Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (24): 4769-4779.doi: 10.3864/j.issn.0578-1752.2014.24.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES •     Next Articles

Construction of Genetic Map Using Genotyping Chips and QTL Analysis of Grain Weight

CHEN Jian-sheng1, CHEN Guang-feng1, LI Qing-fang1, ZHANG Han2, SHI Cui-lan1, SUN Cai-ling1DENG Zhi-ying1, LIU Kai1, GU Zhi-qun1 , TIAN Ji-chun1,3   

  1. 1Group of Wheat Quality Breeding, College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
    2Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2014-05-05 Online:2014-12-16 Published:2014-12-16

Abstract: 【Objective】Wheat genetic map is a very useful resource for genome analysis and understanding of the genetic basis of phenotypic variation. High density genetic maps were constructed by combining the traditonal molecular markers and modern gene microarray technology in order to carry out QTL analysis of grain weight, to detect the major QTL, and to supply a basis and direction of exploration of CAPS markers for molecular-assistant breeding, which could also lay a foundation for fine mapping and excavation of grain weight genes. 【Method】 A RIL (recombinant inbred lines) population including 173 lines was analyzed using wheat 90K SNP array,DArt technology and traditional moleculer technology. High density genetic map was constructed. QTL mapping for 1000- grain weight was analyzed using QTL network 2.0. 【Result】 A genetic map of wheat covering 21 wheat chrosmes was constructed and it contains 6 241 polymorphism markers, including 6 001 SNP,256 DArT,27 SSR, covering 4875.29 cM, with an average interval distance of 0.77 cM. A, B and D chromsomes possess 2 390, 3 386, and 468 polymorphism markers, accounting for the proportion of 38.3%, 54.3%, and 7.5%, separately. The average interval distances of the markers were 0.80, 0.75 and 0.80 cM, respectively. QTL analysis of 1000-grain weight was processed under four environments. Total 9 QTL controlling 1000-grain weight were detected located on 1B, 4B, 5B, and 6A. Additive effect of QGW4B-17, QGW4B-5, QGW4B-2, QGW6A-344 and QGW6A-137 was more than 10%, which were considered as major QTL. Among them, QGW4B-17 was detected under several environments, and the phenotypic variation explained by which varied from 16% to 33% with its additive effect from 2.3 to 2.97 g. All the additive effects come from big kernel parent Shannong 01-35,single QTL could increase 1.09-2.97g for 1000-grain weight. 【Conclusion】A genetic map of wheat covering 21 wheat chrosmes was constructed with 6 241 polymorphism markers, with an average interval distance of 0.77 cM. Total 9 QTL controlling 1000-grain weight located on 1B, 4B, 5B, and 6A were detected. Additive effect ofQGW4B-17 was detected under several environments, and the phenotypic variation explained by which varied at 16%-33% with its additive effect at 2.3-2.97 g.

Key words: common wheat, 90K array, QTL mapping, grain weight, SNP

[1]    Somers C S, Sharp P J, Worland A J, Koebner R M D, Gale M D. RFLP-based genetic maps of homoeologous group 7 chromosomes. Theoretical and Applied Genetics, 1989, 78: 495-504.
[2]    Devos K M, Millan T, Gale M D. Comparative RFLP maps of homoeologous group 2 chromosomes of wheat, rye, and barley. Theoretical and Applied Genetics, 1993, 85: 784-792.
[3]    Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023.
[4]    Torada A, Koike M, Mochida K, Ogihara Y. SSR-based linkage map with new markers using an intraspecific population of common wheat. Theoretical and Applied Genetics, 2006, 112: 1042-1051.
[5]    Somers D J, Isaac P, Edwards K. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109: 1105-1114.
[6]    刘刚, 许盛宝, 倪中福, 李晶, 秦丹丹, 窦秉德, 彭惠茹, 孙其信. 小麦RIL群体SSR标记偏分离的遗传分析. 农业生物技术学报, 2007, 15(5): 828-833.
Liu G, Xu S B, Ni Z F, Li J, Qin D D, Dou B D, Peng H R, Sun Q X. Genetic analysis of segregation distortion of molecular markers in wheat RIL population. Journal of Agricultural Biotechnology, 2007, 15(5): 828-833. (in Chinese)
[7]    Peters J L, Cnudde F, Gerats T. Forward genetics and map-based cloning approaches. Trends in Plant Science, 2003, 8: 484-491.
[8]    Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity Arrays: A solid state technology for sequence information independent genotyping. Nucleic Acids Research, 2001, 29(4): 25-31.
[9]    Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (DArT) for whole genome profiling of barley. Proceedings of the National Academy of Sciences of the United State America,2004, 101(26): 9915-9920.
[10]   Mona A, Peter W, Vanessa C, Jason C, Ling X, Shiying Y, Grzegorz U, Volker M, Anke L, Haydn K, Mathew J H, Neil H, Peter S, Peter V, Bill R, Eric H, Andrzej K. Diversity arrays technology (DArT) for high-throughput, profiling of the hexaploid wheat genome. Theoretical and Applied Genetics, 2006, 113: 1409-1420.
[11]   Huynh B L, Wallwork H, Stangoulis J C R, Graham R D, Willsmore K L, Olson S, Mather D E. Quantitative trait loci for grain fructan concentration in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2008, 117: 701-709.
[12]   洪义欢, 肖宁, 张超, 苏琰, 陈建民. DArT技术的原理及其在植物遗传研究中的应用. 遗传, 2009, 31(4): 359-364.
Hong Y H, Xiao N, Zhang C, Su Y, Chen J M. Principle of diversity arrays technology (DArT) and its applications in genetic research of plants. Hereditas, 2009, 31(4): 359-364. (in Chinese)
[13]   师翠兰, 郑菲菲, 陈建省, 韩淑晓, 王永瑞, 田纪春. 小麦山农01-35×藁城9411重组自交系遗传图谱构建及粒重QTL分析. 作物学报, 2012, 38(8): 1369-1377.
Shi C L, Zheng F F, Chen J S, Han S X, Wang Y R, Tian J C. Construction of genetic map and analysis of QTLs for grain weight using a RIL population derived from Shannong 01-35 × Gaocheng 9411. Acta Agronomica Sinica, 2012, 38(8): 1369-1377. (in Chinese)
[14]   Brookes A J. The essence of SNP. Gene, 1999, 234: 177-186.
[15]   Rafalski J A. Application of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology, 2002, 5: 94-100.
[16]   Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Minobe Y. Search for and analysis of single nucleotide polymorphisms (SNP) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP mark2 ers. DNA Research, 2002, 9: 163-171.
[17]   Lander E S. The new genomics: Global views of biology. Science, 1996, 274: 536-539.
[18]   Wang D G, Fan J B, Siao C J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris M S, Shen N P , Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander E S. Large scale identification, mapping, and genotyping of single2nucleotide polymorphism in the human genome. Science, 1998, 280: 1077-1082.
[19]   Sachidanandam R, Weissman D, Schmidt S C, Kakol J M, Marth L D S, Mullikin S S C, Mortimore B J, Willey D L, Hunt S E, Cole C G, Coggill P C, Rice C M, Ning Z, Rogers J, Kwok D R B, Mardis E R, Yeh R T, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston R H, Gilman J D M, Schaffner S, Van Etten W J, Reich D, Higgins J, Daly M J, Blumenstiel B, Bald W J, Stange T N, Zody M C, Linton L, Lander E S, David A D. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphism. Nature, 2001, 409: 928-933.
[20]   Hoskins R A, Phan A, Naeemuddin M, Mapa F A, Ruddy D A, Ryan J J, Young L M, Wells T, Kopczynski C, Ellis C. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Research, 2001, 11: 1100-1113.
[21]   Rafalski J A. Novel genetic mapping tools in plants: SNP and LD based approaches. Plant Science,2002, 162: 329-333.
[22]   Ching A, Caldwell K S, Jung M, Dolan M, Smith O S, Tingey S, Morgante M, Rafalki A J. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics, 2002, 3: 19.
[23]   Allen A M, Barker G L, Berry S T, Coghill J A, William R G. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnology, 2011, 9: 1086-1099.
[24]   Lai K C, Duran P J, Berkman M T, Lorenc J. Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnology, 2012, 10: 743-749.
[25]   Edwards K J, Poole R L, Barker G L A. SNP discovery in plants//Henry R J (ed). Plant Genotyping II: SNP Technology. Wallingford, Oxfordshire, 2008: 1-29.
[26]   Akhunov E, Nicolet C, Dvorak J. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theoretical and Applied Genetics, 2009, 119: 507-517.
[27]   Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo M C, Dubcovsky J. Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Molecular Breed, 2009, 23: 23-33.
[28]   Chao S J, Dubcovsky J, Dvorak, Luo M C, Baenziger S P, Matnyazov R, Clark D R, Talbert L E, Anderson J A, Dreisigacker S, Glover K, Chen J L, Campbell K, Bruckner P L, Rudd J C, Haley S, Carver B F, Perry S, Sorrells M E, Akhunov E D. Population-and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics, 2010, 11: 727.
[29]   Trebbi D M, Maccaferri P, de Heer A. Sorensen S. Giuliani. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theoretical and Applied Genetics, 2011, 123: 555-569.
[30]   Allen A M, Barker G L, Berry S T, Coghill J A, Gwilliam R, Kirby S, Robinson P, Brenchley R C, Rosalinda D A, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards K J. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnology, 2011, 9: 1086-1099.
[31]   Cavanagh C S, Chao S, Wang B E, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva M L, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Sorrells M E, Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Science of the United State America, 2013, 110: 8057-8062.
[32]   Voorrips R E. Map Chart: Software for the graphical presentation of linkage maps and QTL. Journal of Heredity, 2002, 93(1): 77-78.
[33]   Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTL with epistatic effects and QTL×environment interactions by mixed linear model approaches.Theoretical and Applied Genetics, 1999, 99: 1255-1264.
[34]   Yang J, Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theoretical and Applied Genetics, 2005, 110: 1268-1274.
[35]   McIntosh R A, Devos K M, Dubcovsky J, Rogers W J, Morris C F, Appels R, Anderson O D. Catalogue of gene symbols for wheat: 2005 Supplement [EB/OL]. http://wheat.pw.usda.gov/ggpages/wgc/2005upd. html, 2010-05-15.
[36]   邹喻苹, 葛颂. 新一代分子标记—SNPs及其应用. 生物多样性, 2003, 11(5): 370-382.
Zou Y P, Ge S. A novel molecular marker-SNPs and its appl ication. Biodiversity Science, 2003, 11(5): 370-382. (in Chinese)
[37]   Wang S C, Debbie W, Kerrie F, Alexandra A, Shiaoman C, Bevan E H, Marco M, Silvio S, Sara G M, Luigi C, Anna M M, Alex W, Stuart S, Gary B, Ralf W, Joerg P, International Wheat Genome Sequencing Consortium, Morten L, Diane M, Rudi A, Rudy D, Gina B G, Abraham K, Alina R A, Catherine F, Jerome S, Michele M, Curtis P, Luo M C, Jan D M M, Jorge D, Martin G, Roberto T, Cindy L, Ivan M, Colin C, Keith J E, Matthew H, Eduard A. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014, 12: 787-796.
[38]   Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006, 112: 1164-1171.
[39]   Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40(8): 1023-1028.
[40]   Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007,39(5): 623-630.
[41]   Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43(12): 1266-1269.
[42]   Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 105: 921-936.
[43]   McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross Genome RL4452 × ‘AC Domain’. Genome, 2005, 48: 870-883.
[44]   Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 113: 753-766.
[45]   Li S P, Wang C S, Chang X P, Jing R L. Genetic dissection of developmental behavior of grain weight in wheat under diverse temperature and water regimes. Genetica, 2012, 140: 393-405.
[46]   Patil R M, Tamhankar S A, Oak M D, Raut A L, Honrao B K, Rao V S, Misra S C. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 2013, 190: 117-129.
[47]   王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 游光霞, 闫长生, 肖世和. 不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 中国农业科学, 2009, 42(2): 398-407.
Wang R X, Zhang X Y, Wu L, Wang R, Hai L, You G X, Yan C S, Xiao S H. QTL analysis of grain size and related traits in winter wheat under different ecological environments. Scientia Agricultura Sinica, 2009, 42(2): 398-407. (in Chinese)
[48]   Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 2014, 127: 659-675.
[49]   Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122: 211-223.
[50]   韩利明, 杨芳萍, 夏先春, 阎俊, 张勇, 曲延英, 王忠伟, 何中虎. 株高、粒重及抗病相关基因在不同国家小麦品种的分布. 麦类作物学报, 2011, 31(5): 824-831.
Han L M, Yang F P, Xia X C, Yan J, Zhang Y, Qu Y Y, Wang Z W, He Z H. Distribution of genes related to plant height, kernel weight and disease resistance among wheat cultivars from major countries. Journal of Triticeae Crops, 2011, 31(5): 824-831. (in Chinese)
[51] Zhang X Y, Chen J S, Shi C L, Chen J N, Zheng F F, Tian J C. Function of TaGW2-6A and its effect on grain weight in wheat (Triticum aestivum L.). Euphytica, 2013, 192: 347-357.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[5] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[6] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[7] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[10] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[11] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[12] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[13] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[14] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[15] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!