Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (14): 2889-2896.doi: 10.3864/j.issn.0578-1752.2014.14.019
• AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
LIAN Yun-1, 2 , LIU Yun-Jun-1, WANG Guo-Ying-1
[1]Kim T H, Barrera L O, Qu C, Van Calcar S, Trinklein N D, Cooper S J, Luna R M, Glass C K, Rosenfeld M G, Myers R M, Ren B. Direct isolation and identification of promoters in the human genome. Genome Research, 2005, 15(6): 830-839. [2]Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume D A. Mammalian RNA polymerase II core promoters: Insights from genome-wide studies. Nature Reviews Genetics, 2007, 8(6): 424-436. [3]Hutchison W D, Burkness E C, Mitchell P D, Moon R D, Leslie T W, Fleischer S J, Abrahamson M, Hamilton K L, Steffey K L, Gray M E, Hellmich R L, Kaster L V, Hunt T E, Wright R J, Pecinovsky K, Rabaey T L, Flood B R, Raun E S. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science, 2010, 330(6001): 222-225. [4]Lu M G, Rui C H, Zhao J Z, Jian G L, Fan X L, Gao X W. Selection and heritability of resistance to Bacillus thuringiensis subsp kurstaki and transgenic cotton in Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Management Science, 2004, 60(9): 887-893. [5]Kathage J, Qaim M. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proceedings of the National Academy of Sciences of the USA, 2012, 109(29): 11652-11656. [6]Fang R X, Nagy F, Sivasubramaniam S, Chua N H. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. The Plant Cell, 1989, 1(1): 141-150. [7]Lian Y, Jia Z, He K, Liu Y, Song F, Wang B, Wang G. Transgenic tobacco plants expressing synthetic Cry1Ac and Cry1Ie genes are more toxic to cotton bollworm than those containing one gene. Chinese Science Bulletin, 2008, 53(9): 1381-1387. [8]Christensen A H, Sharrock R A, Quail P H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology, 1992, 18(4): 675-689. [9]Zhang W, McElroy D, Wu R. Analysis of rice Act1 5′ region activity in transgenic rice plants. The Plant Cell, 1991, 3(11): 1155-1165. [10]Cazzonelli C I, McCallum E J, Lee R, Botella J R. Characterization of a strong, constitutive mung bean (Vigna radiata L.) promoter with a complex mode of regulation in planta. Transgenic Research, 2005, 14(6): 941-967. [11]Stavolone L, Kononova M, Pauli S, Ragozzino A, de Haan P, Milligan S, Lawton K, Hohn T. Cestrum yellow leaf curling virus (CmYLCV) promoter: A new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Molecular Biology, 2003, 53(5): 663-673. [12]Xie Y, Liu Y, Meng M, Chen L, Zhu Z. Isolation and identification of a super strong plant promoter from cotton leaf curl Multan virus. Plant Molecular Biology, 2003, 53(1/2): 1-14. [13]Bates S L, Zhao J Z, Roush R T, Shelton A M. Insect resistance management in GM crops: Past, present and future. Nature Biotechnology, 2005, 23(1): 57-62. [14]Hamilton K A, Pyla P D, Breeze M, Olson T, Li M, Robinson E, Gallagher S P, Sorbet R, Chen Y. Bollgard II cotton: compositional analysis and feeding studies of cottonseed from insect-protected cotton (Gossypium hirsutum L.) producing the Cry1Ac and Cry2Ab2 proteins. Journal of Agricultural and Food Chemistry, 2004, 52(23): 6969-6976. [15]Qi R F, Song Z W, Chi C W. Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application. Acta Biochimica et Biophysica Sinica, 2005, 37(5): 283-292. [16]Hilder V A, Gatehouse A M R, Sheerman S E, Barker R F, Boulter D. A novel mechanism of insect resistance engineered into tobacco. Nature, 1987, 330(6144): 160-163. [17]Shitan N, Horiuchi K, Sato F, Yazaki K. Bowman-birk proteinase inhibitor confers heavy metal and multiple drug tolerance in yeast. Plant & Cell Physiology, 2007, 48(1): 193-197. [18]Clemente A, Sonnante G, Domoney C. Bowman-Birk inhibitors from legumes and human gastrointestinal health: Current status and perspectives. Current Protein & Peptide Science, 2011, 12(5): 358-373. [19]Clementea A, Domoney C. Biological significance of polymorphism in legume protease inhibitors from the Bowman-Birk family. Current Protein & Peptide Science, 2006, 7(3): 201-216. [20]Clemente A, Carmen Marin-Manzano M, Jimenez E, Carmen Arques M, Domoney C. The anti-proliferative effect of TI1B, a major Bowman-Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition. The British Journal of Nutrition, 2012, 108( Suppl 1): 135-144. [21]Qi R F, Song Z W, Chi C W. Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application. Acta Biochimica et Biophysica Sinica, 2005, 37(5): 283-292. [22]Shitan N, Horiuchi K, Sato F, Yazaki K. Bowman-birk proteinase inhibitor confers heavy metal and multiple drug tolerance in yeast. Plant & Cell Physiology, 2007, 48(1): 193-197. [23]Qu L J, Chen J, Liu M, Pan N, Okamoto H, Lin Z, Li C, Li D, Wang J, Zhu G, Zhao X, Chen X, Gu H, Chen Z. Molecular cloning and functional analysis of a novel type of Bowman-Birk inhibitor gene family in rice. Plant Physiology, 2003, 133(2): 560-570. [24]Che F-S, Entani T, Marumoto T, Taniguchi M, Takayama S, Isogai A. Identification of novel genes differentially expressed in compatible and incompatible interactions between rice and Pseudomonas avenae. Plant Science, 2002, 162(3): 449-458. [25]陈军, 刘静, 郭蕾, 瞿礼嘉, 陈章良, 顾红雅. 水稻Bowman-Birk蛋白酶抑制剂基因OsWIP1-2的诱导表达及其抑制活性. 科学通报, 2004, 49(7): 657-661. Chen J, Liu J, Guo L, Qu L J, Chen Z L, Gu H Y. Inducible expression pattern of rice Bowman-Birk inhibitor gene OsWIP1-2 and its protease inhibitory activity. Chinese Science Bulletin, 2004, 49(7): 657-661. (in Chinese) [26]Rohrmeier T, Lehle L. WIP1, a wound-inducible gene from maize with homology to Bowman-Birk proteinase inhibitors. Plant Molecular Biology, 1993, 22(5): 783-792. [27]Eckelkamp C, Ehmann B, Schopfer P. Wound-induced systemic accumulation of a transcript coding for a Bowman-Birk trypsin inhibitor-related protein in maize (Zea mays L.) seedlings. Febs Letters, 1993, 323: 73-76. [28]Zhang S, Lian Y, Liu Y, Wang X, Liu Y, Wang G. Characterization of a maize wip1 promoter in transgenic plants. International Journal of Molecular Sciences, 2013, 14(12): 23872-23892. [29]练云. 人工改造的cry1Ac、cry1Ie基因在转基因烟草和玉米中的共表达[D]. 北京: 中国农业大学, 2008: 26. Lian Y. Co-expression of the modified cry1Ac, cry1Ie genes in transgenic tobacco and maize plants (Dr.). BeiJing: China Agriculture University, 2008: 26. (in Chinese) [30]Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The European Molecular Biology Organization Journal, 1987, 6(13): 3901-3907. [31]Kay R, Chan A, Daly M, McPherson J. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science, 1987, 236(4806): 1299-1302. [32]Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Molecular Biology, 2004, 55(6): 807-823. |
[1] | CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78. |
[2] | ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117. |
[3] | LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709. |
[4] | XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748. |
[5] | LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762. |
[6] | MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603. |
[7] | LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616. |
[8] | ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345. |
[9] | TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138. |
[10] | LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947. |
[11] | QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976. |
[12] | HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691. |
[13] | FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822. |
[14] | DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878. |
[15] | YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 239
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|