Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (9): 1745-1755.doi: 10.3864/j.issn.0578-1752.2013.09.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Study on the Characteristics of the Low-Molecular-Weight Glutenin Subunits in the Formation of the Wheat Varieties

 YANG  Rui, GAO  Xiang, CHEN  Qi-Jiao, LI  Xiao-Yan, DONG  Jian, MENG  Min, ZHAO  Wan-Chun, SHI  Yin-Gang, CHEN  Liang-Guo   

  1. 1.College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
    2.Wheat Engineering Research Center of Shaanxi Province/New Varieties Cultivation of Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, Shaanxi
  • Received:2012-12-10 Online:2013-05-01 Published:2013-03-13

Abstract: 【Objective】To understand the diversity origin of low-molecular-weight glutenin subunits (LMW-GS), and provide references for wheat quality improvements, the variation features of LMW-GS in the formation of wheat cultivars were characterized.【Method】With the capillary electrophoresis (CE), the seeds of three sets of hybrid materials (F5/F6), together with their corresponding parents, were used to test the variability of the LMW-GS. A series of specific primers, designed according to the genetic sequence published in GenBank, PCR amplification, gene cloning, and sequence analysis were employed to characterize the features of LMW-GSs. 【Result】The results of CE indicated that all the tested lines contained the relatively stable numbers of LMW-GS compared to the parents, while the accumulation amount of several subunits increased significantly. On the basis of the sequence analysis, all of the 54 genes (GenBank access numbers from KC222070 to KC222121, and from KC478714 to KC478715) belonged to the lmw-gs gene family because of their typical structure of LMW-GS, including the relatively conserved signal peptides, intermediate repeating regions with abundant variations and the conserved C-terminal domain. The similarity alignment between the advanced lines and their parents revealed that all the three sets of hybrid materials shared the extremely conserved sequences with their relevant parental lines and all these common sequences belonged to LMW-m subunits. The relatively conserved sequences originated from SNPs were the major proportion and both parents have been acted as their donors. It was also found the fine procedure of the extra Cys residue in the LMW-GS during the formation of wheat cultivars. What’s more, LMW-GS with 10 or 11 Cys residues was also observed in the present study. The variation of Cys residues mainly occurred in the C-terminal region Ⅱ, while only one variation in the C-terminal region Ⅲ. 【Conclusion】 During the process of wheat breeding, the m-type LMW-GS from paternal sources tend to be more conservative than other kinds of subunits, and SNPs play an important effect on the diversity of LMW-GS.

Key words: Triticum aestivum L. , low molecular weight glutenin , capillary electrophoresis , diversity

[1]Wrigley C W. Giant proteins with flour power. Nature, 1996, 381: 738-739.

[2]Payne P I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review of Plant Physiology, 1987, 38: 141-153.

[3]Wesley A S, Lukow O M, McKenzie R I H, Ames N, Brown D. Effect of multiple substitution of glutenin or gliadin proteins on flour quality of Canada prairie spring wheat. Cereal Chemistry, 2001, 78(1): 69-73.

[4]Brites C, Carrillo J M. Influence of high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal Chemistry, 2001, 78(1): 59-63.

[5]Luo C, Griffin W B, Branlard G, McNeil D L. Comparison of low-and high-molecular-weight wheat glutenin allele effects on flour quality. Theoretical and Applied Genetics, 2001, 102: 1088-1098.

[6]Maruyama-Funatsuki W, Takata K, Nishio Z, Tabiki T, Yahata E, Kato A, Saito K, Funatsuki H, Saruyama H, Yamauchi H. Identi?cation of low-molecular weight glutenin subunits of wheat associated with bread-making quality. Plant Breeding, 2004, 123: 355-360.

[7]戴开军, 高翔, 王强, 宋亚珍, 庄竟. 部分小麦育种材料低分子  量谷蛋白亚基等位基因变异. 西北植物学报, 2006, 26(3): 512-516.

Dai K J, Gao X, Wang Q, Song Y Z, Zhuang J. Allielic variation of low molecular weight glutenin subunits in some breeding material of wheat. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(3): 512-516. (in Chinese)

[8]杨丽娟. 野生二粒小麦LMW-GS基因多样性分析[D]. 雅安: 四川农业大学, 2009.

Yang L J. LMW-GS gene diversity in wild emmer wheat [D]. Yaan: Sichuan Agricultural University, 2009. (in Chinese)

[9]Chen F G, Zhao F, Xu C H, Xia G M. Molecular characterization of LMW-GS genes from a somatic hybrid introgression line II-12 between Triticum aestivum and Agropyron elongatum in relation to quick evolution. Journal of Genetics and Genomics, 2008, 35(12): 743-749.

[10]Liu H, Shi L, Zhao J S, Xia G M. Genetic characteristic of high molecular weight glutenin subunits in somatic hybrid wheat lines-potential application to wheat breeding. Journal of Agricultural Food Chemistry, 2006, 54: 5007-5013.

[11]赵同金, 权太勇, 夏光敏, 陈惠民. 小麦与高冰草体细胞杂种F5代麦谷蛋白及SDS沉降值分析. 山东大学学报: 理学版, 2008, 38(3): 112-116.

Zhao T J, Quan T Y, Xia G M, Chen H M. Glutenin and SDS sedimentation analysis of the F5 somatic hybrids between Triticum aestivum L. and Agropyron elongatum. Journal of Shandong University: Natural Science, 2008, 38(3): 112-116. (in Chinese)

[12]赵继新, 周博, 庞玉辉, 王玉卿, 武军, 陈新宏, 程雪妮, 刘淑会, 傅杰. 滨麦低分子量谷蛋白亚基(LMW-GS)基因的分离与序列分析. 植物科学学报, 2011, 29(6): 704-711.

Zhao J X, Zhou B, Pang Y H, Wang Y Q , Wu J, Chen X H, Cheng X N, Liu S H, Fu J. Isolation and sequence analysis of low molecular weight glutenin subunit from Leymus mollis. Plant Science Journal, 2011, 29(6): 704-711. (in Chinese)

[13]Lookhart G L, Bean S R. Improvements in cereal protein separations by capillary electrophoresis: Resolution and reproducibility. Cereal Chemistry, 1996, 73(1): 81-87.

[14]晏月明, 刘广田, Prodanovic S, Zoric D. 作物种子贮藏蛋白高效毛细管电泳及其在品种鉴定中的应用. 中国农学通报, 1997, 13(6) 16-18.

Yan Y M, Liu G T, Prodanovic S, Zoric D. Crop seed storage proteins separation and analysis with HPCE and its application to varietal identification. Chinese Agricultural Science Bulletin, 1997, 13(6): 16-18. (in Chinese)

[15]Weegels P L, Orsel R, Pijpekamp A M, van de Lichtendonk W J, Hamer R J, Scho?eld D. Functional properties of low Mr wheat proteins: II. Effects on dough properties. Journal of Cereal Science, 1995, 21: 117-126.

[16]晏月明, 刘广田, Prodanovic S, Zoric D. 小麦醇溶蛋白和谷蛋白亚基的高效毛细管电泳分离研究. 中国粮油学报, 1998, 13(4): 1-5.

Yan Y M, Liu G T, Prodanovic S, Zoric D. Studies on separation of gliadins and low-molecular weight glutenin subunits in wheat endosperm by high-performance capillary electrophoresis. Journal of the Chinese Cereals and Oils Association, 1998, 13(4): 1-5. (in Chinese)

[17]Li J, Wang S L, Yu Z T, Li X H, Guo G F, Feng S, Ma W J, Yan Y M. Optimization and development of capillary electrophoresis for separating and identifying wheat low molecular weight glutenin subunits. Journal of Cereal Science, 2012, 55: 254-256.

[18]Melas V, Morel M H, Autran J C, Feillet P. Simple and rapid method for purifying low molecular weight subunits of glutenin from wheat. Cereal Chemistry, 1994, 71(3): 234-237.

[19]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8: 4321-4325.

[20]Payne P I, Corfield K G. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta, 1979, 145: 83-88.

[21]Cassidy B G, Dvorak J, Anderson O D. The wheat low molecular-weight glutenin genes: Characterization of six new genes and progress in understanding gene family structure. Theoretical and Applied Genetics, 1998, 96: 743-750.

[22]韩冉, 马猛, 魏燕燕, 赵惠贤. 优质小麦品种Glu-A3位点LMW-GS基因的克隆及分子特征. 中国农业科学, 2010, 43(5): 881-888.

Han R, Ma M, Wei Y Y, Zhao H X. Cloning and characterization of LMW-GS gene at Glu-A3 complex locus in different wheat cultivars. Scientia Agricultura Sinica, 2010, 43(5): 881-888. (in Chinese)

[23]赵惠贤, 郭蔼光, 胡胜武, 范三红, 张大鹏, 任思霖, 王瑞娟. 小麦Glu-D3和Glu-B3位点LMW-GS基因特异引物设计与PCR扩增. 作物学报, 2004, 30(2): 126-130.

Zhao H X, Guo A G, Hu S W, Fan S H, Zhang D P, Ren S L, Wang R J. Development of primers specific for LMW-GS genes at Glu-D3 and Glu-B3 loci and PCR amplification. Acta Agronomica Sinica, 2004, 30(2): 126-130. (in Chinese)

[24]王立新, 季伟, 李宏博, 葛玲玲, 信爱华, 王丽霞, 常李芳, 赵昌平. 以DNA位点纯和率评价小麦品种的一致性和稳定性. 作物学报,  2009, 35(12): 2197-2204.

Wang L X, Ji W, Li H B, Ge L L, Xin A H, Wang L X, Chang L F, Zhao C P. Evaluating uniformity and stability of wheat cultivars based on ratio of homozygous DNA locus. Acta Agronomica Sinica, 2009, 35(12): 2197-2204. (in Chinese)

[25]徐国恒. 二硫键与蛋白质的结构. 生物学通报, 2010, 45(5): 5-7.

Xu G H. The disulfide bond and protein structure. Bulletin of Biology, 2010, 45(5): 5-7. (in Chinese)

[26]周芳菊, 陈桥生, 张道荣, 汤清益, 王志顺, 姜其斌. 杂交小麦主要产量性状优势及亲本选配分析. 湖北农业科学, 2011, 50(15): 3046-3048.

Zhou F J, Chen Q S, Zhang D R, Tang Q Y, Wang Z S, Jiang Q B. Analysis on the predominance of main yield-characters and parental selection in hybrid wheat. Hubei Agricultural Sciences, 2011, 50(15): 3046-3048. (in Chinese)
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[3] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[6] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] YANG Jing,ZHANG He,LI ShuangShuang,LI GuiHua,ZHANG JianFeng. Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil [J]. Scientia Agricultura Sinica, 2022, 55(16): 3185-3199.
[9] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[10] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[11] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[12] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[13] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[14] HUANG ZiYue,LIU WenJun,QIN RenLiu,PANG ShiChan,XIAO Jian,YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties [J]. Scientia Agricultura Sinica, 2021, 54(18): 4018-4032.
[15] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!