Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (1): 1-8.doi: 10.3864/j.issn.0578-1752.2013.01.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
JIA Lin, LIU Yu-Meng, FAN Wei, GUAN Ming-Li, JIA Meng, DOU Shi-Juan, WEI Jian, PENG Ye-Bo, LIU Li-Juan, LI Li-Yun, LIU Guo-Zhen
[1]Wu W H, Zhang S Q, Yuan M, Zhang J. Plant Physiology. Beijing: Science Press, 2008: 444-448.[2]Munns R. Genes and salt tolerance: Bringing them together. New Phytologist, 2005, 167(3): 645-663.[3]Das R, Pandey G K. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Current Genomics, 2010, 11(1): 2-13.[4]熊怀阳, 李阳生. 水稻的耐淹性状及其Sub1基因. 遗传, 2010, 32(9): 886-893.Xiong H Y, Li Y S. Submergence tolerance and Sub1 locus in rice. Hereditas, 2010, 32(9): 886-893. (in Chinese)[5]Wa B L, Lin Y J, Mou T M. Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. Federation of European Biochemical Societies Letters, 2007, 581(6): 1179-1189.[6]Knight H, Knight M R. Abiotic stress signalling pathways: Specificity and cross-talk. Trends in Plant Science, 2001, 6(6): 262-267.[7]Kudla J, Batistic O, Hashimoto K. Calcium signals: The lead currency of plant information processing. The Plant Cell, 2010, 22(3): 541-563.[8]Sanders D, Brownlee C, Harper J F. Communicating with calcium. The Plant Cell, 1999, 11(4): 691-706.[9]Trewavas A J, Malho R. Ca2+ signalling in plant cells: the big network. Current Opinion in Plant Biology, 1998, 1(5): 428-433.[10]He X, Chen J, Zhang Z, Zhang J, Chen S. Identification of salt-stress responsive genes in rice (Oryza sativa L.) by cDNA array. Science in China: Life Sciences, 2002, 45(5): 477-484.[11]Li X J, Yang M F, Chen H, Qu L Q, Chen F, Shen S H. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochimica et Biophysica Acta, 2010, 1804(4): 929-940.[12]Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. The Plant Journal, 2010, 62(2): 316-329.[13]Luan S. The CBL-CIPK network in plant calcium signaling. Trends in Plant Science, 2009, 14(1): 37-42.[14]DeFalco T A, Bender K W, Snedden W A. Breaking the code: Ca2+ sensors in plant signalling. The Biochemical Journal, 2010, 425(1): 27-40.[15]Piao H L, Xuan Y H, Park S H, Je B I, Park S J, Kim C M, Huang J, Wang G K, Kim M J, Kang S M, Lee I J, Kwon T R, Kim Y H, Yeo U S, Yi G, Son D, Han C D. OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Molecules and Cells, 2010, 30(1): 19-27.[16]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125(7): 1347-1360.[17]Huang C, Ding S, Zhang H, Du H, An L. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Science, 2011, 181(1): 57-64.[18]Fuglsang A T, Guo Y, Cuin T A, Qiu Q, Song C, Kristiansen K A, Bych K, Schulz A, Shabala S, Schumaker K S, Palmgren M G, Zhu J K. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein. The Plant Cell, 2007, 19(5): 1617-1634.[19]Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280(5371): 1943-1945.[20]Ishitani M, Liu J, Halfter U, Kim C S, Shi W, Zhu J K. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. The Plant Cell, 2000, 12(9): 1667-1678.[21]Cheong Y H, Sung S J, Kim B G, Pandey G K, Cho J S, Kim K N, Luan S. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Molecules and Cells, 2010, 29(2): 159-165.[22]Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L, Hung W, D'Angelo C, Weinl S, Kudla J, Luan S. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis.The Plant Cell, 2004, 16(7): 1912-1924.[23]Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology, 2004, 134(1): 43-58.[24]Hwang Y S, Bethke P C, Cheong Y H, Chang H S, Zhu T, Jones R L. A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiology, 2005, 138(3): 1347-1358.[25]Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M, Quintero F J. Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 2007, 143(2): 1001-1012.[26]Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H. Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene, 2008, 415(1/2): 1-12.[27]Sunhee Y, Jimyeong P, Migyeong R, In Sun Y, Kim K N. Calcineurin B-like proteins in rice can bind with calcium ion and associate with the Arabidopsis CIPK family members. Plant Science, 2009, 177: 577-583.[28]刘雨萌, 兰金苹, 曹英豪, 刘钊, 刘丽娟, 李莉云, 曹振伟, 刘国振. 水稻类钙调磷酸酶亚基B蛋白质在叶片生长和白叶枯病抗性反应中的表达. 植物学报, 2012, 47(5): 483-490.Liu Y M, Lan J P, Cao Y H, Liu Z, Liu L J, Li L Y, Cao Z W, Liu G Z. Expression of calcineurin B-like proteins in rice leaves and during interactions between rice and Xanthomonas oryzae pv. oryzae. Chinese Bulletin of Botany, 2012, 47(5): 483-490. (in Chinese)[29]刘国振, 刘斯奇, 吴琳, 徐宁志. 基于抗体的水稻蛋白质组学-开端与展望. 中国科学: 生命科学, 2011, 41(3): 173-177.Liu G Z, Liu S Q, Wu L, Xu N Z. Antibody-based rice proteomics-the beginning and perspectives. Scientia Sinica Vitae, 2011, 41(3): 173-177.(in Chinese)[30]Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station, 1950, 347(2): 32.[31]Odorico M, Pellequer J L. BEPITOPE: Predicting the location of continuous epitopes and patterns in proteins. Journal of Molecular Recognition, 2003, 16(1): 20-22.[32]白辉, 王宪云, 曹英豪, 李晓明, 李莉云, 陈浩, 刘丽娟, 朱健辉, 刘国振. 水稻叶绿体蛋白质在生长发育过程中的表达研究. 生物化学与生物物理进展, 2010, 37(9): 988-995.Bai H, Wang X Y, Cao Y H, Li X M, Li L Y, Chen H, Liu L J, Zhu J H, Liu G Z. Expression profiling of rice chloroplast proteins during growth and development. Progress in Biochemistry and Biophysics, 2010, 37(9): 988-995. (in Chinese)[33]Li X M, Bai H, Wang X Y, Li L Y, Cao Y H, Wei J, Liu Y, Liu L J, Gong X D, Wu L, Liu S Q, Liu G Z. Identification and validation of rice reference proteins for western blotting. Journal of Experimental Botany, 2011, 62(14): 4763-4772.[34]Wu Q, Hou M M, Li L Y, Liu L J, Hou Y X, Liu G Z. Induction of pathogenesis-related proteins in rice bacterial blight resistant gene Xa21-mediated interactions with Xanthomonas oryzae pv.oryzae. Journal of Plant Pathology, 2011, 93(2): 455-459.[35]Tsukada Y, Fang J, Erdjument-Bromage H, Warren M E, Borchers C H, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078): 811-816.[36]Nakano M, Nobuta K, Vemaraju K, Tej S S, Skogen J W, Meyers B C. Plant MPSS databases: Signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Research, 2006, 34(Database issue): 731-735.[37]刘钊, 贾霖, 贾盟, 关明俐, 曹英豪, 刘丽娟, 曹振伟, 李莉云, 刘国振. 水稻PP2Ac类磷酸酶蛋白质在盐胁迫下的表达研究. 中国农业科学, 2012, 45(12): 2339-2345.Liu Z, Jia L, Jia M, Guan M L, Cao Y H, Liu L J, Cao Z W, Li L Y, Liu G Z. The Expression profiling of rice PP2Ac type phosphatase proteins in seedlings under salt-stressed conditions. Scientia Agricultura Sinica, 2012, 45(12): 2339-2345. (in Chinese) |
[1] | XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248. |
[2] | ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263. |
[3] | GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89. |
[4] | HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30. |
[5] | MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202. |
[6] | ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45. |
[7] | FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63. |
[8] | SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830. |
[9] | SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491. |
[10] | WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517. |
[11] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[12] | LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556. |
[13] | HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567. |
[14] | GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588. |
[15] | LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629. |
|