbiology, 2006, 72(9): 6345-6354.
doi: 10.1128/AEM.00988-06
[8] ZHANG Z X, JIA H, LIU N, LI H X, MENG Q J, WU N, CAO Z Y, DONG J G. The zinc finger protein StMR1 affects the pathogenicity and melanin synthesis of Setosphaeria turcica and directly regulates the expression of DHN melanin synthesis pathway genes. Molecular Microbiology, 2022, 117(2): 261-273.
doi: 10.1111/mmi.14786
[9] POLAK A. Melanin as a virulence factor in pathogenic fungi. Mycoses, 1990, 33(5): 215-224.
doi: 10.1111/myc.1990.33.5.215
[10] EBERT M K, SPANNER R E, DE JONGE R, SMITH D J, HOLTHUSEN J, SECOR G A, THOMMA B P, BOLTON M D. Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi. Environmental Microbiology, 2019, 21(3): 913-927.
doi: 10.1111/1462-2920.14475
[11] XIA W, YU X, YE Z. Smut fungal strategies for the successful infection. Microbial Pathogenesis, 2020, 142: 104039.
doi: 10.1016/j.micpath.2020.104039
[12] 陈海雁, 陈向东, 俞黎姗. 黑色素形成机理、生物学功能和应用开发的研究进展. 生物资源, 2020, 42(6): 652-659.
CHEN H Y, CHEN X D, YU L S. Biosynthesis, function and applications of melanin. Biotic Resources, 2020, 42(6): 652-659. (in Chinese)
[13] 竺思仪. 稻瘟病菌黑色素合成和调控相关基因的功能研究[D]. 杭州: 浙江大学, 2021.
ZHU S Y. The study on melanin synthesis and regulation related genes in Magnaporthe oryzae[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
[14] 樊荣, 王春生, 赵蕊, 潘勇宏, 龙友华, 赵志博. 植物病原真菌1,8-间苯二酚黑色素研究进展. 微生物学通报, 2020, 47(11): 3671-3677.
FAN R, WANG C S, ZHAO R, PAN Y H, LONG Y H, ZHAO Z B. Advances in 1,8-dihydroxynaphthalene melanin of plant fungal pathogens. Microbiology China, 2020, 47(11): 3671-3677. (in Chinese)
[15] LIU Y, LIU J K, LI G H, ZHANG M Z, ZHANG Y Y, WANG Y Y, HOU J, YANG S, SUN J, QIN Q M. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Molecular Plant Pathology, 2019, 20(5): 731-747.
doi: 10.1111/mpp.12788
[16] NASCIMENTO R, MAIA M, FERREIRA A E N, SILVA A B, FREIRE A P, CORDEIRO C, SILVA M S, FIGUEIREDO A. Early stage metabolic events associated with the establishment of Vitis vinifera-Plasmopara viticola compatible interaction. Plant Physiology and Biochemistry, 2019, 137: 1-13.
doi: 10.1016/j.plaphy.2019.01.026
[17] LUNDQVIST T, WEBER P C, HODGE C N, BRASWELL E H, RICE J, PIERCE J. Preliminary crystallographic studies on scytalone dehydratase from Magnaporthe grisea. Journal of Molecular Biology, 1993, 232(3): 999-1002.
doi: 10.1006/jmbi.1993.1449
[18] 曹志艳. 玉米大斑病菌黑色素合成途径相关基因的克隆及功能分析[D]. 保定: 河北农业大学, 2009.
CAO Z Y. Characterization and function analysis of the genes involved in melanin biosynthesis pathway in the phytopathogenic fungus Setosphaeria turcica[D]. Baoding: Hebei Agricultural University, 2009. (in Chinese)
[19] RYDER L S, TALBOT N J. Regulation of appressorium development in pathogenic fungi. Current Opinion in Plant Biology, 2015, 26: 8-13.
doi: 10.1016/j.pbi.2015.05.013
[20] 那艳涛. 灰霉菌黑色素合成中间产物Scytalone的功能及转运机制研究[D]. 上海: 华东师范大学, 2019.
NA Y T. Study on the function and transport mechanism of melanin synthesis intermediate scytalone in Botrytis cinerea[D]. Shanghai: East China Normal University, 2019. (in Chinese)
[21] 康鑫, 吕志远, 黄艳, 向仲怀, 何宁佳. 桑椹菌核病菌(Scleromitrula shiraiana)黑色素生物合成相关基因的克隆与功能分析. 植物病理学报, 2017, 47(4): 495-504.
KANG X, LÜ Z Y, HUANG Y, XIANG Z H, HE N J. Cloning and functional analysis of the melanin biosynthesis gene in Scleromitrula shiraiana. Acta Phytopathologica Sinica, 2017, 47(4): 495-504. (in Chinese)
[22] 薛彩英, 武海燕, 侯梦圆, 马庆周, 郭雅双, 耿月华, 臧睿, 张猛, 徐超. 草莓多主棒孢霉小柱孢酮脱水酶基因CcSCD1的功能研究. 植物病理学报, 2022, 52(1): 25-36.
XUE C Y, WU H Y, HOU M Y, MA Q Z, GUO Y S, GENG Y H, ZANG R, ZHANG M, XU C. Functional analysis of the scytalone dehydratase gene CcSCD1 in Corynespora cassiicola from strawberry. Acta Phytopathologica Sinica, 2022, 52(1): 25-36. (in Chinese)
[23] 刘娅楠. 芒果炭疽病菌小柱孢酮脱水酶基因SCD1与羟基萘还原酶基因THR1克隆与致病相关功能鉴定[D]. 海口: 海南大学, 2017.
LIU Y N. Coloning and functional identification of scytalone dehydratase gene (SCDI) and tetrahydroxynaphthalene reductase gene (THR1) from Colletotrichum gloeosporioides - the pathogen of mango anthracnose disease[D]. Haikou: Hainan University, 2017.(in Chinese)
[24] LIANG Y, XIONG W, STEINKELLNER S, FENG J. Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum. Molecular Plant Pathology, 2018, 19(6): 1444-1453.
doi: 10.1111/mpp.12627
[25] 乔琳涛. 罗伯茨绿僵菌小柱孢酮脱水酶基因的功能研究[D]. 合肥: 安徽农业大学, 2017.
QIAO L T. The knockout and analysis the function of scytalone dehydratase in Metarhizium robertsii[D]. Hefei: Anhui Agricultural University, 2017. (in Chinese)
[26] 于清, 曹志艳, 董金皋. 玉米大斑病菌小柱孢酮脱水酶基因(scd)的克隆与功能分析. 微生物学报, 2007, 47(6): 1013-1018.
YU Q, CAO Z Y, DONG J G. Cloning and functional analysis of scytalone dehytratase gene in Exserohilum turcicum. Acta Microbiologica Sinica, 2007, 47(6): 1013-1018. (in Chinese)
[27] 曹志艳, 杨胜勇, 董金皋. 植物病原真菌黑色素与致病性关系的研究进展. 微生物学通报, 2006, 33(1): 154-158.
CAO Z Y, YANG S Y, DONG J G. A review on relations between pathogenicity and melanin of plant fungi. Microbiology China, 2006, 33(1): 154-158. (in Chinese)
[28] 康鑫. 桑椹缩小性菌核病菌 (Scleromitrula shiraiana)小柱孢酮脱水酶基因的功能研究[D]. 重庆: 西南大学, 2017.
KANG X. Functional analysis of scytalone dehydratase gene in Scleromitrula shiraiana[D]. Chongqing: Southwest University, 2017. (in Chinese)
[29] 何一凡. 灰霉菌小柱孢酮脱水酶基因bcscd1影响致病性的机理研究[D]. 上海: 华东师范大学, 2016.
HE Y F. Study of differential virulence in scytalone dehydratase- coding gene bcscd1 mutant of Botrytis cinerea[D]. Shanghai: East China Normal University, 2016. (in Chinese)
[30] ZHANG C Q, ZHU G N, MA Z H, ZHOU M G. Isolation, characterization and preliminary genetic analysis of laboratory tricyclazole-resistant mutants of the rice blast fungus, Magnaporthe grisea. Journal of Phytopathology, 2006, 154(7): 392-397.
[31] WANG T, REN D D, GUO H, CHEN X, ZHU P K, NIE H Z, XU L. CgSCD1 is essential for melanin biosynthesis and pathogenicity of Colletotrichum gloeosporioides. Pathogens, 2020, 9(2): 141.
doi: 10.3390/pathogens9020141
[32] CHEN X, ZHU C X, NA Y T, REN D D, ZHANG C H, HE Y F, WANG Y W, XIANG S, REN W H, JIANG Y N, XU L, ZHU P K. Compartmentalization of melanin biosynthetic enzymes contributes to self-defense against intermediate compound scytalone in Botrytis cinerea. mBio, 2021, 12(2): e00007-21.
[33] MOTOYAMA T, KONDOH Y, SHIMIZU T, HAYASHI T, HONDA K, UCHIDA M, OSADA H. Identification of scytalone dehydratase inhibitors effective against melanin biosynthesis dehydratase inhibitor- resistant Pyricularia oryzae. Agricultural and Food Chemistry, 2022, 70: 3109-3116.
doi: 10.1021/acs.jafc.1c04984
[34] SCHUMACHER J. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes. Molecular Microbiology, 2016, 99(4): 729-748.
doi: 10.1111/mmi.13262
[1] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[2] LONG Feng,WANG Qing,ZHU Hang,WANG JianXia,SHEN Shen,LIU Ning,HAO ZhiMin,DONG JinGao. Identification and Expression Pattern Analysis of Septin Gene Family of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2020, 53(24): 5017-5026.
[3] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[4] ZHAO BingLing, LI YaNan, CHEN TianZhi, LIU Ying, CHANG LuCheng, FAN RuiWen, XUE LinLi, WANG HaiDong, DONG ChangSheng. GPNMB Affects Melanin Synthesis in the Melanocytes via MITF to Regulate the Downstream Pigmental Genes [J]. Scientia Agricultura Sinica, 2017, 50(7): 1334-1342.
[5] NIE Rui-qiang, YANG Yu-jing, XIE Jian-shan, FAN Rui-wen, XU Dong-mei, YU Xiu-ju, DUAN Zhi-cheng, DONG Chang-sheng. Influences of Pax6 PAI Subdomain on MITF, TYR, TYRP1 and TYRP2 in Melanocytes [J]. Scientia Agricultura Sinica, 2016, 49(17): 3433-3442.
[6] NIE Rui-qiang, YANG Yu-jing, XIE Jian-shan, FAN Rui-wen, GAO Wen-jun, DONG Chang-sheng. The Influences of Over-Expressing Pax610Neu on MITF and TYR in Melanocytes [J]. Scientia Agricultura Sinica, 2016, 49(11): 2214-2221.
[7] ZHENG Nen-zhu, XIN Qing-wu, ZHU Zhi-ming, MIAO Zhong-wei, Li Li, Liu Feng-hui, HUANG Qin-lou. cDNA Cloning and Expression of MITF Gene and Its Effect on Melanin Deposition in Silky Fowl [J]. Scientia Agricultura Sinica, 2015, 48(18): 3711-3718.
[8] JIA Hui, MENG Qing-jiang, LI Zhi-yong, GONG Xiao-dong, ZANG Jin-ping, HAO Zhi-min, CAO Zhi-yan, DONG Jin-gao. Localization of Melanin Biosynthesis Enzyme Genes in the Genome and Expression Pattern Analysis of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2015, 48(14): 2767-2776.
[9] JIA Xiao-yun, JIN Lei-hao, MIAO Lian-juan, DING Na, FAN Rui-wen, DONG Chang-sheng. Melanin Synthesis of Alpaca Melanocytes Regulated by miR-663 Through Targeting TGF-β1 [J]. Scientia Agricultura Sinica, 2015, 48(1): 165-173.
[10] WU Nan, LI Qing-Wei, CAO Zhi-Yan, ZHANG Jiao, HAO Zhi-Min, DONG Jin-Gao. Determination and Characterization of Extracellular Melanin from Setosphaeria turcica and Influencing Factors of Its Production [J]. Scientia Agricultura Sinica, 2013, 46(5): 927-933.
[11] SHEN Shen, WANG Jing-Jing, HAO Zhi-Min, LI Po, LI Zhi-Yong, SUN Zhi-Ying, HAO Jie, TONG Ya-Meng, DONG Jin-Gao. Effects of 2A Type Protein Phosphatase on the Development of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2013, 46(2): 243-249.
[12] MA Shu-hui, XUE Lin-li, XU Gang, HOU Ya-qin, GENG Jian-jun, CAO Jing, HE Xiao-yan, WANG Hai-dong, DONG Chang-sheng. The Influences of Over-Expressing miR-137 on TYRP-1 and TYRP-2 in Melanocytes [J]. Scientia Agricultura Sinica, 2013, 46(16): 3452-3459.
[13] CHI Liang, LI Lan, PAN Qing-Jie, LIU Huan-Qi. Cloning and Analysis of MC1R Gene in Silky Fowl and Its Prokaryotic Expression [J]. Scientia Agricultura Sinica, 2012, 45(5): 966-972.
[14] . Obtaining and analysis on silent transformants of Polyketide synthase gene(StPKS) in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2011, 44(8): 1603-1609 .
[15] LI Guan-Hong, XU Hai-Yan, XU Lan-Jiao, QU Ming-Ren, YOU Jin-Ming, YI Zhong-Hua, PAN Ke. Effects of Dietary Selenium Supplementation on Growth Performance and Melanin Content in Tissues of Taihe Silky Fowls [J]. Scientia Agricultura Sinica, 2011, 44(13): 2777-2786 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!