Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (1): 9-17.doi: 10.3864/j.issn.0578-1752.2013.01.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Three-Dimensional Pooling and HvGW2 Gene Screening of Barley (Hordeum vulgare L.) BAC Library

 GUO  Gang-Gang, DONG  Guo-Qing, ZHOU  Jin, DA  Wa-顿Zhu, YUAN  Xing-Miao, ZHANG  Jing   

  1. 1.Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Germplasm and Biotechnology, Ministry of Agriculture/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
    2.Wuhan Polytechnic University, Wuhan 430023
    3.Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032
  • Received:2012-10-12 Online:2013-01-01 Published:2012-11-29

Abstract: 【Objective】 The objective of this study was to isolate HvGW2 gene from barley BAC library rapidly. 【Method】 Three-dimensional (3D) BAC pools were constructed and screened by using barley GW2 gene-specific PCR primers. Positive BAC clones were screened out and further sequenced, the obtained HvGW2 gene was used for homologous evolutionary analysis with those of other grasses. 【Result】 One hundred and sixty BAC DNA pools were prepared by 3D pooling strategy from barley BAC library with only 0.18% of empty clones. PCR-based screening demonstrated that only one of the three positive BAC clones (196M02) contained the complete coding sequence of HvGW2. Sequence analysis showed that barley GW2 gene contains eight exons and seven introns, which revealed that it has similar gene structure and conserved functional domain with other plant species. Furthermore, HvGW2 has the highest homologous with wheat GW2 protein. Moreover, the sixth intron of HvGW2 gene contains two different retrotransposon insertions, which resulted in a 11.5 kb length increase of barley GW2 gene than the other crops.【Conclusion】 By constructing three-dimensional BAC pools, and combining with PCR-based screening, positive BAC clones which contain target gene can be isolated quickly. Not only the quality of the barley BAC library was evaluated, but also an auxiliary platform for barley gene cloning was established. It was speculated that the retrotransposon insertions in gene intron might be the key variation which affected the gene transcription levels of HvGW2.

Key words: barley , BAC library , three-dimensional pools , HvGW2 , grain weight gene

[1]Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565): 79-92.

[2]Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W L, Chen L, Cooper B, Park S, Wood T C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296(5565): 92-100.

[3]Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M, Belter E, Du F, Kim K, Abbott R M, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S M, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T. The B73 maize genome: Complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112-1115.

[4]Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278): 178-183.

[5]Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 2008, 18(12): 1199-1209.

[6]武晶, 孔秀英, 高丽峰, 任正隆, 贾继增. 小麦TaGA20ox2基因的克隆及分析. 中国农业科学, 2009, 42(10): 3405-3412.

Wu J, Kong X Y, Gao L F, Ren Z L, Jia J Z. Isolation and analysis of TaGA20ox2 genes in wheat. Scientia Agricultura Sinica, 2009, 42(10): 3405-3412. (in Chinese)

[7]Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 2008, 40(11): 1360-1364.

[8]Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41(4): 494-497.

[9]Yim Y S, Moak P, Sanchez-Villeda H, Musket T A, Close P, Klein P E, Mullet J E, Mcmullen M D, Fang Z, Schaeffer M L, Gardiner J M, Coe E H, Jr., Davis G L. A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps. BMC Genomics, 2007, 8: 47.

[10]Luo M C, Xu K, Ma Y, Deal K R, Nicolet C M, Dvorak J. A high-throughput strategy for screening of bacterial artificial chromosome libraries and anchoring of clones on a genetic map constructed with single nucleotide polymorphisms. BMC Genomics, 2009, 10: 28.

[11]Ariyadasa R, Stein N. Advances in BAC-based physical mapping and map integration strategies in plants. Journal of Biomedicine and Biotechnology, 2012, Article ID 184854, doi: 10.1155/2012/184854.

[12]姜晓东, 张京, 郭刚刚. 大麦Amy32b的遗传多样性及其对α-淀粉酶活性的影响. 中国农业科学, 2012, 45(5): 823-831.

Jiang X D, Zhang J, Guo G G. Polymorphism of the Amy32b gene and its effect on the α-amylase activity in barley. Scientia Agricultura Sinica, 2012, 45(5): 823-831. (in Chinese)

[13]Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D, Whitelaw C, Kilian A, Han F, Sun Y, Gill K, Steffenson B, Kleinhofs A. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proceedings of the National Academy of Sciences of the USA, 2008, 105(39): 14970-14975.

[14]Caldo R A, Nettleton D, Wise R P. Interaction-dependent gene expression in mla-specified response to barley powdery mildew. The Plant Cell, 2004, 16(9): 2514-2528.

[15]Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences of the USA, 2002, 99(14): 9328-9333.

[16]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623-630.

[17]Yan C J, Yan S, Yang Y C, Zeng X H, Fang Y W, Zeng S Y, Tian C Y, Sun Y W, Tang S Z, Gu M H. Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica, 2009, 169(2): 215-226.

[18]Li Q, Li L, Yang X, Warburton M L, Bai G, Dai J, Li J, Yan J. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biology, 2010, 10: 143.

[19]Su Z, Hao C, Wang L, Dong Y, Zhang X. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122(1): 211-223.

[20]Yang Z, Bai Z, Li X, Wang P, Wu Q, Yang L, Li L. SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theoretical and Applied Genetics, 2012, 125(5): 1057-1068.

[21]Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P, Bouzidi M F, Mouzeyar S. Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. Journal of Experimental Botany, 2012, 63(16): 5945-5955.

[22]Mayer K F X, Martis M, Hedley P E, Simkova H, Liu H, Morris J A, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N. Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell, 2011, 23(4): 1249-1263.

[23]郭安源, 朱其慧, 陈新, 罗静初. GSDS:基因结构显示系统. 遗传, 2007, 29(8): 1023-1026.

Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: A gene structure display server. Hereditas, 2007, 29(8): 1023-1026. (in Chinese)

[24]Kohany O, Gentles A J, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: Repbasesubmitter and censor. BMC Bioinformatics, 2006, 7: 474.

[25]Thompson J D, Gibson T J, Higgins D G. Multiple Sequence Alignment Using ClustalW and ClustalX. Current Protocols in Bioinformatics. John Wiley & Sons, Inc. 2002.

[26]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.

[27]Punta M, Coggill P C, Eberhardt R Y, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer E L L, Eddy S R, Bateman A, Finn R D. The Pfam protein families database. Nucleic Acids Research, 2012, 40(D1): D290-D301.

[28]Yan S, Zou G, Li S, Wang H, Liu H, Zhai G, Guo P, Song H, Yan C, Tao Y. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theoretical and Applied Genetics, 2011, 123(7): 1173-1181.

[29]Weil C F, Wessler S R. The effects of plant transposable element insertion on transcription initiation and RNA processing. Annual Review of Plant Physiology and Plant Molecular Biology, 1990, 41(1): 527-552.

[30]Kumar A, Bennetzen J L. Plant retrotransposons. Annual Review of Genetics, 1999, 33(1): 479-532.

[31]Burton R A, Ma G, Baumann U, Harvey A J, Shirley N J, Taylor J, Pettolino F, Bacic A, Beatty M, Simmons C R, Dhugga K S, Rafalski J A, Tingey S V, Fincher G B. A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene. Plant Physiology, 2010, 153(4): 1716-1728.
[1] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[2] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
[3] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[4] KaiYuan GONG,Liang HE,DingRong WU,ChangHe LÜ,Jun LI,WenBin ZHOU,Jun DU,Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[5] GONG Qiang,WANG Ke,YE XingGuo,DU LiPu,XU YanHao. Generation of Marker-Free Transgenic Barley Plants by Agrobacterium-Mediated Transformation [J]. Scientia Agricultura Sinica, 2020, 53(18): 3638-3649.
[6] JiRong LI,TangWei ZHANG,DeJi CIREN,XiaoJun YANG,Dun CI. Fractionation Effect of Stable Isotopic Ratios in Tsamba Processing [J]. Scientia Agricultura Sinica, 2019, 52(24): 4592-4602.
[7] BAI YiXiong, ZHENG XueQing, YAO YouHua, YAO XiaoHua, WU KunLun. Genetic Diversity Analysis and Comprehensive Evaluation of Phenotypic Traits in Hulless Barley Germplasm Resources [J]. Scientia Agricultura Sinica, 2019, 52(23): 4201-4214.
[8] BAI YiXiong,YAO XiaoHua,YAO YouHua,WU KunLun. Difference of Traits Relating to Lodging Resistance in Hulless Barley Genotypes [J]. Scientia Agricultura Sinica, 2019, 52(2): 228-238.
[9] LI Jian, FENG XianHong, CAI YiLin. Coefficient of Parentage Analysis Among Naked Barley Varieties in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2019, 52(16): 2758-2767.
[10] YANG Fei, ZHANG AiHong, MENG FanSi, HUO LiangZhan, LI XiWang, DI DianPing, MIAO HongQin. Distribution and Genetic Diversity of Barley yellow striate mosaic virus in Northern China [J]. Scientia Agricultura Sinica, 2018, 51(2): 279-289.
[11] HOU WeiHai, WANG JianLin, HU Dan, FENG XiBo. Effects of Drought in Post-Flowering on Leaf Water Potential, Photosynthetic Physiology, Seed Phenotype and Yield of Hulless Barley in Tibet Plateau [J]. Scientia Agricultura Sinica, 2018, 51(14): 2675-2688.
[12] HE Jun, TIAN XinZhu, WANG XueDong, LIU Bin, LI Ning, ZHENG Han, MENG Nan, CHEN ShiBao. Zn-Toxicity Thresholds as Determined by Micro Morphological Endpoints of Barley Roots in Polluted Soils and Its Prediction Models [J]. Scientia Agricultura Sinica, 2017, 50(7): 1263-1270.
[13] WANG JianLin, ZHONG ZhiMing, FENG XiBo, FU Gang, HOU WeiHai, WANG GaiHua, Da-cizhuoga. Spatial Distribution Regulation of Protein Content of Naked Barley Varieties and Its Relationships with Environmental Factors in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2017, 50(6): 969-977.
[14] YANG XiaoMeng, DU Juan, ZENG YaWen, PU XiaoYing, YANG ShuMing, YANG Tao, WANG LuXiang, YANG I JiaZhen. QTL Mapping of Protein and Related Functional Components Content in Barley Grains [J]. Scientia Agricultura Sinica, 2017, 50(2): 205-215.
[15] DU Huan, MA TongTong, GUO Shuai, ZHANG Ying, BAI ZhiYing, LI CunDong. Response of Root Morphology and Leaf Osmoregulation Substances of Seedling in Barley Genotypes with Different Heights to PEG Stress [J]. Scientia Agricultura Sinica, 2017, 50(13): 2423-2432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!