Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (5): 898-908.doi: 10.3864/j.issn.0578-1752.2013.05.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Simulation Model of the Effects of Low Level of Radiation at Milk Filling Stage on Wheat Growth and Yield

 GU  Yun-Qian, LIU  Xue, ZHANG  Wei, QI  Chun-Jie, TANG  Kai-Lei, ZHAO  Yang, ZHANG  Yan, LI  Gang, WANG  Bin, ZHAO  Chun-Jiang, LUO  Wei-Hong   

  1. 1.College of Agriculture, Nanjing Agricultural University, Nanjing 210095
    2.National Engineering Research Center for Information Technology in Agriculture, Beijing 100089
  • Received:2012-08-22 Online:2013-03-01 Published:2012-11-16

Abstract: 【Objective】In order to assess the impacts of low level of radiation caused by cloudy or rainy weather conditions on wheat crop production, it is necessary to quantify the effects of low level of radiation on wheat growth and yield.【Method】Field experiments with three weak gluten winter wheat (Triticum aestivum L.) cultivars Yangmai 15, Yangmai 13 and Ningmai 9 were conducted during the three growing seasons. Shading treatments with four radiation intensities (100%, 50%, 34% and 16% of natural radiation) and four durations (2 d, 4 d, 6 d and 8 d) at milk filling stage in the three grown seasons were designed to simulate the low level of radiation caused by cloudy or rainy weather conditions. Based on the experimental data, the impacts of low level of radiation on wheat growth processes and yield were quantitatively analyzed, and the impacting factors of low level of radiation on photosynthesis, leaf area index and harvest index were determined, respectively. These functions were then integrated with the SUCROS model to develop a dynamic model for predicting the effects of low level of radiation at milk filling stage on the growth and yield of wheat. Independent experimental data were used to validate the model. 【Result】 The critical daily total photosynthetically active radiation (PAR) and duration were determined as 3.71 MJ•m-2 and 2 d for leaf net photosynthetic rate; 3.71 MJ•m-2 and 4 d for leaf area index, biomass production and grain yield. Model validation results showed that the determination coefficient (R2) between the predicted and measured values of leaf net photosynthetic rate, leaf area index, total biomass production and grain yield were 0.78, 0.88, 0.96 and 0.96, respectively, and the relative root mean squared error (rRMSE) were 5.69%, 12.46%, 3.32% and 5.24%, respectively.【Conclusion】The model developed in this study gave satisfactory predictions of the impacts of low level of radiation at milk filling stage on wheat growth and grain yield, hence, can be used for assessing the impacts of low level of radiation caused by cloudy or rainy weather conditions on wheat production.

Key words: wheat , low level of radiation , photosynthesis , leaf area index , biomass production and dry matter partitioning , grain yield

[1]王斌, 顾蕴倩, 刘雪, 罗卫红, 戴剑锋, 张巍, 亓春杰. 中国冬小麦种植区光热资源及其配比的时空演变特征分析. 中国农业科学, 2012,45(2): 228-238.

Wang B, Gu Y Q, Liu X, Luo W H, Dai J F, Zhang W, Qi C J. Analysis of the temporal and spatial changes of photo-thermal resources in winter wheat growing regions in China. Scientia Agricultura Sinica, 2012, 45(2): 228-238. (in Chinese)

[2]金之庆, 石春林, 葛道阔, 高炜. 长江下游平原小麦生长季气候变化特点及小麦发展方向. 江苏农业学报, 2001, 17(4): 193-199.

Jin Z Q, Shi C L, Ge D K, Gao W. Characteristics of climate change during wheat growing season and orientation to develop wheat in the lower valley of Yangtze River. Jiangsu Journal of Agricultural Sciences, 2001, 17(4): 193-199. (in Chinese)

[3]吴洪颜, 高苹, 赵凯. 春季连阴雨对江苏省夏收作物产量的影响. 灾害学, 2003, 18(2): 46-49.

Wu H Y, Gao P, Zhao K. The impact of continuous rain in spring on the summer harvest in Jiangsu Province. Journal of Catastrophology, 2003, 18(2): 46-49. (in Chinese)

[4]Supit I. Predicting national wheat yields using a crop simulation and trend models. Agricultural and Forest Meteorology, 1997, 88: 199-214.

[5]Asseng S, Keating B A, Fillery I R P, Gregory P J, Bowden J W. Performance of the APSIM-wheat model in Western Australia. Field Crops Research, 1998, 57: 163-179.

[6]Chipanshi A C, Ripley E A, Lawford R G. Large-scale simulation of wheat yield in a semi-arid environment using a crop-growth model. Agricultural Systems, 1999, 59: 57-66.

[7]Moreno-Sotomayor A, Weiss A. Improvements in the simulation of kernel number and grain yield in CERES-Wheat. Field Crops Research, 2004, 88:157-169.

[8]马新明, 张娟娟, 刘合兵, 姬兴杰, 刘木森, 张翀. 小麦生长模型(WCSODS)在河南省的适应性评价研究. 中国农业科学, 2006, 39(9): 1789-1795.

Ma X M, Zhang J J, Liu H B, Ji X J, Liu M S, Zhang C. Study on the applicability of the wheat growth model (WCSODS) in Henan province. Scientia Agricultura Sinica, 2006, 39(9): 1789-1795. (in Chinese)

[9]Weiss A, Moreno-Sotomayer A. Simulating grain mass and nitrogen concentration in wheat. European Journal of Agronomy, 2006, 25: 129-137.

[10]Dettori M, Cesaraccio C, Motroni A, Spano D, Duce P. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field Crops Research, 2011, 120: 179-188.

[11]Toscano P, Ranieri R, Matese A, Vaccari F P, Gioli B, Zaldei A, Silvestri M, Ronchi C, La Cava P, Porter J R, Miglietta F. Durum wheat modeling: The Delphi system, 11 years of observations in Italy. European Journal of Agronomy, 2012, 43: 108-118.

[12]van Laar H H, Goudriaan J, van Keulen H. SUCROS97: Simulation of Crop Growth for Potential and Water Limited Production Situations (As Applied to Spring Wheat). Wageningen, The Netherlands: Simulation Report CABO-TT, 27, CABO-DLO, 1992:105.

[13]van Keulen H, Wolf J. Modeling of Agricultural Production: Weather, Soil and Crops. Wageningen, The Netherlands: Simulation Monographs, PUDOC, 1986.

[14]Ritchie J T, Otter S. Description and Performance of CERES-Wheat: A User Oriented Wheat Yield Model. USDA-ARS, ARS-38, 1985: 159-175.

[15]McCown R L, Hammer G L, Hargreaves J N G, Holzworth D P, Freebairn D M. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 1996, 50: 255-271.

[16]高亮之, 金之庆, 郑国清, 冯利平, 张立中, 石春林, 葛道阔. 小麦栽培模拟优化决策系统(WCSODS). 江苏农业学报, 2000, 16(2): 65-72.

Gao L Z, Jin Z Q, Zheng G Q, Feng L P, Zhang L Z, Shi C L, Ge D K. Wheat cultivational simulation-optimization-decision making system (WCSODS). Jiangsu Journal of Agricultural Sciences, 2000, 16(2): 65-72. (in Chinese)

[17]曹卫星, 潘洁, 朱艳, 刘小军. 基于生长模型与Web应用的小麦管理决策支持系统. 农业工程学报, 2007, 23(1): 133-138.

Cao W X, Pan J, Zhu Y, Liu X J. Growth model and Web application-based decision support system for wheat management. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(1): 133-138. (in Chinese)

[18]刘铁梅, 曹卫星, 罗卫红, 王绍华, 尹钧. 小麦物质生产与积累的模拟模型. 麦类作物学报, 2001, 21(3): 26-31.

Liu T M, Cao W X, Luo W H, Wang S H, Yin J. A simulation model of photosynthetic production and dry matter accumulation in wheat. Journal of Triticeae Crops, 2001, 21(3): 26-31. (in Chinese)

[19]Savin R, Slafer G. Shading effects on the yield of an Argentinian wheat cultivar. Journal of Agricultural Science, Cambridge, 1991, 116: 1-7.

[20]Abbate P E, Andrade F H, Culot J P, Bindraban P S. Grain yield in wheat: Effects of radiation during spike growth period. Field Crops Research, 1997, 54: 245-257.

[21]Lobell D B, Ortiz-Monasterio J I, Asner G P. Analysis of wheat yield and climatic trends in Mexico. Field Crops Research, 2005, 94: 250-256.

[22]Estrada-Campuzano G, Miralles D J, Slafer G A. Yield determination in tritical as affected by radiation in different development phases. European Journal of Agronomy, 2008, 28: 597-605.

[23]Qian B D, Jong R D, Warren R, Chipanshi A, Hill H. Statistical spring wheat yield forecasting for the Canadian prairie provinces. Agricultural and Forest Meteorology, 2009, 149: 1022-1031.

[24]Wang Z, Yin Y, He M, Zhang Y, Lu S, Li Q, Shi S. Allocation of photosynthates and grain growth of two wheat cultivars with different potential grain growth in response to pre- and post-anthesis shading. Journal of Agronomy and Crop Science, 2003, 189: 280-285.

[25]Sabine D M, Marie H J. Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crops Research, 2004, 87: 221-233.

[26]张黎萍, 荆奇, 戴廷波, 姜东, 曹卫星. 温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响. 应用生态学报, 2008, 19(2): 311-316.

Zhang L P, Jing Q, Dai T B, Jiang D, Cao W X. Effects of temperature and illumination on flag leaf photosynthetic characteristics and senescence of wheat cultivars with different grain quality. Chinese Journal of Applied Ecology, 2008, 19(2): 311-316. (in Chinese)

[27]牟会荣, 姜东, 戴廷波, 荆奇, 曹卫星. 遮荫对小麦旗叶光合及叶绿素荧光特性的影响. 中国农业科学, 2008, 41(2): 599-606.

Mu H R, Jiang D, Dai T B, Jing Q, Cao W X. Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaf. Scientia Agricultura Sinica, 2008, 41(2): 599-606. (in Chinese)

[28]郭翠花, 高志强, 苗果园. 花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响. 作物学报, 2010, 36(4): 673-679.

Guo C H, Gao Z Q, Miao G Y. Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat. Acta Agronomica Sinica, 2010, 36(4): 673-679. (in Chinese)

[29]Li H W, Jiang D, Wollenweber B, Dai T B, Cao W X. Effiects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy, 2010, 33: 267-275.

[30]Mu H R, Jiang D, Wollenweber B, Dai T B, Jing Q, Cao W X. Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. Journal of Agronomy and Crop Science, 2010, 196: 38-47.

[31]Xu R, Dai J, Luo W, Yin X, Li Y, Tai X, Han L, Chen Y, Lin L, Li G, Zou C, Du W, Diao M. A photothermal model of leaf area index for greenhouse crops. Agricultural and Forest Meteorology, 2010, 150: 541-552.

[32]姬兴杰, 于永强, 张稳, 余卫东. 近二十年中国冬小麦收获指数时空格局. 中国农业科学, 2010, 43(17): 3511-3519.

Ji X J, Yu Y Q, Zhang W, Yu W D. Spatial-temporal patterns of winter wheat harvest index in China in recent twenty years. Scientia Agricultura Sinica, 2010, 43(17): 3511-3519. (in Chinese)

[33]Williams J R, Jones C A, Kiniry J R, Spanel D A. The EPIC crop growth model. Transaction of the ASAE, 1989, 32(2): 497-511.

[34]Kiniry J R, Bean B, Xie Y, Chen P Y. Maize yield potential; critical processes and simulation modeling in a high-yielding environment. Agricultural Systems, 2004, 82(1): 45-56.

[35]张志刚, 尚庆茂. 低温、弱光及盐胁迫下辣椒叶片的光合特性. 中国农业科学, 2010, 43(1): 123-131.

Zhang Z G, Shang Q M. Photosynthetic characteristics of pepper leaves under low temperature, weak light and salt stress. Scientia Agricultura Sinica, 2010, 43(1): 123-131. (in Chinese)

[36]Mauro R P, Occhipinti A O, Longo A M G, Mauromicale G. Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynthesis of subterranean clover. Journal of Agronomy and Crop Science, 2011, 197: 57-66.

[37]Chaturvedi G S, Ingram K T. Growth and yield of lowland rice in response to shade and drainage. Crop Science Society of the Philippines, 1989, 14(2): 61-67.

[38]眭晓蕾, 张振贤, 张宝玺, 毛胜利, 王立浩, 李伟. 不同基因型辣椒光合及生长特性对弱光的响应. 应用生态学报, 2006, 17(10): 1877-1882.

Sui X L, Zhang Z X, Zhang B X, Mao S L, Wang L H, Li W. Photosynthetic and growth characteristics of different ecotype capsicum under weak light. Chinese Journal of Applied Ecology, 2006, 17(10): 1877-1882. (in Chinese)

[39]李永庚, 于振文, 梁晓芳, 赵俊晔, 邱希宾. 小麦产量和品质对灌浆期不同阶段低光照强度的响应. 植物生态学报, 2005, 29(5): 807-813.

Li Y G, Yu Z W, Liang X F, Zhao J Y, Qiu X B. Response of wheat yields and quality to low light intensity at different grain filling stages. Acta Phytoecologica Sinica, 2005, 29(5): 807-813. (in Chinese)

[40]Estrada-Campuzano G, Miralles D J, Slafer G A. Yield determination in triticale as affected by radiation in different development phases. European Journal of Agronomy, 2008, 28: 597-605.

[41]闫素辉, 李文阳, 杨安中, 王振林. 弱光对小麦花后旗叶光合及籽粒灌浆的影响. 麦类作物学报, 2011, 31(1): 77-81.

Yan S H, Li W Y, Yang A Z, Wang Z L. Effects of weak light at grain filling stage on photosynthetic characteristics and grain filling of winter wheat. Journal of Triticeae Crops, 2011, 31(1): 77-81. (in Chinese)

[42]Spitters C J T, van Keulen H, van Krralingen D W G. A simple and universal crop growth simulator: SUCROS87//Rabbinge R, Ward S A, van Laar H H. Simulation and Systems Management in Crop Protection. Pudoc, Wageningen, 1989: 147-181.

[43]Dayan E, van Keulen H, Jones J W, Zipori I, Shmuel D, Challa H. Development, calibration and validation of a greenhouse tomato growth model: I. Description of the model. Agricultural Systems, 1993, 43: 145-163.

[44]刘霞, 尹燕枰, 姜春明, 贺明荣, 王振林. 花后不同时期弱光和高温胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响. 应用生态学报, 2005, 16(11): 2117-2121.

Liu X, Yin Y P, Jiang C M, He M R, Wang Z L. Effects of weak light and high temperature stress after anthesis on flag leaf chlorophyll fluorescence and grain fill of wheat. Chinese Journal of Applied Ecology, 2005, 16(11): 2117-2121. (in Chinese)

[45]梁芳, 郑成淑, 孙宪芝, 王文莉. 低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响. 应用生态学报, 2010, 21(1): 29-35.

Liang F, Zheng C S, Sun X Z, Wang W L. Effects of low temperature and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence parameters of cut flower chrysanthemum. Chinese Journal of Applied Ecology, 2010, 21(1): 29-35. (in Chinese)

[46]Gu L H, Baldocchi D, Verma S B, Black T A, Vesala T, Falge E M, Dowty P R. Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research, 2002,107: 1-23.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[10] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[11] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[12] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[13] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!