Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (12): 2501-2513.doi: 10.3864/j.issn.0578-1752.2013.12.011
• HORTICULTURE • Previous Articles Next Articles
WANG Xiao-Fei, LIU Xin, SU Ling, SUN Yong-Jiang, ZHANG Shi-Zhong, HAO Yu-Jin, YOU Chun-Xiang
[1]Majer C, Hochholdinger F. Defining the boundaries: structure and function of LOB domain proteins. Trends in Plant Science, 2011, 16(1): 47-52.[2]Shuai B, Reynaga-Pena C G, Springer P S. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiology, 2002, 129(2): 747-761.[3]Yang Y, Yu X, Wu P. Comparison and evolution analysis of two rice subspecies LATERAL ORGAN BOUNDARIES domain gene family and their evolutionary characterization from Arabidopsis. Molecular Phylogenet and Evolution, 2006, 39(1): 248-262.[4]Zhu Q H, Guo A Y, Gao G, Zhong Y F, Xu M, Huang M, Luo J. DPTF: a database of poplar transcription factors. Bioinformatics, 2007, 23(10): 1307-1308.[5]Matsumura Y, Iwakawa H, Machida Y, Machida C. Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant Journal, 2009, 58(3): 525-537.[6]Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development, 2001, 128(10): 1771-1783.[7]Husbands A, Bell E M, Shuai B, Smith H M, Springer P S. LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Research, 2007, 35(19): 6663-6671.[8]Bell E M, Lin W C, Husbands A Y, Yu L, Jaganatha V, Jablonska B, Mangeon A, Neff M M, Girke T, Springer P S. Arabidopsis LATERAL ORGAN BOUNDARIES negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proceedings of the National Academy of Sciences of the USA, 2012, 109(51): 21146-21151.[9]Wu G, Lin W C, Huang T, Poethig R S, Springer P S, Kerstetter R A. KANADI1 regulates adaxial-abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRIC LEAVES2. Proceedings of the National Academy of Sciences of the USA, 2008, 105(42): 16392-16397.[10]Jun J H, Ha C M, Fletcher J C. BLADE-ON-PETIOLE1 coordinates organ determinacy and axial polarity in arabidopsis by directly activating ASYMMETRIC LEAVES2. Plant Cell, 2010, 22(1): 62-76.[11]Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiology, 2002, 43(5): 467-478.[12]Xu L, Xu Y, Dong A, Sun Y, Pi L, Huang H. Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development, 2003, 130(17): 4097-4107.[13]Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant Journal, 2007, 51(2): 173-184.[14]Guo M, Thomas J, Collins G, Timmermans M C. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell, 2008, 20(1): 48-58.[15]Hay A, Barkoulas M, Tsiantis M. ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development, 2006, 133(20): 3955-3961.[16]Byrne M E, Simorowski J, Martienssen R A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development, 2002, 129(8): 1957-1965.[17]Qi Y, Sun Y, Xu L, Xu Y, Huang H. ERECTA is required for protection against heat-stress in the AS1/ AS2 pathway to regulate adaxial-abaxial leaf polarity in Arabidopsis. Planta, 2004, 219(2): 270-276.[18]Phelps-Durr T L, Thomas J, Vahab P, Timmermans M C. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell, 2005, 17(11): 2886-2898.[19]Belles-Boix E, Hamant O, Witiak SM, Morin H, Traas J, Pautot V. KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell, 2006, 18(8): 1900-1907.[20]李爱宏, 张亚芳, 戴正元, 张洪熙, 潘学彪. LBD 基因家族在高等植物中的研究进展. 分子植物育种, 2006, 4 (3): 301-308.Li A H,Zhang Y F,Dai Z Y,Zhang H X,Pan X B, Progress of LBD gene family in higher plants. Molecular Plant Breeding, 2006, 2006, 4 (3): 301-308.(in Chinese)[21]Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell, 2007, 19(1): 118-130.[22]Lee H W, Kim N Y, Lee D J, Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiology, 2009, 151(3): 1377-1389.[23]Lee H W, Kim M J, Kim N Y, Lee S H, Kim J. LBD18 acts as a transcriptional activator that directly binds to the EXPANSIN14 promoter in promoting lateral root emergence of Arabidopsis. Plant Journal, 2012, 73(2): 212-224.[24]Okushima Y, Overvoorde P J, Arima K, Alonso J M, Chan A, Chang C, Ecker J R, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu X, Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell, 2005, 17(2): 444-463.[25]Feng Z, Zhu J, Du X, Cui X. Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. Planta, 2012, 236(4): 1227-1237.[26]Goh T, Joi S, Mimura T, Fukaki H. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development, 2012, 139(5): 883-893.[27]Naito T, Yamashino T, Kiba T, Koizumi N, Kojima M, Sakakibara H, Mizuno T. A link between cytokinin and ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) that belongs to the AS2/LOB (LATERAL ORGAN BOUNDARIES) family genes in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry, 2007, 71(5): 1269-1278.[28]Rubin G, Tohge T, Matsuda F, Saito K, Scheible W R. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell, 2009, 21(11): 3567-3584.[29]Yordanov Y S, Regan S, Busov V. Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in populus. Plant Cell, 2010, 22(11): 3662-3677.[30]Theodoris G, Inada N, Freeling M. Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development. Proceedings of the National Academy of Sciences of the USA, 2003, 100(11): 6837-6842.[31]Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell, 2005, 17(5): 1387-1396.[32]Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P. ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant Journal, 2005, 43(1): 47-56.[33]Soyano T, Thitamadee S, Machida Y, Chua N H. ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. Plant Cell, 2008, 20(12): 3359-3373.[34]Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson M D, Lawrence C J, Lushbough C, Brendel V. Plant GDB: a resource for comparative plant genomics. Nucleic Acids Research, 2008, 36 (Database issue): D959-965.[35]Poole R L. The TAIR database. Methods Molecular Biology, 2007, 406: 179-212.[36]Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Advanced Bioinformatics, 2008, 2008: 420747.[37]Xu Q, Dunbrack R L. Assignment of protein sequences to existing domain and family classification systems: Pfam and the PDB. Bioinformatics, 2012, 28(21): 2763-2772.[38]Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire M K, Geer L Y, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Lanczycki CJ. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Reseach, 2012, 30(1): 281-283.[39]Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012, 40(Web Server issue): W597-603.[40]Edgar R C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 2004, 5: 113.[41]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.[42]Liu R H, Meng J L. MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas, 2003, 25(3): 317-321.[43]Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29(8): 1023-1026.[44]李乐, 许红亮, 杨兴露, 李雅轩, 胡英考. 大豆LEA基因家族全基因组鉴定、分类和表达. 中国农业科学, 2011, 44(19): 3945-3954. Li L, Xu H L, Yang X L, Li Y X, Hu Y K, Genome-wide identification, classification and expression analysis of LEA gene family in Soybean. Scientia Agricultura Sinica, 2011,44(19): 3945-3954. (in Chinese)[45]李皓, 张文, 赵旭勉, 任雪芹, 朱元娣. 苹果异戊烯基转移酶基因家族(MdIPTs)的克隆与MdIPT5a 功能分析. 中国农业科学, 2011, 44(19): 4029-4036.Li H, Zhang W, Zhao X M, Ren X Q, Zhu Y D. Molecular cloning of isopentenyl transferases genes family in Malus domestica Borkh. and a preliminary functional analysis of MdIPT5a. Scientia Agricultura Sinica, 2011, 44(19): 4029-4036. (in Chinese)[46]梁东, 吴钐, 王素芳, 马锋旺. 苹果山梨醇脱氢酶基因家族的克隆及表达分析. 中国农业科学, 2012, 45(1): 102-110.Liang D, Wu S, Wang S F, Ma F W. Cloning and expression of the sorbitol dehydrogenase gene family in apple. Scientia Agricultura Sinica, 2012, 45(1): 102-110. (in Chinese)[47]Kong F, Wang J, Cheng L, Liu S, Wu J, Peng Z, Lu G. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum. Gene, 2012, 499(1): 108-120.[48]Xu R, Zhang S, Lu L, Cao H, Zheng C. A genome-wide analysis of the RNA helicase gene family in Solanum lycopersicum. Gene, 2013, 513(1): 128-140.[49]Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, Cao S, Liu Y. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics, 2012, 287(6): 495-513. |
[1] | ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143. |
[2] | GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89. |
[3] | SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789. |
[4] | WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718. |
[5] | LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574. |
[6] | SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601. |
[7] | HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980. |
[8] | GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716. |
[9] | LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444. |
[10] | CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377. |
[11] | KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766. |
[12] | YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555. |
[13] | LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154. |
[14] | FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751. |
[15] | JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359. |
|