Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (5): 955-967.doi: 10.3864/j.issn.0578-1752.2014.05.012

• HORTICULTURE • Previous Articles     Next Articles

Organic Acid Content, Microbial Quantity and Enzyme Activity in Rhizosphere Soil of Four Citrus Rootstocks Under Different Phosphorus Levels

 LUO  Yan, FAN  Wei-Guo   

  1. Research Institute for Fruit Resources of Karst Mountain Region, Guizhou University/Guizhou Fruits Engineering Technology Research Centre, Guiyang 550025
  • Received:2013-07-24 Online:2014-03-01 Published:2013-11-20

Abstract: 【Objective】 The effects of different phosphorus (P) levels on the composition and content of organic acids, the population and quantity of microbe and enzyme activities in rhizosphere soil of different citrus rootstocks were explored for providing a scientific basis of enriching the theory about phosphorus nutrition and ecology of citrus and discovering the citrus rootstock with specific nutrient characteristics.【Method】A pot experiment was adopted to study the ability to phosphorus stress, the composition and content of organic acids, the population and quantity of microbe and enzyme activities in rhizosphere soil of Citrus ichangensis Swing., C.aurantium L., C.limonia Osbeck and Poncirus trifoliata Raf. under different P levels, and their correlation was analyzed.【Result】The dry matter accumulation of C.aurantium L., C.limonia Osbeck and P. trifoliata Raf. significantly increased with the rised P levels. There was no obvious effect of different P levels on the biomass of C. ichangensis Swing.. The tolerance to low-P stress was in the order of C. ichangensis Swing.>C.limonia Osbeck>C.aurantium L.>P. trifoliata Raf. The composition and content of organic acids in rhizosphere soil of different citrus rootstocks were significantly different, and the oxalic acid, succinic acid and acetic acid were the main organic acids.The total content of organic acids and the content of oxalic acid, malonic acid in rhizosphere soil of different citrus rootstocks and the content of succinic acid in rhizosphere soil of C.ichangensis Swing. and C.aurantium L. significantly increased with the reduced P levels. Under phosphate starvation, the amount of organic acid in rhizosphere soil of C.ichangensis Swing. was significantly higher than other citrus rootstocks. Bacteria were dominant, followed by actinomycetes, and fungi were the least. The quantity of bacteria, actinomycetes and the total microbes increased significantly with the reduced P levels. Under phosphate starvation, the amount of microbes in rhizosphere soil of C.ichangensis Swing. was significantly higher than other citrus rootstocks. The activities of acid phosphatase, urase, protease, nitrate reductase, and sucrase in rhizosphere soil of different citrus rootstocks under different P levels were significantly different, the activities of diastase and catalase had no obvious difference. Pearson correlation analysis indicated that there was a siginificant correlation among P levels, organic acids content, microbial quantity and soil enzyme activities. 【Conclusion】Under phosphate starvation, the organic content and biological activity significantly incresed in rhizosphere soil of citrus rootstocks with low-level phosphorus tolerance. C.ichangensis Swing. was more adaptive to low phosphorus soil.

Key words: phosphorus , citrus , organic acid , microbe , soil enzyme

[1]张福锁, 申建波, 冯固. 根际生态学—过程与调控. 北京: 中国农业大学出版社. 2009: 33-40, 37-38.

Zhang F S, Shen J B, Feng G. Rhizosphere Ecology: Processes&Management. China Agricultural University Press, 2009: 33-40, 37-38. (in Chinese) 

[2]Nannipieri P, Ascher J, Ceccherini M T, Landi L, Pietramellara G, Renella G.. Microbial diversity and soil functions. European Journal of Soil Science, 2003, 54(4), 655-670.

[3]Rajkumar M, Ae N, Prasad M N, Freitas H. Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 2010, 28(3): 142-149.

[4]Floch C, Capowiez Y, Criquet S. Enzyme activities in apple orchard agroecosystems: How are they affected by management strategy and soil properties. Soil Biology and Biochemistry, 2009, 41(1): 61-68.

[5]和文祥, 谭向平, 王旭东, 唐明, 郝明德. 土壤总体酶活性指标的初步研究. 土壤学报, 2010, 7(6): 211-215.

He W X, Tan X P, Wang X D, Tang M, Hao M D. Study on total enzyme activity index in soils. Acta Pedologica Sinica, 2010, 7(6): 211-215. (in Chinese)

[6]兰忠明, 林新坚, 张伟光, 张辉, 吴一群. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响. 中国农业科学, 2012, 45(8): 1521-1531.

Lan Z M, Lin X J, Zhang W G, Zhang H, Wu Y Q. Effect of P deficiency on the emergence of Astragalus L. root exudates and mobilization of sparingly soluble phosphorus. Scientia Agricultura Sinica, 2012, 45(8): 1521-1531. (in Chinese)

[7]罗永清, 赵学勇, 李美霞. 植物根系分泌物生态效应及其影响因素研究综述. 应用生态学报, 2012, 23(12): 3496-3504.

Luo Y Q, Zhao X Y, Li M X. Ecological effect of plant root exudates and related affecting factors: A review. Chinese Journal of Applied Ecology, 2012, 23(12): 3496-3504. (in Chinese)

[8]张福锁. 植物营养生理生态学和遗传学. 北京: 中国农业大学出版社, 1993: 1-13, 18.

Zhang F S. Ecological Physiology and Genetics of Plant Nutrition. Beijing: China Agricultural University Press, 1993: 1-13, 18. (in Chinese)

[9]Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant and Cell Physiology, 2005, 46: 1350-1357.

[10]Tewari R K, Kumar P, Sharma P N. Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. Journal of Integrative Plant Biology, 2007, 49(3): 313-322.

[11]Li S C, Ning T, Huan X J, Lin T Y. Changes in organic acid metabolism differ between roots and leaves of Citrus grandis in response to phosphorus and aluminum. Journal of Plant Physiology, 2009, 166(18): 2023-2034.

[12]邢承华, 朱美红, 张淑娜. 磷对铝胁迫下荞麦根际土壤铝形态和酶活性的影响. 生态环境学报, 2009, 18(5): 1944-1948.

Xing C H, Zhu M H, Zhang S N. Effects of phosphorus on aluminum forms and soil enzymatic activities of buckwheat rizosphere under aluminum stress. Ecology and Environmnet, 2009, 18(5): 1944-1948. (in Chinese)

[13]李志伟, 崔力拓. 大量施磷对旱地土壤养分、酶活性及作物生长的影响. 土壤通报, 2009, 40(4): 860-863.

Li Z W, Cui L T. The effect of applying surplus phosphorus on the soil nutrient enzyme activity and crop growth of nonirrigated farmland. Chinese Journal of Soil Science, 2009, 40(4): 860-863. (in Chinese)

[14]李慧杰, 徐福利, 林云, 栾晓波. 施用氮磷钾对黄土丘陵区山地红枣林土壤酶与土壤肥力的影响. 干旱地区农业研究, 2012, 30(4): 53-59.

Li H J, Xu F L, Lin Y, Luan X B. Efects of N,P and K fertilization on soil enzyme activities and soil fertility in mintane Jujube forest of hilly loess region. Agricultural Research in the Arid Areas, 2012, 30(4): 53-59. (in Chinese)

[15]雍太文, 杨文钰, 向达兵, 陈小容. 不同种植模式对土壤氮素转化及酶活性的影响. 应用生态学报, 2011, 22(12): 3227-3235. 

Yong T W, Yang W Y, Xiang D B, Chen X R. Effects of different planting modes on soil nitrogen transformation and related enzyme activities. Chinese Journal of Applied Ecology, 2011, 22(12): 3227-3235. (in Chinese)

[16]龙健, 江新荣, 邓启琼, 刘芳. 贵州喀斯特地区土壤石漠化的本质特征研究. 土壤学报, 2005, 42(3): 419-427.              

Long J, Jiang X R, Deng Q Q, Liu F. Characteristics of soil rocky desertification in the karst region of guizhou provce. Acta Pedologica Sinica, 2005, 42(3): 419-427. (in Chinese)

[17]庄伊美. 柑桔营养与施肥. 北京: 中国农业出版社, 1994: 15-16, 270-281.                                         

Zhuang Y M. Nutrition and Fertilization of Citrus. Beijing: Chinese Agriculture Press, 1994: 15-16, 270-281.(in Chinese)

[18]毛达如. 植物营养研究方法. 北京: 中国农业大学出版社, 2011: 398, 403.

Mao D R. Research Methods of Plant Nutrition. Beijing:China Agricultural University Press, 2011: 398, 403. (in Chinese)

[19]曹靖, 张福锁. 低磷条件下不同基因型小麦幼苗对磷的吸收和利用效率及水分的影响. 植物生态学报, 2000, 24(6): 731-735.

Cao J, Zhang F S. Phosphorus uptake and utilization efficiency in seedlings of different wheat genotypes as influenced by water supply at low soil phosphorus availability. Acta Phytoecolog ica Sinica, 2000, 24 (6): 731-735. (in Chinese)

[20]林先贵. 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010: 52-62.

Lin X G. Principles and Methods of Soil Microbiology. Beijing: Higher Education Press, 2010: 52-62. (in Chinese)

[21]姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术, 科学出版社, 2006: 135-136.

Yao H Y, Huang C Y. Soil Microbial Ecology and its Experimental Techniques. Science Press, 2006: 135-136. (in Chinese)

[22]关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986: 274-339.

Guan S Y. Study on Soil enzyme and its method. BeiJing: Agriculture Press, 1986: 274-339. (in Chinese)

[23]周志春, 谢钰容, 金国庆, 陈跃, 宋振英. 马尾松种源磷效率研究. 林业科学, 2005, 7, 41(4): 25-30.

Zhou Z C, Xie Y R, Jin G Q, Chen Y, Song Z Y. Study on phosphorus efficiency of different provenances of Pinus massoniana. Scientia silvae sinicae, 2005, 7, 41(4): 25-30. (in Chinese)

[24]王剑, 周志春, 饶龙兵, 金国庆, 李建民. 马褂木种源磷效率特性差异研究. 林业科学研究, 2006, 19(2): 211-215.

Wang J, Zhou Z C, Rao L B, Jin G Q, Li J M. Characteristics of phosphorus efficiency of different provenaces in Liriodendron Chinese. Forest Research, 2006, 19(2): 211-215. (in Chinese)

[25]张丽梅, 贺立源, 李建生, 徐尚忠. 不同耐低磷基因型玉米磷营养特性研究. 中国农业科学, 2005, 38(1): 110-115.

Zhang L M, He L Y, Li J S, Xu S Z. Phosphorus nutrient characteristics of different maize inbreds with tolerance to low-P stress. Scientia Agricultura Sinica, 2005, 38(1): 110-115. (in Chinese)

[26]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant& Soil, 2001, 237(2): 173-195.

[27]Gahoonia T S, Asmar F, Giese H, Gissel-Nielsen G, Nielsen N E . Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments. European Journal of  Agronomy, 2000, 12(3): 281-289.

[28]Shen H, Yan X I, Zhao M, Zheng S L, Wang X R. Exudation of organic acids in common bean as related to mobilization of aluminum and iron bound phosphates. Environmental and Experimental Botany, 2002, 48(1): 1-9.

[29]王美丽, 严小龙. 大豆根形态和根分泌物特性与磷效率. 华南农业大学学报, 2001, 22(3): 1-4.

Wang M L, Yan X L. Characteristics on root morphology and root exudation of soybean in relation to phosphorus eficiency. Jounal of South China Agricuture University, 2001, 22(3): 1-4.(in Chinese)

[30]李德华, 向春雷, 姜益泉, 贺立源. 低磷胁迫下水稻不同品种根系有机酸分泌的差异. 中国农学通报, 2005, 21(11): 186-201.

Li D H, Xiang C L, Jiang Y Q, He L Y. Diference of organic acid secretion from roots of various rice varieties under the stress of low phosphorus. Chinese Agricultural Science Bulletin, 2005, 21(11): 186-201. (in Chinese)

[31]周建朝, 王孝纯, 邓艳红, 林晓坤, 王艳. 磷胁迫对不同基因型甜菜根系形态及根分泌物的影响. 中国农学通报, 2011, 27(2): 157-161.

Zhou J Z , Wang X R, Deng Y H, Lin X K, Wang Y. Effects of Phosphorus stress on root and root exudates in different genotypes sugar beet. Chinese Agricultural Science Bulletin, 2011, 27(2): 157-161.(in Chinese)

[32]Gaume A, Mächler F, De Leon C, Narro L, Frossard E. Low-P tolerance by maize (Zea mays L.) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation. Plant and Soil, 2001, 228: 253-264.

[33]张福锁. 环境胁迫与植物根际营养. 中国农业出版社, 1998: 4-6.

Zhang F S. Environmental Stress and Plant Rhizosphere Nutrition. China Agriculture Press, 1998: 4-6. (in Chinese)

[34]Nihorimbere V, Ongena M, Smargiassi M, Thonart P. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy, Society and Environment, 2011, 15(2): 327-337. 

[35]Marschner P, Yang C H, Lieberei R, Crowley D E. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 2001, 33(11): 1437-1445.

[36]陈汝, 王海宁, 姜远茂, 魏绍冲, 陈倩, 葛顺峰. 不同苹果砧木的根际土壤微生物数量及酶活性. 中国农业科学, 2012, 45(10): 2099-2106.

Chen R, Wang H N, Jiang Y M, Wei S C, Chen Q, Ge S F. Rhizospheresoil microbialquantity and enzymeactivityof different apple rootstocks. Scientia Agricultura Sinica, 2012, 45(10): 2099-2106. (in Chinese)

[37]陆文龙, 曹一平, 张福锁. 根分泌的有机酸对土壤磷和微量元素的活化作用, 应用生态学报, 1999, 10(3): 379-382.

Lu W L, Cao Y P, Zhang F S. Role of root-exuded organic acids in mobilization of soil phosphorus and micronutrients. Chinese Journal of Applied Ecology, 1999, 10(3): 379-382. (in Chinese)

[38]薛冬, 姚槐应, 何振立, 黄昌勇. 红壤酶活性与肥力的关系. 应用生态学报, 2005, 16(8): 1455-1458.

Xue D, Yao H Y, He Z L, Huang C Y. Relationships between red soil enzyme activity and fertility. Chinese Journal of Applied Ecology, 2005, 16(8): 1455-1458.(in Chinese)

[39]张志丹, 李春丽, 王鸿斌, 赵兰坡, 杨学明. 黑土酶活性对不同施肥条件的响应. 华南农业大学学报, 2011, 10, 32(4): 21-26.

Zhang Z D, Li C L, Wang H B, Zhao L P, Yang X M. Response of the black soil enzyme activities to different fertilizer applications. Journal of South China Agricultural University, 2011, 10, 32(4): 21-26.(in Chinese)

[40]李天忠, 张志宏. 现代果树生物学. 北京: 科学出版社, 2008: 290-295.

Li T Z, Zhang Z H. Modern Fruit Biology. Beijing: Science Press, 2008: 290-295. (in Chinese)

[41]周礼恺. 土壤酶学. 科学出版社, 1987: 228, 256.

Zhou L K. Soil Enzymology. Science Press, 1987: 228, 256. (in Chinese)

[42]苏德纯, 张福锁, 李国学. 磷—金属(Fe、Al)—有机酸三元复合体在植物磷营养中的作用. 土壤通报, 2000, 31(4): 159-161.

Su C D, Zhang F S, Li G X. Effects of phosphorus- metal-organic acidsternary complexes  in plant nutrition. Chinese Journal of Soil Science, 2000, 31(4): 159- 161. (in Chinese)

[43]蔡昆争. 作物根系生理生态学. 北京: 化学工业出版社, 2010, 12, 81.

Cai K Z. Physiology and Ecology of crop root systems. Beijing: Chemical Industry Press, 2010, 12, 81. (in Chinese)

[44]张海伟, 黄宇, 叶祥盛, 徐芳森. 低磷胁迫下甘蓝型油菜酸性磷酸酶对磷效率的贡献分析. 中国科学: 生命科学, 2010, 53: 418-427.

Zhang H W, Huang Y, Ye X S, Xu F S. Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus condition. SciChina: Life Sci, 2010, 53: 418-427. (in Chinese)

[45]Oberson A,  Fardeau J C,  Besson J M, Sticher H. Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biology and Fertility of Soils, 1993, 16: 111-117.

[46]Bonmati M, Ceccanti B, Nannipieri P. Spatial variability of phosphatase , urease, protease, organic carbon and total nitrogen in soil. Soil Biology and Biochemistry, 1991, 23: 391-396.

[47]Richardson A E, Barea J M, McNeill A M, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 2009, 321: 305-339.

[48]Morgan J A, Bending G D,White P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere. Journal of Experimental Botany, 2005, 56(417): 1729-1739.

[49]孙海国, 张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究. 应用生态学报, 2002, 13(3): 379-381.

Sun H G, Zhang F S. Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots. Chinese Journal of Applied Ecology, 2002, 13(3): 379-381. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[3] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[4] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[5] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[6] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[7] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[8] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[9] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[10] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[11] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[12] DONG ZeKuan,ZHANG ShuiQin,LI YanTing,GAO Qiang,ZHAO BingQiang,YUAN Liang. Effects of Chelating Agent on Dissolution, Fixation and Fertisphere Transformation of Diammonium Phosphate [J]. Scientia Agricultura Sinica, 2022, 55(21): 4225-4236.
[13] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[14] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[15] ZiHan FAN,YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG. Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(18): 3600-3612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!