Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (15): 3007-3019.doi: 10.3864/j.issn.0578-1752.2012.15.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

A Review of Some Assisted Strategies for Improving the Efficiency of Agrobacterium-Mediated Plant Transformation

 YE  Xing-Guo, WANG  Xin-Min, WANG  Ke, DU  Li-Pu, LIN  Zhi-Shan, XU  Hui-Jun   

  1. 中国农业科学院作物科学研究所/国家基因资源与遗传改良重大科学工程/农业部作物遗传育种重点实验室,北京 100081
  • Received:2012-03-05 Online:2012-08-01 Published:2012-05-17

Abstract: Agrobacterium-mediated transformation is one of the main methods for plant transformation, however, its efficiency varies among different plant species. It is important to develop an efficient Agrobacterium-mediated transformation system in various crop species for the development of new economically important traits and for the study of functional genomics. Many factors influence the efficiency of Agrobacterium-mediated transformation of plants, such as genotypes, explant sources and their physiological status, Agrobacterium strains, culture media, and conditions of co-cultivation. Some assisted techniques or factors have been thought to be useful in improving the efficiency of some plants which are highly recalcitrant to conventional Agrobacterium- mediated transformation. In this paper, some of the factors, in particular microwounding, desiccation of target plant tissues, addition of antioxidants and surfactants to the culture media, over-expressions of additional copies of Vir gene in Agrobacterium and VIP (VirE2 interacting protein) gene in plant, and construction of matrix attachment regions (MAR) were discussed. This information could be valuable for the improvement of Agrobacterium-mediated transformation of highly recalcitrant plants like wheat and soybean.

Key words: plant, Agrobacterium-mediated transformation, microwounding treatment, antioxidants, desiccation treatment, matrix attachment regions

[1]James C. 2011年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2012, 32(1): 1-14.

James C. The commercial development situation of global biological technology/gm crops in 2011. China Biotechnology, 2012, 32(1): 1-14. (in Chinese)

[2]张双喜, 徐兆师, 张改生, 李连城, 陈  孝, 陈  明, 马有志. 转W16小麦抗旱新品系的创制及抗旱生理机制分析. 中国农业科学, 2011, 44(24): 4971-4979.

Zhang S X, Xu Z S, Zhang G S, Li L C, Chen X, Chen M, Ma Y Z. Creation of drought-resistant variety and analysis of physiological mechanism of W16 transgenic wheat. Scientia Agricultura Sinica, 2011, 44(24): 4971-4979. (in Chinese)

[3]Zambryski P, Joos H, Genetello H, Leemans J, Van Montagu M, Schell J. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. The European Molecular Biology Organzation Journal, 1983, 2(12): 2143-2150.

[4]Liu Y, Kong X, Pan J, Li D. VIP1: Linking Agrobacterium-mediated transformation to plant immunity? Plant Cell Reports, 2010, 29: 805-812.

[5]Amoah B K, Wu H, Sparks C, Jones H D. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. Journal of Experimental Botany, 2001, 52(358): 1135-1142.

[6]Santarém E R, Trick H N, Essig J S, Finer J J. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledon: Optimization of transient expression. Plant Cell Reports, 1998, 17: 752-759.

[7]刘晓艳, 丘泰球, 刘石生, 胡爱军. 超声对细胞膜通透性的影响及应用. 应用声学, 2002, 21(2): 26-29.

Liu X Y, Qiu T Q, Liu S S, Hu A J. The influence of ultrasound to the permeability of cell membrane and its application. Applied Acoustics, 2002, 21(2): 26-29. (in Chinese)  

[8]Trick H N, Finer J J. SAAT: Sonication-assisted Agrobacterium-mediated transformation. Transgenic Research, 1997, 6: 329-336.

[9]Beranová M, Rakouský S, Vávrová Z, Skalický T. Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linux usitatissimum L.). Plant Cell, Tissue and Organ Culture, 2008, 94: 253-259.

[10]Trick H N, Finer J J. Sonication-assisted Agrobacterium mediated transformation of soybean [Glycine max (L.) Merrill] embrogenic suspension culture tissue. Plant Cell Reports, 1998, 17: 482-488.

[11]Georgiev M I, Ludwig-Müller J, Alipieva K, Lippert A. Sonication-assisted Agrobacterium rhizogenes-mediated transformation of Verbascun xanthophoeniceum Griseb. for bioactive metabolite accumulation. Plant Cell Reports, 2011, 30: 859-866.

[12]Zupan J R, Zambryski P. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiology, 1995, 107: 1041-1047.

[13]毕瑞明. 负压处理对农杆菌介导小麦成熟胚转化效率的影响. 生物技术, 2008, 18(1): 47-49.

Bi R M. Influence of negative pressure on Agrobacterium-mediated genetic transformation of mature embryo of wheat. Biotechnology, 2008, 18(1): 47-49. (in Chinese)

[14]Mani T, Manjula S. Optimization of Agrobacterium-mediated transient gene expression and endogenous gene silencing in Piper colubrinum Link. by vacuum infiltration. Plant Cell, Tissue and Organ Culture, 2011, 105: 113-119.

[15]刘志学, 马向前, 何艺园, 徐亚楠, 叶鸣明, 唐克轩. 农杆菌介导遗传转化中辅助处理方法的改良. 复旦学报: 自然科学版, 1999, 38(5): 601-604.

Liu Z X, Ma X Q, He Y Y, Xu Y N, Ye M M, Tang K X. An improved assisting method for genetic transformation via Agrobacterium tumefaciens. Journal of Fudan University: Natural Science, 1999, 38(5): 601-604. (in Chinese)

[16]张  磊, 吴殿星, 胡繁荣, 王海秋, 马传喜. 结缕草组织培养及农杆菌介导转化的主要因子优化. 草业学报, 2004, 13(4): 100-105.

Zhang L, Wu D X, Hu F R, Wang H Q, Ma C X. Optimization of major factors for tissue culture and Agrobacterium-mediated transformation of Japanese lawngrass (Zoysia japonica). Acta Prataculturae Sinica, 2004, 13(4): 100-105. (in Chinese)

[17]王强龙, 王锁民, 张金林, 包爱科, 陈托兄, 娄洁琼, 陆  妮. 根瘤农杆菌介导AtNHX1基因转化紫花苜蓿的研究. 草业科学, 2006, 23(12): 55-59.

Wang Q L, Wang S M, Zhang J L, Bao A K, Chen T X, Lou J Q, Lu N. Transformation studies of Medicago sativa mediated by Agrobacterium tumefaciens with AtNHXl gene. Pratacultural Science, 2006, 23(12): 55-59. (in Chinese)

[18]邹湘辉, 庄东红, 胡  忠, 李庆云, 曹  军. 负压和超声波处理对农杆菌介导的花生遗传转化效率的影响. 中国油料作物学报, 2004, 26(1): 12-16.

Zou X H, Zhuang D H, Hu Z, Li Q Y, Cao J. Influence of negative pressure and sonication on Agrobacterium mediated genetic transformation of peanut (Arachis hypogaea L.). Chinese Journal of Oil Crop Sciences, 2004, 26(1): 12-16. (in Chinese)

[19]Charity J A, Holland L, Donaldson S S, Grace L, Walter C. Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell, Tissue and Organ Culture, 2002, 70: 51-60.

[20]Sailaja K V, Srinivasulu M, Lakshmidevi K. Highly efficient Agrobacterium-mediate transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Reports, 2011, 30: 425-436.

[21]de Oliveira M L P, Febres V J, Costa M G C, Moore G A, Otoni W C. High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Reports, 2009, 28: 387-395.

[22]Liu Z, Park B J, Kanno A, Kameya T. The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Molecular Breeding, 2005, 16: 189-197.

[23]Dan Y, Armstrong C L, Dong J, Feng X, Fry J E, Keithly G E, Martinell B J, Roberts G A, Smith L A, Tan L J, Duncan D R. Lipoic acid-a unique plant transformation enhancer. In Vitro Cellular and Developmental Biology-Plant, 2009, 45: 630-638.

[24]Dan Y. Biological functions of antioxidants in plant transformation. In Vitro Cellular and Developmental Biology-Plant, 2008, 44: 149-161.

[25]Parrott D L, Anderson A J, Carman J G. Agrobacterium induces plant cell death in wheat (Triticum aestivum L.). Physiological and Molecular Plant Pathology, 2002, 60, 59-69.

[26]Uchendu E E, Muminova M, Gupta S, Reed B M. Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cellular and Developmental Biology-Plant, 2010, 46: 386-393.

[27]Navari-Izzo F, Quartacci M F, Sgherri C. Lipoic acid: A unique antioxidant in the detoxification of activated oxygen species. Plant Physiology and Biochemistry, 2002, 40: 463-470.

[28]赵巧阳, 赖钟雄. 硝酸银在离体培养和转化中的作用及其机理. 亚热带农业研究, 2008, 4(1): 62-66.

Zhao Q Y, Lai Z X. The roles and mechanisms of AgNO3 in plant in vitro culture and genetic transformation. Subtropical Agriculture Research, 2008, 4(1): 62-66. (in Chinese)

[29]王秀红, 白建荣, 孙  毅, 史向远, 任志强. 农杆菌介导抗草甘膦基因(EPSPS)的玉米转化及相关因子的影响研究. 山西农业科学, 2010, 38(1): 11-14, 18.

Wang X H, Bai J R, Sun Y, Shi X Q, Ren Z Y. Study on Agrobacterium tumefaciens-mediated glyphosate-resistant gene (EPSPS) transformation and correlation factors in maize. Journal of Shanxi Agricultural Sciences, 2010, 38(1): 11-14, 18. (in Chinese)

[30]赵  东, 刘祖生, 陆建良, 钱利生, 屠幼英, 奚  彪. 根瘤农杆菌介导茶树转化研究. 茶叶科学, 2001, 21(2): 108-111.

Zhao D, Liu Z S, Lu J L, Qian L S, Tu Y Y, Xi B. Study on Agrobacterium tumefaciens-mediated transformation of tea plant. Journal of Tea Science, 2001, 21(2): 108-111. (in Chinese)

[31]Packer L, Tritschler H J. Alpha-lipoic acid: The metabolic antioxidant. Free Radical Biology and Medicine, 1996, 20(4): 625-626.

[32]Dan Y, Armstrong C L, Dong J, Feng X, Fry J E, Keithly G E, Martinell B J, Roberts G A, Smith L A, Tan L J, Duncan D R. Lipoic acid-a unique plant transformation enhancer. In Vitro Cellular and Developmental Biology-Plant, 2009, 45: 630-638.

[33]He C, Yang A, Zhang W, Gao Q, Zhang J. Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell, Tissue and Organ Culture, 2010, 101: 65-78.

[34]Appenzeller-Herzog C. Glutathione-and non-glutathione-based oxidant control in the endoplasmic reticulum. Journal of Cell Science, 2011, 124: 847-855.

[35]Kumar A, Chakraborty A, Ghanta S, Chattopadhyay S. Agrobacterium-mediated genetic transformation of mint with E. coli glutathione synthetase gene. Plant Cell, Tissue and Organ Culture, 2009, 96: 117-126.

[36]Wei M, Wei S H, Yang C Y. Effect of putrescine on the conversion of protocorm-like bodies of Dendrobium officinale to shoots. Plant Cell, Tissue and Organ Culture, 2010, 102: 145-151.

[37]Figueiredo S F L, Albarello N, Viana V R C. Micropropagation of Rollinia mucosa (Jacq.) Baill. In Vitro Cellular and Developmental Biology-Plant, 2001, 37: 471-475.

[38]Dutt M, Vasconcellos M, Grosser J W. Effects of antioxidants on Agrobacterium-mediated transformation and accelerated production of transgenic plants of Mexican lime (Citrus aurantifolia Swingle). Plant Cell, Tissue and Organ Culture, 2011, 107: 79-89.

[39]Malabadi R B, Staden J V. Role of antioxidants and amino acids on somatic embryogenesis of Pinus patuia. In Vitro Cellular and Developmental Biology-Plant, 2005, 41: 181-186.

[40]吴  珊, 梁月荣, 陆建良, 黎昊雁. 基因枪及其与农杆菌相结合的茶树外源基因转化条件优化. 茶叶科学, 2005, 25(4): 255-264.

Wu S, Liang Y R, Lu J L, Li H Y. Combination of particle bombardment-mediated and Agrobacterium-mediated transformation methods in tea plant. Journal of Tea Science, 2005, 25(4): 255-264. (in Chinese)

[41]周春丽, 郭卫东, 路  海, 陈  瑾, 李玉萍. 农杆菌介导佛手遗传转化主要影响因素的研究. 热带亚热带植物学报, 2006, 14(5): 374-381.

Zhou C L, Guo W D, Lu H, Chen J, Li Y P. Factors effecting the transformation of Citrus medica L. var. sarodactlis mediated by Agrobacterium. Journal of Tropical and Subtropical Botany, 2006, 14(5): 374-381. (in Chinese)

[42]Olhoft P M, Somers D A. L-Cysteine increases Agrobacterium- mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Reports, 2001, 20: 706-711.

[43]汲逢源, 王戈亮, 许亦农. 抗氧化剂对农杆菌介导的大豆下胚轴GUS基因瞬时表达的影响. 植物生态学报, 2006, 30(2): 330-334.

Ji F Y, Wang G L, Xu Y N. The effect of antioxidants on the transient expression of gus gene in soybean hypocotyls mediated by Agrobacterium tumefaciens. Journal of Plant Ecology, 2006, 30(2): 330-334. (in Chinese)

[44]Liu S J, Wei Z M, Huang J Q. The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Reports, 2008, 27: 489-498.

[45]于惠敏, 夏光敏, 侯丙凯. 提高农杆菌介导小麦遗传转化效率的几个因素. 山东大学学报: 理学版, 2005, 40(6): 120-124.

Yu H M, Xia G M, Hou B K. Factors improving the efficiency of wheat transformation mediated by Agrobacterium tumefaciens. Journal of Shandong University: Natural Science, 2005, 40(6): 120-124. (in Chinese)

[46]Enríquez-Obregón G A, Vázquez-Padrón R I, Prieto-Samsonov D L, De la Riva G, Selman-Housein S. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta, 1998, 206: 20-27.

[47]Liebich I, Bode J, Frisch M, Wingender E. S/MARt DB: A database on scaffold/matrix attached regions. Nucleic Acids Research, 2002, 30(1): 372-374.

[48]Witold N, Magdalena G, Artur J, Augustyniak J. Effect of nuclear matrix attachment regions on transgene expression in tobacco plant. Acta Biochimica Polonica, 2001, 48(3): 637-646.

[49]Heng H H Q, Goetze S, Ye C J,  Liu G, Stevens J B, Bremer S W, Wykes S M, Bode J, Krawetz S A. Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. Journal of Cell Science, 2004, 117: 999-1008.

[50]Allen G C, Spiker S, Thompson W F. Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Molecular Biology, 2000, 43: 361-376.

[51]Sidorenko L, Bruce W, Maddock S, Tagliani L, Li X, Daniels M, Peterson T. Functional analysis of two matrix attachment region (MAR) elements in transgenic maize plants. Transgenic Research, 2003, 12: 137-154.

[52]Holmes-Davis R, Comai L. The matrix attachment regions (MARs) associated with the heat shock cognate 80 gene (HSC80) of tomato represent specific regulatory elements. Molecular Genetics and Genomics, 2002, 266: 891-898.

[53]Zhang J, Lu L, Ji L, Yang G, Zheng C. Functional characterization of a tobacco matrix attachment region-mediated enhancement of transgene expression. Transgenic Research, 2009, 18: 377-385.

[54]Avramova Z, Sanmiguel P, Georgieva E, Bennetzen J L. Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. The Plant Cell, 1995, 7: 1667-1680.

[55]Zhang M M, Ji L S, Xue H, Yang Y T, Wu C A, Zheng C C. High transformation frequency of tobacco and rice via Agrobacterium-mediated gene transfer by flanking a tobacco matrix attachment region. Physiologia Plantarum, 2007, 129: 644-651.

[56]Fukuda Y. Characterization of matrix attachment sites in the upstream region of a tobacco chitinase gene. Plant Molecular Biology, 1999, 39: 1051-1062.

[57]Han K H, Ma C, Strauss S H. Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar. Transgenic Research, 1997, 6, 415-420.

[58]Butaye K M J, Goderis I J W M, Wouters P F J, Pues J M, Delauré S, Broekaert W F, Depicker A, Cammue B P A, De Bolle M F C. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. The Plant Journal, 2004, 39: 440-449.

[59]Allen G C, Hall G E, Childs L C, Weissinger A K, Spiker S, Thompson W F. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. The Plant Cell, 1993, 5(6): 603-613.

[60]Hansen G, Das A, Chilton M. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proceedings of the National Academy of Sciences of the USA, 1994, 91: 7603-7607.

[61]Lu J, den Dulk-Ras A, Hooykaas P J J, Mark Glover J N. Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold. Proceedings of the National Academy of Sciences of the USA, 2009, 106 (24): 9643-9648.

[62]Pelczar P, Kalck V, Gomez D, Hohn B. Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic T-DNA complexes in mammalian cells. EMBO Reports, 2004, 5(6): 632-637.

[63]Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore K S. Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. The Plant Cell, 2007, 19: 1695-1708.

[64]Wu X, Doherty A, Jones H D. Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Research, 2008, 17(3): 425-436.

[65]Wu H, Doherty A, Jones H D. Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. Methods in Molecular Biology, Transgenic Wheat, Barley and Oats, 2009, 478(2): 93-103.

[66]Tang W. Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Reports, 2003, 21: 555-562.

[67]Tzfira T, Vaidya M, Citovsky V. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. The EMBO Journal, 2001, 20(13): 3596-3607.

[68]Tzfira T, Vaidya M, Citovsky V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proceedings of the National Academy of Sciences of the USA, 2002, 99(16): 10435-10440.

[69]Madhou P, Raghavan C, Wells A, Stevenson T W. Genomewide microarray analysis of the effect of a surfactant application in Arabidopsis. Weed Research, 2006, 46: 275-283.

[70]Kim M J, Baek K, Park C M. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Reports, 2009, 28: 1159-1167.

[71]Clough S, Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743.

[72]Curtis I S, Nam H G. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research, 2001, 10: 363-371.

[73]Cheng M, Fry J E, Pang S, Zhou H, Hironaka C M, Duncan D R, Conner T W, Wan Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 1997, 115: 971-980.

[74]Chhabra G, Chaudhary D, Sainger M, Jaiwal P K. Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiology and Molecular Biology of Plants, 2011, 17(2): 129-136.

[75]Wu H, Sparks C, Amoah B, Jones H D. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports, 2003, 21: 659-668.

[76]Liu S J, Wei Z M, Huang J Q. The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Reports, 2008, 27: 489-498.

[77]Yang A F, He C M, Zhang K W, Zhang J. Improvement of Agrobacterium-mediated transformation of embryogenic calluses from maize elite inbred lines. In Vitro Cellular and Developmental Biology-Plant, 2006, 42: 215-219.

[78]Suzuki S, Nakano M. Agrobacterium-mediated production of transgenic plants of Muscari armeniacum Leichtl. ex Bak.. Plant Cell Reports, 2002, 20: 835-841.

[79]Cheng M, Lowe B A, Spencer T M, Ye X, Armstrong C L. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular and Developmental Biology-Plant, 2004, 40: 31-45.

[80]Polin L D, Liang H, Rothrock R E, Nishii M, Diehl D L, Newhouse A E, Nairn C J, Powell W A, Maynard C A. Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell, Tissue and Organ Culture, 2006, 84: 69-78.

[81]Zhang B, Newhouse N, Mcguigan L, Maynard C, Powell W. Agrobacterium-mediated co-transformation of American chestnut (Castanea dentata) somatic embryos with a wheat oxalate oxidase gen. BMC Proceedings, 2011, 5(Suppl 7): O43.

[82]Cheng M, Hu T, Layton J, Liu C, Fry J E. Desiccation of plant tissues post-Agrobacterium infection enhance T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cellular and Developmental Biology-Plant, 2003, 39: 595-604.

[83]奚亚军, 高海战, 吕晓依, 路  明, 刘曙东. 黄淮麦区推广品种小偃22农杆菌遗传转化体系的建立. 核农学报, 2009, 23(2): 185-192.

Xi Y J, Gao H Z, Lü X Y, Lu M, Liu S D. Genetic transformation system of wheat Xiaoyan22 mediated by Agrobacterium tumefaciens. Journal of Nuclear Agricultural Sciences, 2009, 23(2): 185-192. (in Chinese)

[84]Ding L, Li S, Gao J, Wang Y, Yang G, He G. Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Molecular Biology Reports, 2009, 36: 29-36.

[85]丁莉萍, 陈  泠, 李圣纯, 李海东, 汪越胜, 杨广笑, 何光源. 根癌农杆菌介导小麦成熟胚遗传转化影响因素的研究. 麦类作物学报, 2007, 27(5): 76l-766.

Ding L P, Chen L, Li S C, Li H D,Wang Y S, Yang G X, He G Y. Factors influencing transformation of wheat (Triticum aestivum L.) Mature embryos mediated by Agrobacterium tumefaciens. Journal of Triticeae Crops, 2007, 27(5): 76l-766. (in Chinese)

[86]Arencibia A D, Carmona E R, Téllez P, Chan M, Yu S, Trujillo L E, Oramas P. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Research, 1998, 7: 213-222.

[87]Urushibara S, Tozawa Y, Kawagishi-Kobayashi M, Wakasa K. Efficient transformation of suspension-cultured rice cells mediated by Agrobacterium tumefaciens. Breeding Science, 2001, 51: 33-38.

[88]李笑寒, 李  莉, 宋风顺, 倪大虎, 陆徐忠, 李  浩, 段永波, 汪秀峰, 杨剑波. 根瘤农杆菌介导的水稻转基因技术体系的优化. 生物学杂志, 2011, 28(2): 13-16.

Li X H, Li L, Song F S, Ni D H, Lu X Z, Li H, Duan Y B, Wang X F, Yang J B. Condition optimization of Agrobacterium-mediated transgenic rice. Journal of Biology, 2011, 28(2): 13-16. (in Chinese)

[89]Chaudhary B, Kumar S, Prasad K V S K, Oinam G S, Burma P K, Pental D. Slow desiccation leads to high-frequency shoot recovery from transformed somatic embryos of cotton (Gossypium hirsutum L. cv. Coker 310 FR). Plant Cell Reports, 2003, 21: 955-960.

[90]曾黎辉, 吕柳新. 根癌农杆菌介导荔枝遗传转化研究. 果树学报, 2003, 20(4): 287-290.

Zeng L H, Lü L X. A preliminary report on Agrobacterium tumefaciens mediated genetic transformation of Litchi. Journal of Fruit Science, 2003, 20(4): 287-290. (in Chinese)

[91]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994, 6(2): 271-282.

[92]Khanna H K, Daggard G E. Agrobacterium tumefaciens-mediated transformation of wheat using a super binary vector and a polyamine-supplemented regeneration medium. Plant Cell Reports, 2003, 21(5): 429-436.

[93]Boyko A, Matsuoka A, Kovalchuk I. High frequency Agrobacterium tumefaciens-mediated plant transformation induced by ammonium nitrate. Plant Cell Reports, 2009, 28: 737-757.

[94]Boyko A, Matsuoka A, Kovalchuk I. Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation. Plant Cell Reports, 2011, 30: 505-518.

[95]Montoro P, Rattana W, Pujade-Renaud V, Michaux-ferrière N, Monkolsook Y, Kanthapura R, Adunsadthapong S. Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: Roles of calcium. Plant Cell Reports, 2003, 21: 1095-1102.

[96]Sangwan R S, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B. Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta, 1992, 188: 439-456.

[97]de Katen A, Jacobsen H J. Cell competence for Agrobacterium-mediated DNA transfer in Pisum sativum L.. Transgenic Research, 1995, 4: 184-191.

[98]Tenea G N, Spantzel J, Lee L Y, Zhu Y, Lin K, Johnson S J, Gelvin S B. Overexpression of several Arabidopsis histone genes increases Agrobacterium-mediated transformation and transgene expression in plants. The Plant Cell, 2009, 21: 3350-3367.

[99]Mysore K S, Nam J, Gelvin S B. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proceedings of the National Academy of Sciences of the USA, 2000, 97(2): 948-953.

[100]Zheng Y, He H W, Ying Y H, Lu J F, Gelvin S B, Shou H X. Expression of the Arabidopsis thaliana histone gene AtHTA1 enhances rice transformation efficiency. Molecular Plant, 2009, 2(4): 832-837.

[101]Tomlinson A D, Ramey-Hartung B, Day T W, Merritt P M, Fuqua C. Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. Microbiology, 2010, 156: 2670-2681.

[102]Gordon-Kamm W, Dilkes B P, Lowe K, Hoerster G, Sun X, Ross M, Church L, Bunde C, Farrell J, Hill P, Maddock S, Snyder J, Sykes L, Li Z, Woo Y, Bidney D, Larkins B A. Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proceedings of the National Academy of Sciences of the USA, 2002, 99(18): 11975-11980.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[3] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[4] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[5] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[6] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[7] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[8] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[9] GUO BaoWei,TANG Chuang,WANG Yan,CAI JiaXin,TANG Jian,ZHOU Miao,JING Xiu,ZHANG HongCheng,XU Ke,HU YaJie,XING ZhiPeng,LI GuoHui,CHEN Heng. Effects of Two Mechanical Planting Methods on the Yield and Quality of High-Quality Late Indica Rice [J]. Scientia Agricultura Sinica, 2022, 55(20): 3910-3925.
[10] MA Xiao,CHEN PengFei. Improvement of Row Detection Method Before Wheat Canopy Closure Using Multispectral Images of UAV Image [J]. Scientia Agricultura Sinica, 2022, 55(20): 3926-3938.
[11] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[12] LI YangMei,LIU Xin,JIA MengHan,TONG YuXin. Tipburn Injury and Nutritional Quality of Lettuce Plants as Affected by Humidity Control During the Light Period in A Plant Factory [J]. Scientia Agricultura Sinica, 2022, 55(20): 4011-4019.
[13] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[14] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[15] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!